logo
DATABASE RESOURCES PRICING ABOUT US

EulerOS 2.0 SP8 : kernel (EulerOS-SA-2022-1366)

Description

According to the versions of the kernel packages installed, the EulerOS installation on the remote host is affected by the following vulnerabilities : - The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data. (CVE-2020-24586) - The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that all fragments of a frame are encrypted under the same key. An adversary can abuse this to decrypt selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP encryption key is periodically renewed. (CVE-2020-24587) - The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that the A-MSDU flag in the plaintext QoS header field is authenticated. Against devices that support receiving non-SSP A-MSDU frames (which is mandatory as part of 802.11n), an adversary can abuse this to inject arbitrary network packets. (CVE-2020-24588) - An issue was discovered in the kernel in NetBSD 7.1. An Access Point (AP) forwards EAPOL frames to other clients even though the sender has not yet successfully authenticated to the AP. This might be abused in projected Wi-Fi networks to launch denial-of-service attacks against connected clients and makes it easier to exploit other vulnerabilities in connected clients. (CVE-2020-26139) - An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration. (CVE-2020-26140) - An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The Wi-Fi implementation does not verify the Message Integrity Check (authenticity) of fragmented TKIP frames. An adversary can abuse this to inject and possibly decrypt packets in WPA or WPA2 networks that support the TKIP data- confidentiality protocol. (CVE-2020-26141) - An issue was discovered in the kernel in OpenBSD 6.6. The WEP, WPA, WPA2, and WPA3 implementations treat fragmented frames as full frames. An adversary can abuse this to inject arbitrary network packets, independent of the network configuration. (CVE-2020-26142) - An issue was discovered in the ALFA Windows 10 driver 1030.36.604 for AWUS036ACH. The WEP, WPA, WPA2, and WPA3 implementations accept fragmented plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration. (CVE-2020-26143) - An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext A-MSDU frames as long as the first 8 bytes correspond to a valid RFC1042 (i.e., LLC/SNAP) header for EAPOL. An adversary can abuse this to inject arbitrary network packets independent of the network configuration. (CVE-2020-26144) - An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept second (or subsequent) broadcast fragments even when sent in plaintext and process them as full unfragmented frames. An adversary can abuse this to inject arbitrary network packets independent of the network configuration. (CVE-2020-26145) - An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WPA, WPA2, and WPA3 implementations reassemble fragments with non-consecutive packet numbers. An adversary can abuse this to exfiltrate selected fragments. This vulnerability is exploitable when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used. Note that WEP is vulnerable to this attack by design. (CVE-2020-26146) - An issue was discovered in the Linux kernel 5.8.9. The WEP, WPA, WPA2, and WPA3 implementations reassemble fragments even though some of them were sent in plaintext. This vulnerability can be abused to inject packets and/or exfiltrate selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used. (CVE-2020-26147) - A memory leak flaw in the Linux kernel's hugetlbfs memory usage was found in the way the user maps some regions of memory twice using shmget() which are aligned to PUD alignment with the fault of some of the memory pages. A local user could use this flaw to get unauthorized access to some data. (CVE-2021-4002) - In the IPv6 implementation in the Linux kernel before 5.13.3, net/ipv6/output_core.c has an information leak because of certain use of a hash table which, although big, doesn't properly consider that IPv6-based attackers can typically choose among many IPv6 source addresses. (CVE-2021-45485) - In the IPv4 implementation in the Linux kernel before 5.12.4, net/ipv4/route.c has an information leak because the hash table is very small. (CVE-2021-45486) - A vulnerability was found in the Linux kernel's cgroup_release_agent_write in the kernel/cgroup/cgroup-v1.c function. This flaw, under certain circumstances, allows the use of the cgroups v1 release_agent feature to escalate privileges and bypass the namespace isolation unexpectedly. (CVE-2022-0492) - A flaw null pointer dereference in the Linux kernel UDF file system functionality was found in the way user triggers udf_file_write_iter function for the malicious UDF image. A local user could use this flaw to crash the system. Actual from Linux kernel 4.2-rc1 till 5.17-rc2. (CVE-2022-0617) - An issue was discovered in fs/nfs/dir.c in the Linux kernel before 5.16.5. If an application sets the O_DIRECTORY flag, and tries to open a regular file, nfs_atomic_open() performs a regular lookup. If a regular file is found, ENOTDIR should occur, but the server instead returns uninitialized data in the file descriptor. (CVE-2022-24448) Note that Tenable Network Security has extracted the preceding description block directly from the EulerOS security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.


Related