Lucene search

K
osvGoogleOSV:USN-5018-1
HistoryJul 20, 2021 - 10:11 p.m.

linux, linux-aws, linux-aws-hwe, linux-azure, linux-azure-4.15, linux-gcp, linux-gcp-4.15, linux-hwe, linux-kvm, linux-oracle, linux-raspi2, linux-snapdragon vulnerabilities

2021-07-2022:11:51
Google
osv.dev
5

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.4 High

AI Score

Confidence

High

7.2 High

CVSS2

Access Vector

LOCAL

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:C/I:C/A:C

0.002 Low

EPSS

Percentile

64.7%

It was discovered that the virtual file system implementation in the Linux
kernel contained an unsigned to signed integer conversion error. A local
attacker could use this to cause a denial of service (system crash) or
execute arbitrary code. (CVE-2021-33909)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly enforce limits for pointer operations. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-33200)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation did
not properly clear received fragments from memory in some situations. A
physically proximate attacker could possibly use this issue to inject
packets or expose sensitive information. (CVE-2020-24586)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled encrypted fragments. A physically proximate attacker
could possibly use this issue to decrypt fragments. (CVE-2020-24587)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled EAPOL frames from unauthenticated senders. A physically
proximate attacker could inject malicious packets to cause a denial of
service (system crash). (CVE-2020-26139)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation could
reassemble mixed encrypted and plaintext fragments. A physically proximate
attacker could possibly use this issue to inject packets or exfiltrate
selected fragments. (CVE-2020-26147)

It was discovered that the bluetooth subsystem in the Linux kernel did not
properly perform access control. An authenticated attacker could possibly
use this to expose sensitive information. (CVE-2020-26558, CVE-2021-0129)

Or Cohen and Nadav Markus discovered a use-after-free vulnerability in the
nfc implementation in the Linux kernel. A privileged local attacker could
use this issue to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-23134)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly prevent speculative loads in certain situations. A local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2021-31829)

It was discovered that a race condition in the kernel Bluetooth subsystem
could lead to use-after-free of slab objects. An attacker could use this
issue to possibly execute arbitrary code. (CVE-2021-32399)

It was discovered that a use-after-free existed in the Bluetooth HCI driver
of the Linux kernel. A local attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2021-33034)

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.4 High

AI Score

Confidence

High

7.2 High

CVSS2

Access Vector

LOCAL

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:C/I:C/A:C

0.002 Low

EPSS

Percentile

64.7%