Lucene search

K
ubuntuUbuntuUSN-4115-2
HistorySep 11, 2019 - 12:00 a.m.

Linux kernel regression

2019-09-1100:00:00
ubuntu.com
194

9.8 High

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

8.9 High

AI Score

Confidence

High

10 High

CVSS2

Access Vector

NETWORK

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:N/AC:L/Au:N/C:C/I:C/A:C

0.013 Low

EPSS

Percentile

85.7%

Releases

  • Ubuntu 18.04 ESM
  • Ubuntu 16.04 ESM

Packages

  • linux - Linux kernel
  • linux-aws - Linux kernel for Amazon Web Services (AWS) systems
  • linux-aws-hwe - Linux kernel for Amazon Web Services (AWS-HWE) systems
  • linux-azure - Linux kernel for Microsoft Azure Cloud systems
  • linux-gcp - Linux kernel for Google Cloud Platform (GCP) systems
  • linux-gke-4.15 - Linux kernel for Google Container Engine (GKE) systems
  • linux-hwe - Linux hardware enablement (HWE) kernel
  • linux-kvm - Linux kernel for cloud environments
  • linux-oracle - Linux kernel for Oracle Cloud systems
  • linux-raspi2 - Linux kernel for Raspberry Pi 2

Details

USN 4115-1 fixed vulnerabilities in the Linux 4.15 kernel for Ubuntu
18.04 LTS and Ubuntu 16.04 LTS. Unfortunately, as part of the update,
a regression was introduced that caused a kernel crash when handling
fragmented packets in some situations. This update addresses the issue.

We apologize for the inconvenience.

Original advisory details:

Hui Peng and Mathias Payer discovered that the Option USB High Speed driver
in the Linux kernel did not properly validate metadata received from the
device. A physically proximate attacker could use this to cause a denial of
service (system crash). (CVE-2018-19985)

Zhipeng Xie discovered that an infinite loop could triggered in the CFS
Linux kernel process scheduler. A local attacker could possibly use this to
cause a denial of service. (CVE-2018-20784)

It was discovered that the Intel Wi-Fi device driver in the Linux kernel did
not properly validate certain Tunneled Direct Link Setup (TDLS). A
physically proximate attacker could use this to cause a denial of service
(Wi-Fi disconnect). (CVE-2019-0136)

It was discovered that the Bluetooth UART implementation in the Linux
kernel did not properly check for missing tty operations. A local attacker
could use this to cause a denial of service. (CVE-2019-10207)

Amit Klein and Benny Pinkas discovered that the Linux kernel did not
sufficiently randomize IP ID values generated for connectionless networking
protocols. A remote attacker could use this to track particular Linux
devices. (CVE-2019-10638)

Amit Klein and Benny Pinkas discovered that the location of kernel
addresses could be exposed by the implementation of connection-less network
protocols in the Linux kernel. A remote attacker could possibly use this to
assist in the exploitation of another vulnerability in the Linux kernel.
(CVE-2019-10639)

It was discovered that an integer overflow existed in the Linux kernel when
reference counting pages, leading to potential use-after-free issues. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2019-11487)

Jann Horn discovered that a race condition existed in the Linux kernel when
performing core dumps. A local attacker could use this to cause a denial of
service (system crash) or expose sensitive information. (CVE-2019-11599)

It was discovered that a null pointer dereference vulnerability existed in
the LSI Logic MegaRAID driver in the Linux kernel. A local attacker could
use this to cause a denial of service (system crash). (CVE-2019-11810)

It was discovered that the GTCO tablet input driver in the Linux kernel did
not properly bounds check the initial HID report sent by the device. A
physically proximate attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2019-13631)

Praveen Pandey discovered that the Linux kernel did not properly validate
sent signals in some situations on PowerPC systems with transactional
memory disabled. A local attacker could use this to cause a denial of
service. (CVE-2019-13648)

It was discovered that the floppy driver in the Linux kernel did not
properly validate meta data, leading to a buffer overread. A local attacker
could use this to cause a denial of service (system crash).
(CVE-2019-14283)

It was discovered that the floppy driver in the Linux kernel did not
properly validate ioctl() calls, leading to a division-by-zero. A local
attacker could use this to cause a denial of service (system crash).
(CVE-2019-14284)

Tuba Yavuz discovered that a race condition existed in the DesignWare USB3
DRD Controller device driver in the Linux kernel. A physically proximate
attacker could use this to cause a denial of service. (CVE-2019-14763)

It was discovered that an out-of-bounds read existed in the QLogic QEDI
iSCSI Initiator Driver in the Linux kernel. A local attacker could possibly
use this to expose sensitive information (kernel memory). (CVE-2019-15090)

It was discovered that the Raremono AM/FM/SW radio device driver in the
Linux kernel did not properly allocate memory, leading to a use-after-free.
A physically proximate attacker could use this to cause a denial of service
or possibly execute arbitrary code. (CVE-2019-15211)

It was discovered at a double-free error existed in the USB Rio 500 device
driver for the Linux kernel. A physically proximate attacker could use this
to cause a denial of service. (CVE-2019-15212)

It was discovered that a race condition existed in the Advanced Linux Sound
Architecture (ALSA) subsystem of the Linux kernel, leading to a potential
use-after-free. A physically proximate attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2019-15214)

It was discovered that a race condition existed in the CPiA2 video4linux
device driver for the Linux kernel, leading to a use-after-free. A
physically proximate attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2019-15215)

It was discovered that a race condition existed in the Softmac USB Prism54
device driver in the Linux kernel. A physically proximate attacker could
use this to cause a denial of service (system crash). (CVE-2019-15220)

It was discovered that a use-after-free vulnerability existed in the
AppleTalk implementation in the Linux kernel if an error occurs during
initialization. A local attacker could use this to cause a denial of
service (system crash). (CVE-2019-15292)

Jason Wang discovered that an infinite loop vulnerability existed in the
virtio net driver in the Linux kernel. A local attacker in a guest VM could
possibly use this to cause a denial of service in the host system.
(CVE-2019-3900)

Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen discovered
that the Bluetooth protocol BR/EDR specification did not properly require
sufficiently strong encryption key lengths. A physically proximate attacker
could use this to expose sensitive information. (CVE-2019-9506)

It was discovered that a race condition existed in the USB YUREX device
driver in the Linux kernel. A physically proximate attacker could use this
to cause a denial of service (system crash). (CVE-2019-15216)

It was discovered that the Siano USB MDTV receiver device driver in the
Linux kernel made improper assumptions about the device characteristics. A
physically proximate attacker could use this cause a denial of service
(system crash). (CVE-2019-15218)

It was discovered that the Line 6 POD USB device driver in the Linux kernel
did not properly validate data size information from the device. A
physically proximate attacker could use this to cause a denial of service
(system crash). (CVE-2019-15221)

Muyu Yu discovered that the CAN implementation in the Linux kernel in some
situations did not properly restrict the field size when processing
outgoing frames. A local attacker with CAP_NET_ADMIN privileges could use
this to execute arbitrary code. (CVE-2019-3701)

Vladis Dronov discovered that the debug interface for the Linux kernel’s
HID subsystem did not properly validate passed parameters in some
situations. A local privileged attacker could use this to cause a denial of
service (infinite loop). (CVE-2019-3819)

9.8 High

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

8.9 High

AI Score

Confidence

High

10 High

CVSS2

Access Vector

NETWORK

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:N/AC:L/Au:N/C:C/I:C/A:C

0.013 Low

EPSS

Percentile

85.7%