Lucene search

K
osvGoogleOSV:USN-5668-1
HistoryOct 10, 2022 - 9:53 p.m.

linux, linux-aws, linux-bluefield, linux-gke, linux-gkeop, linux-hwe-5.4, linux-ibm, linux-ibm-5.4, linux-kvm, linux-oracle vulnerabilities

2022-10-1021:53:06
Google
osv.dev
12
linux kernel
bpf verifier
v4l2 implementation
rose x.25 protocol
xen virtual block driver
intel processors
io_uring subsystem
xen paravirtualization frontend
netlink transformation subsystem

CVSS2

4.9

Attack Vector

LOCAL

Attack Complexity

LOW

Authentication

NONE

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:N/I:N/A:C

CVSS3

7.8

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

AI Score

8.1

Confidence

High

EPSS

0.001

Percentile

27.5%

It was discovered that the BPF verifier in the Linux kernel did not
properly handle internal data structures. A local attacker could use this
to expose sensitive information (kernel memory). (CVE-2021-4159)

It was discovered that an out-of-bounds write vulnerability existed in the
Video for Linux 2 (V4L2) implementation in the Linux kernel. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-20369)

Duoming Zhou discovered that race conditions existed in the timer handling
implementation of the Linux kernel’s Rose X.25 protocol layer, resulting in
use-after-free vulnerabilities. A local attacker could use this to cause a
denial of service (system crash). (CVE-2022-2318)

Roger Pau Monné discovered that the Xen virtual block driver in the Linux
kernel did not properly initialize memory pages to be used for shared
communication with the backend. A local attacker could use this to expose
sensitive information (guest kernel memory). (CVE-2022-26365)

Pawan Kumar Gupta, Alyssa Milburn, Amit Peled, Shani Rehana, Nir Shildan
and Ariel Sabba discovered that some Intel processors with Enhanced
Indirect Branch Restricted Speculation (eIBRS) did not properly handle RET
instructions after a VM exits. A local attacker could potentially use this
to expose sensitive information. (CVE-2022-26373)

Eric Biggers discovered that a use-after-free vulnerability existed in the
io_uring subsystem in the Linux kernel. A local attacker could possibly use
this to cause a denial of service (system crash) or possibly execute
arbitrary code. (CVE-2022-3176)

Roger Pau Monné discovered that the Xen paravirtualization frontend in the
Linux kernel did not properly initialize memory pages to be used for shared
communication with the backend. A local attacker could use this to expose
sensitive information (guest kernel memory). (CVE-2022-33740)

It was discovered that the Xen paravirtualization frontend in the Linux
kernel incorrectly shared unrelated data when communicating with certain
backends. A local attacker could use this to cause a denial of service
(guest crash) or expose sensitive information (guest kernel memory).
(CVE-2022-33741, CVE-2022-33742)

Oleksandr Tyshchenko discovered that the Xen paravirtualization platform in
the Linux kernel on ARM platforms contained a race condition in certain
situations. An attacker in a guest VM could use this to cause a denial of
service in the host OS. (CVE-2022-33744)

It was discovered that the Netlink Transformation (XFRM) subsystem in the
Linux kernel contained a reference counting error. A local attacker could
use this to cause a denial of service (system crash). (CVE-2022-36879)

CVSS2

4.9

Attack Vector

LOCAL

Attack Complexity

LOW

Authentication

NONE

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

COMPLETE

AV:L/AC:L/Au:N/C:N/I:N/A:C

CVSS3

7.8

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

AI Score

8.1

Confidence

High

EPSS

0.001

Percentile

27.5%