Lucene search

K
osvGoogleOSV:USN-6325-1
HistoryAug 31, 2023 - 1:43 p.m.

linux-gkeop-5.15, linux-intel-iotg vulnerabilities

2023-08-3113:43:31
Google
osv.dev
5
intel
amd
processors
speculative execution
io_uring
double-free
denial of service
use-after-free
system crash
arbitrary code
netfilter
pipapo
bound chain
linux kernel

8.3 High

AI Score

Confidence

High

0.002 Low

EPSS

Percentile

51.2%

Daniel Moghimi discovered that some Intel® Processors did not properly
clear microarchitectural state after speculative execution of various
instructions. A local unprivileged user could use this to obtain to
sensitive information. (CVE-2022-40982)

Tavis Ormandy discovered that some AMD processors did not properly handle
speculative execution of certain vector register instructions. A local
attacker could use this to expose sensitive information. (CVE-2023-20593)

Ye Zhang and Nicolas Wu discovered that the io_uring subsystem in the Linux
kernel did not properly handle locking for rings with IOPOLL, leading to a
double-free vulnerability. A local attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2023-21400)

It was discovered that the universal 32bit network packet classifier
implementation in the Linux kernel did not properly perform reference
counting in some situations, leading to a use-after-free vulnerability. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2023-3609)

It was discovered that the netfilter subsystem in the Linux kernel did not
properly handle certain error conditions, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-3610)

It was discovered that the Quick Fair Queueing network scheduler
implementation in the Linux kernel contained an out-of-bounds write
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-3611)

It was discovered that the network packet classifier with
netfilter/firewall marks implementation in the Linux kernel did not
properly handle reference counting, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-3776)

Kevin Rich discovered that the netfilter subsystem in the Linux kernel did
not properly handle table rules flush in certain circumstances. A local
attacker could possibly use this to cause a denial of service (system
crash) or execute arbitrary code. (CVE-2023-3777)

Kevin Rich discovered that the netfilter subsystem in the Linux kernel did
not properly handle rule additions to bound chains in certain
circumstances. A local attacker could possibly use this to cause a denial
of service (system crash) or execute arbitrary code. (CVE-2023-3995)

It was discovered that the netfilter subsystem in the Linux kernel did not
properly handle PIPAPO element removal, leading to a use-after-free
vulnerability. A local attacker could possibly use this to cause a denial
of service (system crash) or execute arbitrary code. (CVE-2023-4004)

Kevin Rich discovered that the netfilter subsystem in the Linux kernel did
not properly handle bound chain deactivation in certain circumstances. A
local attacker could possibly use this to cause a denial of service (system
crash) or execute arbitrary code. (CVE-2023-4015)