Lucene search

K
ubuntuUbuntuUSN-5000-1
HistoryJun 23, 2021 - 12:00 a.m.

Linux kernel vulnerabilities

2021-06-2300:00:00
ubuntu.com
145

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.2 High

AI Score

Confidence

High

7.2 High

CVSS2

Access Vector

LOCAL

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:C/I:C/A:C

0.002 Low

EPSS

Percentile

64.2%

Releases

  • Ubuntu 20.04 LTS
  • Ubuntu 18.04 ESM

Packages

  • linux - Linux kernel
  • linux-aws - Linux kernel for Amazon Web Services (AWS) systems
  • linux-aws-5.4 - Linux kernel for Amazon Web Services (AWS) systems
  • linux-azure - Linux kernel for Microsoft Azure Cloud systems
  • linux-azure-5.4 - Linux kernel for Microsoft Azure cloud systems
  • linux-gcp - Linux kernel for Google Cloud Platform (GCP) systems
  • linux-gcp-5.4 - Linux kernel for Google Cloud Platform (GCP) systems
  • linux-gke - Linux kernel for Google Container Engine (GKE) systems
  • linux-gke-5.4 - Linux kernel for Google Container Engine (GKE) systems
  • linux-gkeop - Linux kernel for Google Container Engine (GKE) systems
  • linux-gkeop-5.4 - Linux kernel for Google Container Engine (GKE) systems
  • linux-hwe-5.4 - Linux hardware enablement (HWE) kernel
  • linux-oracle - Linux kernel for Oracle Cloud systems
  • linux-oracle-5.4 - Linux kernel for Oracle Cloud systems
  • linux-raspi - Linux kernel for Raspberry Pi (V8) systems
  • linux-raspi-5.4 - Linux kernel for Raspberry Pi (V8) systems

Details

Norbert Slusarek discovered a race condition in the CAN BCM networking
protocol of the Linux kernel leading to multiple use-after-free
vulnerabilities. A local attacker could use this issue to execute arbitrary
code. (CVE-2021-3609)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly enforce limits for pointer operations. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-33200)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation did
not properly clear received fragments from memory in some situations. A
physically proximate attacker could possibly use this issue to inject
packets or expose sensitive information. (CVE-2020-24586)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled encrypted fragments. A physically proximate attacker
could possibly use this issue to decrypt fragments. (CVE-2020-24587)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled certain malformed frames. If a user were tricked into
connecting to a malicious server, a physically proximate attacker could use
this issue to inject packets. (CVE-2020-24588)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled EAPOL frames from unauthenticated senders. A physically
proximate attacker could inject malicious packets to cause a denial of
service (system crash). (CVE-2020-26139)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation did
not properly verify certain fragmented frames. A physically proximate
attacker could possibly use this issue to inject or decrypt packets.
(CVE-2020-26141)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
accepted plaintext fragments in certain situations. A physically proximate
attacker could use this issue to inject packets. (CVE-2020-26145)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation could
reassemble mixed encrypted and plaintext fragments. A physically proximate
attacker could possibly use this issue to inject packets or exfiltrate
selected fragments. (CVE-2020-26147)

Or Cohen discovered that the SCTP implementation in the Linux kernel
contained a race condition in some situations, leading to a use-after-free
condition. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2021-23133)

Or Cohen and Nadav Markus discovered a use-after-free vulnerability in the
nfc implementation in the Linux kernel. A privileged local attacker could
use this issue to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-23134)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly prevent speculative loads in certain situations. A local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2021-31829)

It was discovered that a race condition in the kernel Bluetooth subsystem
could lead to use-after-free of slab objects. An attacker could use this
issue to possibly execute arbitrary code. (CVE-2021-32399)

It was discovered that a use-after-free existed in the Bluetooth HCI driver
of the Linux kernel. A local attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2021-33034)

It was discovered that an out-of-bounds (OOB) memory access flaw existed in
the f2fs module of the Linux kernel. A local attacker could use this issue
to cause a denial of service (system crash). (CVE-2021-3506)

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.2 High

AI Score

Confidence

High

7.2 High

CVSS2

Access Vector

LOCAL

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:C/I:C/A:C

0.002 Low

EPSS

Percentile

64.2%