Lucene search

K
osvGoogleOSV:USN-5377-1
HistoryApr 13, 2022 - 2:49 a.m.

linux-bluefield vulnerabilities

2022-04-1302:49:23
Google
osv.dev
12
linux kernel
use-after-free
memory issues
privilege escalation
denial of service
arbitrary code
xen subsystem
driver domains
network backend
marvell wifi-ex
arm trusted execution environment
phone network protocol
f2fs file system
datagram sockets
transparent inter-process communication
ipsec implementation

AI Score

8.6

Confidence

High

EPSS

0.095

Percentile

94.8%

It was discovered that the network traffic control implementation in the
Linux kernel contained a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2022-1055)

Yiqi Sun and Kevin Wang discovered that the cgroups implementation in the
Linux kernel did not properly restrict access to the cgroups v1
release_agent feature. A local attacker could use this to gain
administrative privileges. (CVE-2022-0492)

Jürgen Groß discovered that the Xen subsystem within the Linux kernel did
not adequately limit the number of events driver domains (unprivileged PV
backends) could send to other guest VMs. An attacker in a driver domain
could use this to cause a denial of service in other guest VMs.
(CVE-2021-28711, CVE-2021-28712, CVE-2021-28713)

Jürgen Groß discovered that the Xen network backend driver in the Linux
kernel did not adequately limit the amount of queued packets when a guest
did not process them. An attacker in a guest VM can use this to cause a
denial of service (excessive kernel memory consumption) in the network
backend domain. (CVE-2021-28714, CVE-2021-28715)

It was discovered that the simulated networking device driver for the Linux
kernel did not properly initialize memory in certain situations. A local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2021-4135)

Brendan Dolan-Gavitt discovered that the Marvell WiFi-Ex USB device driver
in the Linux kernel did not properly handle some error conditions. A
physically proximate attacker could use this to cause a denial of service
(system crash). (CVE-2021-43976)

It was discovered that the ARM Trusted Execution Environment (TEE)
subsystem in the Linux kernel contained a race condition leading to a use-
after-free vulnerability. A local attacker could use this to cause a denial
of service or possibly execute arbitrary code. (CVE-2021-44733)

It was discovered that the Phone Network protocol (PhoNet) implementation
in the Linux kernel did not properly perform reference counting in some
error conditions. A local attacker could possibly use this to cause a
denial of service (memory exhaustion). (CVE-2021-45095)

Wenqing Liu discovered that the f2fs file system in the Linux kernel did
not properly validate the last xattr entry in an inode. An attacker could
use this to construct a malicious f2fs image that, when mounted and
operated on, could cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-45469)

It was discovered that the Reliable Datagram Sockets (RDS) protocol
implementation in the Linux kernel did not properly deallocate memory in
some error conditions. A local attacker could possibly use this to cause a
denial of service (memory exhaustion). (CVE-2021-45480)

Samuel Page discovered that the Transparent Inter-Process Communication
(TIPC) protocol implementation in the Linux kernel contained a stack-based
buffer overflow. A remote attacker could use this to cause a denial of
service (system crash) for systems that have a TIPC bearer configured.
(CVE-2022-0435)

It was discovered that the IPsec implementation in the Linux kernel did not
properly allocate enough memory when performing ESP transformations,
leading to a heap-based buffer overflow. A local attacker could use this to
cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-27666)