Linux kernel vulnerabilities

2017-11-21T00:00:00
ID USN-3485-1
Type ubuntu
Reporter Ubuntu
Modified 2017-11-21T00:00:00

Description

It was discovered that a race condition existed in the ALSA subsystem of the Linux kernel when creating and deleting a port via ioctl(). A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15265)

Eric Biggers discovered that the key management subsystem in the Linux kernel did not properly restrict adding a key that already exists but is uninstantiated. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15299)

It was discovered that a race condition existed in the packet fanout implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15649)

Eric Biggers discovered a race condition in the key management subsystem of the Linux kernel around keys in a negative state. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-15951)

Andrey Konovalov discovered a use-after-free vulnerability in the USB serial console driver in the Linux kernel. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16525)

Andrey Konovalov discovered that the Ultra Wide Band driver in the Linux kernel did not properly check for an error condition. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16526)

Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16527)

Andrey Konovalov discovered that the ALSA subsystem in the Linux kernel did not properly validate USB audio buffer descriptors. A physically proximate attacker could use this cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16529)

Andrey Konovalov discovered that the USB unattached storage driver in the Linux kernel contained out-of-bounds error when handling alternative settings. A physically proximate attacker could use to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16530)

Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB interface association descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16531)

Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB HID descriptors. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16533)

Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate CDC metadata. A physically proximate attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2017-16534)

Andrey Konovalov discovered that the USB subsystem in the Linux kernel did not properly validate USB BOS metadata. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-16535)