13 matches found
CVE-2024-37061
Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user’s system when run.
CVE-2024-0520
A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command ('Command Injection') within the mlflow.data.http_dataset_source.py module. Specifically, when loading a dataset from a source URL with an HTTP sc...
CVE-2024-2928
A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application's failure to properly validate URI fragments for directory traversal sequences such as '../'. An attacker can ...
CVE-2024-3099
A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. ...
CVE-2024-37059
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37054
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.9.0 or newer, enabling a maliciously uploaded PyFunc model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37056
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37057
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37060
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run.
CVE-2024-37052
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37058
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37053
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CVE-2024-37055
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.24.0 or newer, enabling a maliciously uploaded pmdarima model to run arbitrary code on an end user’s system when interacted with.