Lucene search

K
osvGoogleOSV:USN-6466-1
HistoryOct 31, 2023 - 9:47 p.m.

linux-nvidia-6.2 vulnerabilities

2023-10-3121:47:40
Google
osv.dev
9
race condition
use-after-free
privilege escalation
denial of service
windows ntfs
memory leak
hypervisor access
bluetooth vulnerability
gfs2 file system
buffer overflow
null pointer dereference
ksmbd
smb protocol.

CVSS3

9.8

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

AI Score

8.4

Confidence

High

EPSS

0.013

Percentile

85.9%

Hyunwoo Kim discovered that the DVB Core driver in the Linux kernel
contained a race condition during device removal, leading to a use-after-
free vulnerability. A physically proximate attacker could use this to cause
a denial of service (system crash) or possibly execute arbitrary code.
(CVE-2022-45886, CVE-2022-45919)

Hyunwoo Kim discovered that the Technotrend/Hauppauge USB DEC driver in the
Linux kernel did not properly handle device removal events. A physically
proximate attacker could use this to cause a denial of service (system
crash). (CVE-2022-45887)

It was discovered that the NTFS file system implementation in the Linux
kernel did not properly validate MFT flags in certain situations. An
attacker could use this to construct a malicious NTFS image that, when
mounted and operated on, could cause a denial of service (system crash).
(CVE-2022-48425)

It was discovered that the IPv6 implementation in the Linux kernel
contained a high rate of hash collisions in connection lookup table. A
remote attacker could use this to cause a denial of service (excessive CPU
consumption). (CVE-2023-1206)

Daniel Trujillo, Johannes Wikner, and Kaveh Razavi discovered that some AMD
processors utilising speculative execution and branch prediction may allow
unauthorised memory reads via a speculative side-channel attack. A local
attacker could use this to expose sensitive information, including kernel
memory. (CVE-2023-20569)

Jana Hofmann, Emanuele Vannacci, Cedric Fournet, Boris Kopf, and Oleksii
Oleksenko discovered that some AMD processors could leak stale data from
division operations in certain situations. A local attacker could possibly
use this to expose sensitive information. (CVE-2023-20588)

It was discovered that the ARM64 KVM implementation in the Linux kernel did
not properly restrict hypervisor memory access. An attacker in a guest VM
could use this to execute arbitrary code in the host OS. (CVE-2023-21264)

It was discovered that the IPv6 RPL protocol implementation in the Linux
kernel did not properly handle user-supplied data. A remote attacker could
use this to cause a denial of service (system crash). (CVE-2023-2156)

Yu Hao and Weiteng Chen discovered that the Bluetooth HCI UART driver in
the Linux kernel contained a race condition, leading to a null pointer
dereference vulnerability. A local attacker could use this to cause a
denial of service (system crash). (CVE-2023-31083)

Yang Lan discovered that the GFS2 file system implementation in the Linux
kernel could attempt to dereference a null pointer in some situations. An
attacker could use this to construct a malicious GFS2 image that, when
mounted and operated on, could cause a denial of service (system crash).
(CVE-2023-3212)

Ross Lagerwall discovered that the Xen netback backend driver in the Linux
kernel did not properly handle certain unusual packets from a
paravirtualized network frontend, leading to a buffer overflow. An attacker
in a guest VM could use this to cause a denial of service (host system
crash) or possibly execute arbitrary code. (CVE-2023-34319)

Lin Ma discovered that the Netlink Transformation (XFRM) subsystem in the
Linux kernel contained a null pointer dereference vulnerability in some
situations. A local privileged attacker could use this to cause a denial of
service (system crash). (CVE-2023-3772)

It was discovered that the KSMBD implementation in the Linux kernel did not
properly validate buffer sizes in certain operations, leading to an integer
underflow and out-of-bounds read vulnerability. A remote attacker could use
this to cause a denial of service (system crash) or possibly expose
sensitive information. (CVE-2023-38427)

Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel
did not properly validate SMB request protocol IDs, leading to a out-of-
bounds read vulnerability. A remote attacker could possibly use this to
cause a denial of service (system crash). (CVE-2023-38430)

Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel
did not properly validate packet header sizes in certain situations,
leading to an out-of-bounds read vulnerability. A remote attacker could use
this to cause a denial of service (system crash) or possibly expose
sensitive information. (CVE-2023-38431)

Chih-Yen Chang discovered that the KSMBD implementation in the Linux kernel
did not properly validate command payload size, leading to a out-of-bounds
read vulnerability. A remote attacker could possibly use this to cause a
denial of service (system crash). (CVE-2023-38432)

It was discovered that the NFC implementation in the Linux kernel contained
a use-after-free vulnerability when performing peer-to-peer communication
in certain conditions. A privileged attacker could use this to cause a
denial of service (system crash) or possibly expose sensitive information
(kernel memory). (CVE-2023-3863)

Laurence Wit discovered that the KSMBD implementation in the Linux kernel
did not properly validate a buffer size in certain situations, leading to
an out-of-bounds read vulnerability. A remote attacker could use this to
cause a denial of service (system crash) or possibly expose sensitive
information. (CVE-2023-3865)

Laurence Wit discovered that the KSMBD implementation in the Linux kernel
contained a null pointer dereference vulnerability when handling handling
chained requests. A remote attacker could use this to cause a denial of
service (system crash). (CVE-2023-3866)

It was discovered that the KSMBD implementation in the Linux kernel did not
properly handle session setup requests, leading to an out-of-bounds read
vulnerability. A remote attacker could use this to expose sensitive
information. (CVE-2023-3867)

It was discovered that the bluetooth subsystem in the Linux kernel did not
properly handle L2CAP socket release, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-40283)

It was discovered that some network classifier implementations in the Linux
kernel contained use-after-free vulnerabilities. A local attacker could use
this to cause a denial of service (system crash) or possibly execute
arbitrary code. (CVE-2023-4128)

It was discovered that the Siano USB MDTV receiver device driver in the
Linux kernel did not properly handle device initialization failures in
certain situations, leading to a use-after-free vulnerability. A physically
proximate attacker could use this cause a denial of service (system crash).
(CVE-2023-4132)

It was discovered that a race condition existed in the Cypress touchscreen
driver in the Linux kernel during device removal, leading to a use-after-
free vulnerability. A physically proximate attacker could use this to cause
a denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-4134)

Andy Nguyen discovered that the KVM implementation for AMD processors in
the Linux kernel with Secure Encrypted Virtualization (SEV) contained a
race condition when accessing the GHCB page. A local attacker in a SEV
guest VM could possibly use this to cause a denial of service (host system
crash). (CVE-2023-4155)

It was discovered that the TUN/TAP driver in the Linux kernel did not
properly initialize socket data. A local attacker could use this to cause a
denial of service (system crash). (CVE-2023-4194)

Bien Pham discovered that the netfiler subsystem in the Linux kernel
contained a race condition, leading to a use-after-free vulnerability. A
local user could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-4244)

Maxim Suhanov discovered that the exFAT file system implementation in the
Linux kernel did not properly check a file name length, leading to an out-
of-bounds write vulnerability. An attacker could use this to construct a
malicious exFAT image that, when mounted and operated on, could cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-4273)

Kyle Zeng discovered that the networking stack implementation in the Linux
kernel did not properly validate skb object size in certain conditions. An
attacker could use this cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-42752)

Kyle Zeng discovered that the netfiler subsystem in the Linux kernel did
not properly calculate array offsets, leading to a out-of-bounds write
vulnerability. A local user could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-42753)

Kyle Zeng discovered that the IPv4 Resource Reservation Protocol (RSVP)
classifier implementation in the Linux kernel contained an out-of-bounds
read vulnerability. A local attacker could use this to cause a denial of
service (system crash). Please note that kernel packet classifier support
for RSVP has been removed to resolve this vulnerability. (CVE-2023-42755)

Kyle Zeng discovered that the netfilter subsystem in the Linux kernel
contained a race condition in IP set operations in certain situations. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2023-42756)

Thelford Williams discovered that the Ceph file system messenger protocol
implementation in the Linux kernel did not properly validate frame segment
length in certain situation, leading to a buffer overflow vulnerability. A
remote attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2023-44466)

Lonial Con discovered that the netfilter subsystem in the Linux kernel
contained a memory leak when handling certain element flush operations. A
local attacker could use this to expose sensitive information (kernel
memory). (CVE-2023-4569)

Bing-Jhong Billy Jheng discovered that the Unix domain socket
implementation in the Linux kernel contained a race condition in certain
situations, leading to a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2023-4622)

Budimir Markovic discovered that the qdisc implementation in the Linux
kernel did not properly validate inner classes, leading to a use-after-free
vulnerability. A local user could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-4623)

Alex Birnberg discovered that the netfilter subsystem in the Linux kernel
did not properly validate register length, leading to an out-of- bounds
write vulnerability. A local attacker could possibly use this to cause a
denial of service (system crash). (CVE-2023-4881)

It was discovered that the Quick Fair Queueing scheduler implementation in
the Linux kernel did not properly handle network packets in certain
conditions, leading to a use after free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2023-4921)

Kevin Rich discovered that the netfilter subsystem in the Linux kernel did
not properly handle removal of rules from chain bindings in certain
circumstances, leading to a use-after-free vulnerability. A local attacker
could possibly use this to cause a denial of service (system crash) or
execute arbitrary code. (CVE-2023-5197)

References

CVSS3

9.8

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

NONE

Scope

UNCHANGED

Confidentiality Impact

HIGH

Integrity Impact

HIGH

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

AI Score

8.4

Confidence

High

EPSS

0.013

Percentile

85.9%