CVSS2
Attack Vector
NETWORK
Attack Complexity
MEDIUM
Authentication
NONE
Confidentiality Impact
NONE
Integrity Impact
PARTIAL
Availability Impact
PARTIAL
AV:N/AC:M/Au:N/C:N/I:P/A:P
CVSS3
Attack Vector
LOCAL
Attack Complexity
LOW
Privileges Required
LOW
User Interaction
NONE
Scope
UNCHANGED
Confidentiality Impact
HIGH
Integrity Impact
HIGH
Availability Impact
HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
AI Score
Confidence
High
EPSS
Percentile
79.2%
Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu discovered that the TCP
implementation in the Linux kernel did not properly handle IPID assignment.
A remote attacker could use this to cause a denial of service (connection
termination) or inject forged data. (CVE-2020-36516)
Ke Sun, Alyssa Milburn, Henrique Kawakami, Emma Benoit, Igor Chervatyuk,
Lisa Aichele, and Thais Moreira Hamasaki discovered that the Spectre
Variant 2 mitigations for AMD processors on Linux were insufficient in some
situations. A local attacker could possibly use this to expose sensitive
information. (CVE-2021-26401)
Jürgen Groß discovered that the Xen subsystem within the Linux kernel did
not adequately limit the number of events driver domains (unprivileged PV
backends) could send to other guest VMs. An attacker in a driver domain
could use this to cause a denial of service in other guest VMs.
(CVE-2021-28712, CVE-2021-28713)
Wolfgang Frisch discovered that the ext4 file system implementation in the
Linux kernel contained an integer overflow when handling metadata inode
extents. An attacker could use this to construct a malicious ext4 file
system image that, when mounted, could cause a denial of service (system
crash). (CVE-2021-3428)
It was discovered that the IEEE 802.15.4 wireless network subsystem in the
Linux kernel did not properly handle certain error conditions, leading to a
null pointer dereference vulnerability. A local attacker could possibly use
this to cause a denial of service (system crash). (CVE-2021-3659)
It was discovered that the System V IPC implementation in the Linux kernel
did not properly handle large shared memory counts. A local attacker could
use this to cause a denial of service (memory exhaustion). (CVE-2021-3669)
Alois Wohlschlager discovered that the overlay file system in the Linux
kernel did not restrict private clones in some situations. An attacker
could use this to expose sensitive information. (CVE-2021-3732)
It was discovered that the SCTP protocol implementation in the Linux kernel
did not properly verify VTAGs in some situations. A remote attacker could
possibly use this to cause a denial of service (connection disassociation).
(CVE-2021-3772)
It was discovered that the btrfs file system implementation in the Linux
kernel did not properly handle locking in certain error conditions. A local
attacker could use this to cause a denial of service (kernel deadlock).
(CVE-2021-4149)
Jann Horn discovered that the socket subsystem in the Linux kernel
contained a race condition when handling listen() and connect() operations,
leading to a read-after-free vulnerability. A local attacker could use this
to cause a denial of service (system crash) or possibly expose sensitive
information. (CVE-2021-4203)
It was discovered that the file system quotas implementation in the Linux
kernel did not properly validate the quota block number. An attacker could
use this to construct a malicious file system image that, when mounted and
operated on, could cause a denial of service (system crash).
(CVE-2021-45868)
Zhihua Yao discovered that the MOXART SD/MMC driver in the Linux kernel did
not properly handle device removal, leading to a use-after-free
vulnerability. A physically proximate attacker could possibly use this to
cause a denial of service (system crash). (CVE-2022-0487)
It was discovered that the block layer subsystem in the Linux kernel did
not properly initialize memory in some situations. A privileged local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2022-0494)
It was discovered that the UDF file system implementation in the Linux
kernel could attempt to dereference a null pointer in some situations. An
attacker could use this to construct a malicious UDF image that, when
mounted and operated on, could cause a denial of service (system crash).
(CVE-2022-0617)
David Bouman discovered that the netfilter subsystem in the Linux kernel
did not initialize memory in some situations. A local attacker could use
this to expose sensitive information (kernel memory). (CVE-2022-1016)
It was discovered that the implementation of the 6pack and mkiss protocols
in the Linux kernel did not handle detach events properly in some
situations, leading to a use-after-free vulnerability. A local attacker
could possibly use this to cause a denial of service (system crash).
(CVE-2022-1195)
Duoming Zhou discovered race conditions in the AX.25 amateur radio protocol
implementation in the Linux kernel, leading to use-after-free
vulnerabilities. A local attacker could possibly use this to cause a denial
of service (system crash). (CVE-2022-1205)
It was discovered that the tty subsystem in the Linux kernel contained a
race condition in certain situations, leading to an out-of-bounds read
vulnerability. A local attacker could possibly use this to cause a denial
of service (system crash) or expose sensitive information. (CVE-2022-1462)
It was discovered that the implementation of X.25 network protocols in the
Linux kernel did not terminate link layer sessions properly. A local
attacker could possibly use this to cause a denial of service (system
crash). (CVE-2022-1516)
Duoming Zhou discovered a race condition in the NFC subsystem in the Linux
kernel, leading to a use-after-free vulnerability. A privileged local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-1974)
Duoming Zhou discovered that the NFC subsystem in the Linux kernel did not
properly prevent context switches from occurring during certain atomic
context operations. A privileged local attacker could use this to cause a
denial of service (system crash). (CVE-2022-1975)
It was discovered that the HID subsystem in the Linux kernel did not
properly validate inputs in certain conditions. A local attacker with
physical access could plug in a specially crafted USB device to expose
sensitive information. (CVE-2022-20132)
It was discovered that the device-mapper verity (dm-verity) driver in the
Linux kernel did not properly verify targets being loaded into the device-
mapper table. A privileged attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2022-20572,
CVE-2022-2503)
Duoming Zhou discovered that race conditions existed in the timer handling
implementation of the Linux kernel’s Rose X.25 protocol layer, resulting in
use-after-free vulnerabilities. A local attacker could use this to cause a
denial of service (system crash). (CVE-2022-2318)
Zheyu Ma discovered that the Silicon Motion SM712 framebuffer driver in the
Linux kernel did not properly handle very small reads. A local attacker
could use this to cause a denial of service (system crash). (CVE-2022-2380)
David Leadbeater discovered that the netfilter IRC protocol tracking
implementation in the Linux Kernel incorrectly handled certain message
payloads in some situations. A remote attacker could possibly use this to
cause a denial of service or bypass firewall filtering. (CVE-2022-2663)
Lucas Leong discovered that the LightNVM subsystem in the Linux kernel did
not properly handle data lengths in certain situations. A privileged
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-2991)
It was discovered that the Intel 740 frame buffer driver in the Linux
kernel contained a divide by zero vulnerability. A local attacker could use
this to cause a denial of service (system crash). (CVE-2022-3061)
Jiasheng Jiang discovered that the wm8350 charger driver in the Linux
kernel did not properly deallocate memory, leading to a null pointer
dereference vulnerability. A local attacker could use this to cause a
denial of service (system crash). (CVE-2022-3111)
It was discovered that the sound subsystem in the Linux kernel contained a
race condition in some situations. A local attacker could use this to cause
a denial of service (system crash). (CVE-2022-3303)
It was discovered that the Broadcom FullMAC USB WiFi driver in the Linux
kernel did not properly perform bounds checking in some situations. A
physically proximate attacker could use this to craft a malicious USB
device that when inserted, could cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2022-3628)
Ziming Zhang discovered that the VMware Virtual GPU DRM driver in the Linux
kernel contained an out-of-bounds write vulnerability. A local attacker
could use this to cause a denial of service (system crash).
(CVE-2022-36280)
It was discovered that the NILFS2 file system implementation in the Linux
kernel did not properly deallocate memory in certain error conditions. An
attacker could use this to cause a denial of service (memory exhaustion).
(CVE-2022-3646)
It was discovered that the Netlink Transformation (XFRM) subsystem in the
Linux kernel contained a reference counting error. A local attacker could
use this to cause a denial of service (system crash). (CVE-2022-36879)
It was discovered that the infrared transceiver USB driver did not properly
handle USB control messages. A local attacker with physical access could
plug in a specially crafted USB device to cause a denial of service (memory
exhaustion). (CVE-2022-3903)
Jann Horn discovered a race condition existed in the Linux kernel when
unmapping VMAs in certain situations, resulting in possible use-after-free
vulnerabilities. A local attacker could possibly use this to cause a denial
of service (system crash) or execute arbitrary code. (CVE-2022-39188)
Hyunwoo Kim discovered that the DVB Core driver in the Linux kernel did not
properly perform reference counting in some situations, leading to a use-
after-free vulnerability. A local attacker could use this to cause a denial
of service (system crash) or possibly execute arbitrary code.
(CVE-2022-41218)
It was discovered that a race condition existed in the SMSC UFX USB driver
implementation in the Linux kernel, leading to a use-after-free
vulnerability. A physically proximate attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2022-41849)
It was discovered that a race condition existed in the Roccat HID driver in
the Linux kernel, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2022-41850)
It was discovered that the USB core subsystem in the Linux kernel did not
properly handle nested reset events. A local attacker with physical access
could plug in a specially crafted USB device to cause a denial of service
(kernel deadlock). (CVE-2022-4662)
It was discovered that the network queuing discipline implementation in the
Linux kernel contained a null pointer dereference in some situations. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2022-47929)
Kyle Zeng discovered that the IPv6 implementation in the Linux kernel
contained a NULL pointer dereference vulnerability in certain situations. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2023-0394)
It was discovered that a memory leak existed in the SCTP protocol
implementation in the Linux kernel. A local attacker could use this to
cause a denial of service (memory exhaustion). (CVE-2023-1074)
Mingi Cho discovered that the netfilter subsystem in the Linux kernel did
not properly initialize a data structure, leading to a null pointer
dereference vulnerability. An attacker could use this to cause a denial of
service (system crash). (CVE-2023-1095)
Kyle Zeng discovered that the ATM VC queuing discipline implementation in
the Linux kernel contained a type confusion vulnerability in some
situations. An attacker could use this to cause a denial of service (system
crash). (CVE-2023-23455)
Lianhui Tang discovered that the MPLS implementation in the Linux kernel
did not properly handle certain sysctl allocation failure conditions,
leading to a double-free vulnerability. An attacker could use this to cause
a denial of service or possibly execute arbitrary code. (CVE-2023-26545)
It was discovered that the NTFS file system implementation in the Linux
kernel did not properly validate attributes in certain situations, leading
to an out-of-bounds read vulnerability. A local attacker could possibly use
this to expose sensitive information (kernel memory). (CVE-2023-26607)
Duoming Zhou discovered that a race condition existed in the infrared
receiver/transceiver driver in the Linux kernel, leading to a use-after-
free vulnerability. A privileged attacker could use this to cause a denial
of service (system crash) or possibly execute arbitrary code.
(CVE-2023-1118)
OS | Version | Architecture | Package | Version | Filename |
---|---|---|---|---|---|
Ubuntu | 16.04 | noarch | linux-image-aws | < 4.4.0.1155.159 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-aws | < 4.4.0.1128.133 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-headers-aws | < 4.4.0.1128.133 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-image-aws | < 4.4.0.1128.133 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-modules-extra-aws | < 4.4.0.1128.133 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-tools-aws | < 4.4.0.1128.133 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-image-4.4.0-1155-aws | < 4.4.0-1155.170 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-aws-cloud-tools-4.4.0-1128 | < 4.4.0-1128.142 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-aws-headers-4.4.0-1128 | < 4.4.0-1128.142 | UNKNOWN |
Ubuntu | 16.04 | noarch | linux-aws-tools-4.4.0-1128 | < 4.4.0-1128.142 | UNKNOWN |
ubuntu.com/security/CVE-2020-36516
ubuntu.com/security/CVE-2021-26401
ubuntu.com/security/CVE-2021-28712
ubuntu.com/security/CVE-2021-28713
ubuntu.com/security/CVE-2021-3428
ubuntu.com/security/CVE-2021-3659
ubuntu.com/security/CVE-2021-3669
ubuntu.com/security/CVE-2021-3732
ubuntu.com/security/CVE-2021-3772
ubuntu.com/security/CVE-2021-4149
ubuntu.com/security/CVE-2021-4203
ubuntu.com/security/CVE-2021-45868
ubuntu.com/security/CVE-2022-0487
ubuntu.com/security/CVE-2022-0494
ubuntu.com/security/CVE-2022-0617
ubuntu.com/security/CVE-2022-1016
ubuntu.com/security/CVE-2022-1195
ubuntu.com/security/CVE-2022-1205
ubuntu.com/security/CVE-2022-1462
ubuntu.com/security/CVE-2022-1516
ubuntu.com/security/CVE-2022-1974
ubuntu.com/security/CVE-2022-1975
ubuntu.com/security/CVE-2022-20132
ubuntu.com/security/CVE-2022-20572
ubuntu.com/security/CVE-2022-2318
ubuntu.com/security/CVE-2022-2380
ubuntu.com/security/CVE-2022-2503
ubuntu.com/security/CVE-2022-2663
ubuntu.com/security/CVE-2022-2991
ubuntu.com/security/CVE-2022-3061
ubuntu.com/security/CVE-2022-3111
ubuntu.com/security/CVE-2022-3303
ubuntu.com/security/CVE-2022-3628
ubuntu.com/security/CVE-2022-36280
ubuntu.com/security/CVE-2022-3646
ubuntu.com/security/CVE-2022-36879
ubuntu.com/security/CVE-2022-3903
ubuntu.com/security/CVE-2022-39188
ubuntu.com/security/CVE-2022-41218
ubuntu.com/security/CVE-2022-41849
ubuntu.com/security/CVE-2022-41850
ubuntu.com/security/CVE-2022-4662
ubuntu.com/security/CVE-2022-47929
ubuntu.com/security/CVE-2023-0394
ubuntu.com/security/CVE-2023-1074
ubuntu.com/security/CVE-2023-1095
ubuntu.com/security/CVE-2023-1118
ubuntu.com/security/CVE-2023-23455
ubuntu.com/security/CVE-2023-26545
ubuntu.com/security/CVE-2023-26607
CVSS2
Attack Vector
NETWORK
Attack Complexity
MEDIUM
Authentication
NONE
Confidentiality Impact
NONE
Integrity Impact
PARTIAL
Availability Impact
PARTIAL
AV:N/AC:M/Au:N/C:N/I:P/A:P
CVSS3
Attack Vector
LOCAL
Attack Complexity
LOW
Privileges Required
LOW
User Interaction
NONE
Scope
UNCHANGED
Confidentiality Impact
HIGH
Integrity Impact
HIGH
Availability Impact
HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
AI Score
Confidence
High
EPSS
Percentile
79.2%