Lucene search

K
ubuntuUbuntuUSN-1119-1
HistoryApr 20, 2011 - 12:00 a.m.

Linux kernel (OMAP4) vulnerabilities

2011-04-2000:00:00
ubuntu.com
51

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.6 High

AI Score

Confidence

High

8.3 High

CVSS2

Access Vector

ADJACENT_NETWORK

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:A/AC:L/Au:N/C:C/I:C/A:C

0.032 Low

EPSS

Percentile

91.1%

Releases

  • Ubuntu 10.10

Packages

  • linux-ti-omap4 - Linux kernel for OMAP4 devices

Details

Dan Rosenberg discovered that the RDS network protocol did not correctly
check certain parameters. A local attacker could exploit this gain root
privileges. (CVE-2010-3904)

Nelson Elhage discovered several problems with the Acorn Econet protocol
driver. A local user could cause a denial of service via a NULL pointer
dereference, escalate privileges by overflowing the kernel stack, and
assign Econet addresses to arbitrary interfaces. (CVE-2010-3848,
CVE-2010-3849, CVE-2010-3850)

Ben Hawkes discovered that the Linux kernel did not correctly validate
memory ranges on 64bit kernels when allocating memory on behalf of 32bit
system calls. On a 64bit system, a local attacker could perform malicious
multicast getsockopt calls to gain root privileges. (CVE-2010-3081)

Tavis Ormandy discovered that the IRDA subsystem did not correctly shut
down. A local attacker could exploit this to cause the system to crash or
possibly gain root privileges. (CVE-2010-2954)

Brad Spengler discovered that the wireless extensions did not correctly
validate certain request sizes. A local attacker could exploit this to read
portions of kernel memory, leading to a loss of privacy. (CVE-2010-2955)

Tavis Ormandy discovered that the session keyring did not correctly check
for its parent. On systems without a default session keyring, a local
attacker could exploit this to crash the system, leading to a denial of
service. (CVE-2010-2960)

Kees Cook discovered that the Intel i915 graphics driver did not correctly
validate memory regions. A local attacker with access to the video card
could read and write arbitrary kernel memory to gain root privileges.
(CVE-2010-2962)

Kees Cook discovered that the V4L1 32bit compat interface did not correctly
validate certain parameters. A local attacker on a 64bit system with access
to a video device could exploit this to gain root privileges.
(CVE-2010-2963)

Robert Swiecki discovered that ftrace did not correctly handle mutexes. A
local attacker could exploit this to crash the kernel, leading to a denial
of service. (CVE-2010-3079)

Tavis Ormandy discovered that the OSS sequencer device did not correctly
shut down. A local attacker could exploit this to crash the system or
possibly gain root privileges. (CVE-2010-3080)

Dan Rosenberg discovered that the CD driver did not correctly check
parameters. A local attacker could exploit this to read arbitrary kernel
memory, leading to a loss of privacy. (CVE-2010-3437)

Dan Rosenberg discovered that SCTP did not correctly handle HMAC
calculations. A remote attacker could send specially crafted traffic that
would crash the system, leading to a denial of service. (CVE-2010-3705)

Kees Cook discovered that the ethtool interface did not correctly clear
kernel memory. A local attacker could read kernel heap memory, leading to a
loss of privacy. (CVE-2010-3861)

Thomas Pollet discovered that the RDS network protocol did not check
certain iovec buffers. A local attacker could exploit this to crash the
system or possibly execute arbitrary code as the root user. (CVE-2010-3865)

Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did
not correctly clear kernel memory. A local attacker could exploit this to
read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875)

Vasiliy Kulikov discovered that the Linux kernel sockets implementation did
not properly initialize certain structures. A local attacker could exploit
this to read kernel stack memory, leading to a loss of privacy.
(CVE-2010-3876)

Vasiliy Kulikov discovered that the TIPC interface did not correctly
initialize certain structures. A local attacker could exploit this to read
kernel stack memory, leading to a loss of privacy. (CVE-2010-3877)

Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local
attacker could exploit this to read portions of the kernel stack, leading
to a loss of privacy. (CVE-2010-3881)

Kees Cook and Vasiliy Kulikov discovered that the shm interface did not
clear kernel memory correctly. A local attacker could exploit this to read
kernel stack memory, leading to a loss of privacy. (CVE-2010-4072)

Dan Rosenberg discovered that the ivtv V4L driver did not correctly
initialize certian structures. A local attacker could exploit this to read
kernel stack memory, leading to a loss of privacy. (CVE-2010-4079)

Dan Rosenberg discovered that the socket filters did not correctly
initialize structure memory. A local attacker could create malicious
filters to read portions of kernel stack memory, leading to a loss of
privacy. (CVE-2010-4158)

Dan Rosenberg discovered multiple flaws in the X.25 facilities parsing. If
a system was using X.25, a remote attacker could exploit this to crash the
system, leading to a denial of service. (CVE-2010-4164)

Steve Chen discovered that setsockopt did not correctly check MSS values. A
local attacker could make a specially crafted socket call to crash the
system, leading to a denial of service. (CVE-2010-4165)

Vegard Nossum discovered that memory garbage collection was not handled
correctly for active sockets. A local attacker could exploit this to
allocate all available kernel memory, leading to a denial of service.
(CVE-2010-4249)

Nelson Elhage discovered that the kernel did not correctly handle process
cleanup after triggering a recoverable kernel bug. If a local attacker were
able to trigger certain kinds of kernel bugs, they could create a specially
crafted process to gain root privileges. (CVE-2010-4258)

Nelson Elhage discovered that Econet did not correctly handle AUN packets
over UDP. A local attacker could send specially crafted traffic to crash
the system, leading to a denial of service. (CVE-2010-4342)

Tavis Ormandy discovered that the install_special_mapping function could
bypass the mmap_min_addr restriction. A local attacker could exploit this
to mmap 4096 bytes below the mmap_min_addr area, possibly improving the
chances of performing NULL pointer dereference attacks. (CVE-2010-4346)

Dan Rosenberg discovered that the OSS subsystem did not handle name
termination correctly. A local attacker could exploit this crash the system
or gain root privileges. (CVE-2010-4527)

Dan Rosenberg discovered that IRDA did not correctly check the size of
buffers. On non-x86 systems, a local attacker could exploit this to read
kernel heap memory, leading to a loss of privacy. (CVE-2010-4529)

References

7.8 High

CVSS3

Attack Vector

LOCAL

Attack Complexity

LOW

Privileges Required

LOW

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

8.6 High

AI Score

Confidence

High

8.3 High

CVSS2

Access Vector

ADJACENT_NETWORK

Access Complexity

LOW

Authentication

NONE

Confidentiality Impact

COMPLETE

Integrity Impact

COMPLETE

Availability Impact

COMPLETE

AV:A/AC:L/Au:N/C:C/I:C/A:C

0.032 Low

EPSS

Percentile

91.1%