Lucene search

K
ubuntuUbuntuUSN-4999-1
HistoryJun 23, 2021 - 12:00 a.m.

Linux kernel vulnerabilities

2021-06-2300:00:00
ubuntu.com
176

7.2 High

CVSS2

Attack Vector

LOCAL

Attack Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:C/I:C/A:C

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.3 High

AI Score

Confidence

High

0.004 Low

EPSS

Percentile

72.9%

Releases

  • Ubuntu 20.10
  • Ubuntu 20.04 LTS

Packages

  • linux - Linux kernel
  • linux-aws - Linux kernel for Amazon Web Services (AWS) systems
  • linux-aws-5.8 - Linux kernel for Amazon Web Services (AWS) systems
  • linux-azure - Linux kernel for Microsoft Azure Cloud systems
  • linux-azure-5.8 - Linux kernel for Microsoft Azure cloud systems
  • linux-gcp - Linux kernel for Google Cloud Platform (GCP) systems
  • linux-gcp-5.8 - Linux kernel for Google Cloud Platform (GCP) systems
  • linux-hwe-5.8 - Linux hardware enablement (HWE) kernel
  • linux-kvm - Linux kernel for cloud environments
  • linux-oracle - Linux kernel for Oracle Cloud systems
  • linux-oracle-5.8 - Linux kernel for Oracle Cloud systems
  • linux-raspi - Linux kernel for Raspberry Pi (V8) systems

Details

Norbert Slusarek discovered a race condition in the CAN BCM networking
protocol of the Linux kernel leading to multiple use-after-free
vulnerabilities. A local attacker could use this issue to execute arbitrary
code. (CVE-2021-3609)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly enforce limits for pointer operations. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-33200)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation did
not properly clear received fragments from memory in some situations. A
physically proximate attacker could possibly use this issue to inject
packets or expose sensitive information. (CVE-2020-24586)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled encrypted fragments. A physically proximate attacker
could possibly use this issue to decrypt fragments. (CVE-2020-24587)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled certain malformed frames. If a user were tricked into
connecting to a malicious server, a physically proximate attacker could use
this issue to inject packets. (CVE-2020-24588)

Kiyin (尹亮) discovered that the NFC LLCP protocol implementation in the
Linux kernel contained a reference counting error. A local attacker could
use this to cause a denial of service (system crash). (CVE-2020-25670)

Kiyin (尹亮) discovered that the NFC LLCP protocol implementation in the
Linux kernel did not properly deallocate memory in certain error
situations. A local attacker could use this to cause a denial of service
(memory exhaustion). (CVE-2020-25671, CVE-2020-25672)

Kiyin (尹亮) discovered that the NFC LLCP protocol implementation in the
Linux kernel did not properly handle error conditions in some situations,
leading to an infinite loop. A local attacker could use this to cause a
denial of service. (CVE-2020-25673)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
incorrectly handled EAPOL frames from unauthenticated senders. A physically
proximate attacker could inject malicious packets to cause a denial of
service (system crash). (CVE-2020-26139)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation did
not properly verify certain fragmented frames. A physically proximate
attacker could possibly use this issue to inject or decrypt packets.
(CVE-2020-26141)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation
accepted plaintext fragments in certain situations. A physically proximate
attacker could use this issue to inject packets. (CVE-2020-26145)

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation could
reassemble mixed encrypted and plaintext fragments. A physically proximate
attacker could possibly use this issue to inject packets or exfiltrate
selected fragments. (CVE-2020-26147)

Or Cohen discovered that the SCTP implementation in the Linux kernel
contained a race condition in some situations, leading to a use-after-free
condition. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2021-23133)

Piotr Krysiuk and Benedict Schlueter discovered that the eBPF
implementation in the Linux kernel performed out of bounds speculation on
pointer arithmetic. A local attacker could use this to expose sensitive
information. (CVE-2021-29155)

Manfred Paul discovered that the extended Berkeley Packet Filter (eBPF)
implementation in the Linux kernel contained an out-of-bounds
vulnerability. A local attacker could use this issue to execute arbitrary
code. (CVE-2021-31440)

Piotr Krysiuk discovered that the eBPF implementation in the Linux kernel
did not properly prevent speculative loads in certain situations. A local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2021-31829)

7.2 High

CVSS2

Attack Vector

LOCAL

Attack Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:C/I:C/A:C

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.3 High

AI Score

Confidence

High

0.004 Low

EPSS

Percentile

72.9%