Lucene search

K
ubuntuUbuntuUSN-3002-1
HistoryJun 10, 2016 - 12:00 a.m.

Linux kernel (Wily HWE) vulnerabilities

2016-06-1000:00:00
ubuntu.com
43

9.8 High

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

8.6 High

AI Score

Confidence

High

10 High

CVSS2

Access Vector

NETWORK

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:N/AC:L/Au:N/C:C/I:C/A:C

0.03 Low

EPSS

Percentile

90.7%

Releases

  • Ubuntu 14.04 ESM

Packages

  • linux-lts-wily - Linux hardware enablement kernel from Wily for Trusty

Details

Justin Yackoski discovered that the Atheros L2 Ethernet Driver in the Linux
kernel incorrectly enables scatter/gather I/O. A remote attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-2117)

Jann Horn discovered that eCryptfs improperly attempted to use the mmap()
handler of a lower filesystem that did not implement one, causing a
recursive page fault to occur. A local unprivileged attacker could use to
cause a denial of service (system crash) or possibly execute arbitrary code
with administrative privileges. (CVE-2016-1583)

Jason A. Donenfeld discovered multiple out-of-bounds reads in the OZMO USB
over wifi device drivers in the Linux kernel. A remote attacker could use
this to cause a denial of service (system crash) or obtain potentially
sensitive information from kernel memory. (CVE-2015-4004)

Ralf Spenneberg discovered that the Linux kernel’s GTCO digitizer USB
device driver did not properly validate endpoint descriptors. An attacker
with physical access could use this to cause a denial of service (system
crash). (CVE-2016-2187)

Hector Marco and Ismael Ripoll discovered that the Linux kernel would
improperly disable Address Space Layout Randomization (ASLR) for x86
processes running in 32 bit mode if stack-consumption resource limits were
disabled. A local attacker could use this to make it easier to exploit an
existing vulnerability in a setuid/setgid program. (CVE-2016-3672)

Andrey Konovalov discovered that the CDC Network Control Model USB driver
in the Linux kernel did not cancel work events queued if a later error
occurred, resulting in a use-after-free. An attacker with physical access
could use this to cause a denial of service (system crash). (CVE-2016-3951)

It was discovered that an out-of-bounds write could occur when handling
incoming packets in the USB/IP implementation in the Linux kernel. A remote
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2016-3955)

Vitaly Kuznetsov discovered that the Linux kernel did not properly suppress
hugetlbfs support in X86 paravirtualized guests. An attacker in the guest
OS could cause a denial of service (guest system crash). (CVE-2016-3961)

Kangjie Lu discovered an information leak in the ANSI/IEEE 802.2 LLC type 2
Support implementations in the Linux kernel. A local attacker could use
this to obtain potentially sensitive information from kernel memory.
(CVE-2016-4485)

Kangjie Lu discovered an information leak in the routing netlink socket
interface (rtnetlink) implementation in the Linux kernel. A local attacker
could use this to obtain potentially sensitive information from kernel
memory. (CVE-2016-4486)

Jann Horn discovered that the InfiniBand interfaces within the Linux kernel
could be coerced into overwriting kernel memory. A local unprivileged
attacker could use this to possibly gain administrative privileges on
systems where InifiniBand related kernel modules are loaded.
(CVE-2016-4565)

It was discovered that in some situations the Linux kernel did not handle
propagated mounts correctly. A local unprivileged attacker could use this
to cause a denial of service (system crash). (CVE-2016-4581)

9.8 High

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

8.6 High

AI Score

Confidence

High

10 High

CVSS2

Access Vector

NETWORK

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:N/AC:L/Au:N/C:C/I:C/A:C

0.03 Low

EPSS

Percentile

90.7%