24 matches found
CVE-2024-37061
Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user’s system when run.
CVE-2024-3848
A path traversal vulnerability exists in mlflow/mlflow version 2.11.0, identified as a bypass for the previously addressed CVE-2023-6909. The vulnerability arises from the application's handling of artifact URLs, where a '#' character can be used to insert a path into the fragment, effectively skip...
CVE-2024-27134
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.
CVE-2024-27132
Insufficient sanitization in MLflow leads to XSS when running an untrusted recipe. This issue leads to a client-side RCE when running an untrusted recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over template variables.
CVE-2024-27133
Insufficient sanitization in MLflow leads to XSS when running a recipe that uses an untrusted dataset. This issue leads to a client-side RCE when running the recipe in Jupyter Notebook. The vulnerability stems from lack of sanitization over dataset table fields.
CVE-2024-0520
A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command ('Command Injection') within the mlflow.data.http_dataset_source.py module. Specifically, when loading a dataset from a source URL with an HTTP sc...
CVE-2024-1483
A path traversal vulnerability exists in mlflow/mlflow version 2.9.2, allowing attackers to access arbitrary files on the server. By crafting a series of HTTP POST requests with specially crafted 'artifact_location' and 'source' parameters, using a local URI with '#' instead of '?', an attacker can...
CVE-2024-4263
A broken access control vulnerability exists in mlflow/mlflow versions before 2.10.1, where low privilege users with only EDIT permissions on an experiment can delete any artifacts. This issue arises due to the lack of proper validation for DELETE requests by users with EDIT permissions, allowing t...
CVE-2024-1560
A path traversal vulnerability exists in the mlflow/mlflow repository, specifically within the artifact deletion functionality. Attackers can bypass path validation by exploiting the double decoding process in the _delete_artifact_mlflow_artifacts handler and local_file_uri_to_path function, allowi...
CVE-2024-1594
A path traversal vulnerability exists in the mlflow/mlflow repository, specifically within the handling of the artifact_location parameter when creating an experiment. Attackers can exploit this vulnerability by using a fragment component # in the artifact location URI to read arbitrary files on th...
CVE-2024-2928
A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application's failure to properly validate URI fragments for directory traversal sequences such as '../'. An attacker can ...
CVE-2024-3573
mlflow/mlflow is vulnerable to Local File Inclusion (LFI) due to improper parsing of URIs, allowing attackers to bypass checks and read arbitrary files on the system. The issue arises from the 'is_local_uri' function's failure to properly handle URIs with empty or 'file' schemes, leading to the mis...
CVE-2024-1558
A path traversal vulnerability exists in the _create_model_version() function within server/handlers.py of the mlflow/mlflow repository, due to improper validation of the source parameter. Attackers can exploit this vulnerability by crafting a source parameter that bypasses the _validate_non_local_...
CVE-2024-1593
A path traversal vulnerability exists in the mlflow/mlflow repository due to improper handling of URL parameters. By smuggling path traversal sequences using the ';' character in URLs, attackers can manipulate the 'params' portion of the URL to gain unauthorized access to files or directories. This...
CVE-2024-3099
A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. ...
CVE-2024-37059
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37054
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.9.0 or newer, enabling a maliciously uploaded PyFunc model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37056
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37057
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37060
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run.
CVE-2024-37052
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37058
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37053
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37055
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.24.0 or newer, enabling a maliciously uploaded pmdarima model to run arbitrary code on an end user’s system when interacted with.