Lucene search

K
ubuntucveUbuntu.comUB:CVE-2022-48760
HistoryJun 20, 2024 - 12:00 a.m.

CVE-2022-48760

2024-06-2000:00:00
ubuntu.com
ubuntu.com
linux kernel
usb
vulnerability
memory barriers
syzbot
smp systems
memory model

6.9 Medium

AI Score

Confidence

Low

0.0004 Low

EPSS

Percentile

13.1%

In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix hang in usb_kill_urb by adding memory barriers
The syzbot fuzzer has identified a bug in which processes hang waiting
for usb_kill_urb() to return. It turns out the issue is not unlinking
the URB; that works just fine. Rather, the problem arises when the
wakeup notification that the URB has completed is not received.
The reason is memory-access ordering on SMP systems. In outline form,
usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on
different CPUs perform the following actions:
CPU 0 CPU 1


usb_kill_urb(): __usb_hcd_giveback_urb():
… …
atomic_inc(&urb->reject); atomic_dec(&urb->use_count);
… …
wait_event(usb_kill_urb_queue,
atomic_read(&urb->use_count) == 0);
if (atomic_read(&urb->reject))
wake_up(&usb_kill_urb_queue);
Confining your attention to urb->reject and urb->use_count, you can
see that the overall pattern of accesses on CPU 0 is:
write urb->reject, then read urb->use_count;
whereas the overall pattern of accesses on CPU 1 is:
write urb->use_count, then read urb->reject.
This pattern is referred to in memory-model circles as SB (for “Store
Buffering”), and it is well known that without suitable enforcement of
the desired order of accesses – in the form of memory barriers – it
is entirely possible for one or both CPUs to execute their reads ahead
of their writes. The end result will be that sometimes CPU 0 sees the
old un-decremented value of urb->use_count while CPU 1 sees the old
un-incremented value of urb->reject. Consequently CPU 0 ends up on
the wait queue and never gets woken up, leading to the observed hang
in usb_kill_urb().
The same pattern of accesses occurs in usb_poison_urb() and the
failure pathway of usb_hcd_submit_urb().
The problem is fixed by adding suitable memory barriers. To provide
proper memory-access ordering in the SB pattern, a full barrier is
required on both CPUs. The atomic_inc() and atomic_dec() accesses
themselves don’t provide any memory ordering, but since they are
present, we can use the optimized smp_mb__after_atomic() memory
barrier in the various routines to obtain the desired effect.
This patch adds the necessary memory barriers.

References

6.9 Medium

AI Score

Confidence

Low

0.0004 Low

EPSS

Percentile

13.1%