Lucene search

K
nessusThis script is Copyright (C) 2023 and is owned by Tenable, Inc. or an Affiliate thereof.AL2_ALASOPENSSL-SNAPSAFE-2023-002.NASL
HistorySep 27, 2023 - 12:00 a.m.

Amazon Linux 2 : openssl-snapsafe (ALASOPENSSL-SNAPSAFE-2023-002)

2023-09-2700:00:00
This script is Copyright (C) 2023 and is owned by Tenable, Inc. or an Affiliate thereof.
www.tenable.com
7

The version of openssl-snapsafe installed on the remote host is prior to 1.0.2k-24. It is, therefore, affected by multiple vulnerabilities as referenced in the ALAS2OPENSSL-SNAPSAFE-2023-002 advisory.

  • A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption.
    The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. (CVE-2022-4304)

  • The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected. (CVE-2023-0215)

  • There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName.
    X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network. (CVE-2023-0286)

  • A security vulnerability has been identified in all supported versions of OpenSSL related to the verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit this vulnerability by creating a malicious certificate chain that triggers exponential use of computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy processing is disabled by default but can be enabled by passing the -policy' argument to the command line utilities or by calling the X509_VERIFY_PARAM_set1_policies()’ function. (CVE-2023-0464)

  • Applications that use a non-default option when verifying certificates may be vulnerable to an attack from a malicious CA to circumvent certain checks. Invalid certificate policies in leaf certificates are silently ignored by OpenSSL and other certificate policy checks are skipped for that certificate. A malicious CA could use this to deliberately assert invalid certificate policies in order to circumvent policy checking on the certificate altogether. Policy processing is disabled by default but can be enabled by passing the -policy' argument to the command line utilities or by calling the X509_VERIFY_PARAM_set1_policies()’ function. (CVE-2023-0465)

  • The function X509_VERIFY_PARAM_add0_policy() is documented to implicitly enable the certificate policy check when doing certificate verification. However the implementation of the function does not enable the check which allows certificates with invalid or incorrect policies to pass the certificate verification.
    As suddenly enabling the policy check could break existing deployments it was decided to keep the existing behavior of the X509_VERIFY_PARAM_add0_policy() function. Instead the applications that require OpenSSL to perform certificate policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly enable the policy check by calling X509_VERIFY_PARAM_set_flags() with the X509_V_FLAG_POLICY_CHECK flag argument.
    Certificate policy checks are disabled by default in OpenSSL and are not commonly used by applications.
    (CVE-2023-0466)

  • Issue summary: Processing some specially crafted ASN.1 object identifiers or data containing them may be very slow. Impact summary: Applications that use OBJ_obj2txt() directly, or use any of the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message size limit may experience notable to very long delays when processing those messages, which may lead to a Denial of Service. An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers - most of which have no size limit.
    OBJ_obj2txt() may be used to translate an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL type ASN1_OBJECT) to its canonical numeric text form, which are the sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by periods. When one of the sub-identifiers in the OBJECT IDENTIFIER is very large (these are sizes that are seen as absurdly large, taking up tens or hundreds of KiBs), the translation to a decimal number in text may take a very long time. The time complexity is O(n^2) with ‘n’ being the size of the sub-identifiers in bytes (*). With OpenSSL 3.0, support to fetch cryptographic algorithms using names / identifiers in string form was introduced. This includes using OBJECT IDENTIFIERs in canonical numeric text form as identifiers for fetching algorithms. Such OBJECT IDENTIFIERs may be received through the ASN.1 structure AlgorithmIdentifier, which is commonly used in multiple protocols to specify what cryptographic algorithm should be used to sign or verify, encrypt or decrypt, or digest passed data. Applications that call OBJ_obj2txt() directly with untrusted data are affected, with any version of OpenSSL. If the use is for the mere purpose of display, the severity is considered low. In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS. It also impacts anything that processes X.509 certificates, including simple things like verifying its signature. The impact on TLS is relatively low, because all versions of OpenSSL have a 100KiB limit on the peer’s certificate chain. Additionally, this only impacts clients, or servers that have explicitly enabled client authentication. In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects, such as X.509 certificates. This is assumed to not happen in such a way that it would cause a Denial of Service, so these versions are considered not affected by this issue in such a way that it would be cause for concern, and the severity is therefore considered low. (CVE-2023-2650)

Note that Nessus has not tested for these issues but has instead relied only on the application’s self-reported version number.

#%NASL_MIN_LEVEL 80900
##
# (C) Tenable, Inc.
#
# The descriptive text and package checks in this plugin were
# extracted from Amazon Linux 2 Security Advisory ALASOPENSSL-SNAPSAFE-2023-002.
##

include('compat.inc');

if (description)
{
  script_id(182040);
  script_version("1.0");
  script_set_attribute(attribute:"plugin_modification_date", value:"2023/09/27");

  script_cve_id(
    "CVE-2022-4304",
    "CVE-2023-0215",
    "CVE-2023-0286",
    "CVE-2023-0464",
    "CVE-2023-0465",
    "CVE-2023-0466",
    "CVE-2023-2650"
  );

  script_name(english:"Amazon Linux 2 : openssl-snapsafe (ALASOPENSSL-SNAPSAFE-2023-002)");

  script_set_attribute(attribute:"synopsis", value:
"The remote Amazon Linux 2 host is missing a security update.");
  script_set_attribute(attribute:"description", value:
"The version of openssl-snapsafe installed on the remote host is prior to 1.0.2k-24. It is, therefore, affected by
multiple vulnerabilities as referenced in the ALAS2OPENSSL-SNAPSAFE-2023-002 advisory.

  - A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient
    to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful
    decryption an attacker would have to be able to send a very large number of trial messages for decryption.
    The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS
    connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An
    attacker that had observed a genuine connection between a client and a server could use this flaw to send
    trial messages to the server and record the time taken to process them. After a sufficiently large number
    of messages the attacker could recover the pre-master secret used for the original connection and thus be
    able to decrypt the application data sent over that connection. (CVE-2022-4304)

  - The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is
    primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may
    also be called directly by end user applications. The function receives a BIO from the caller, prepends a
    new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the
    BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid,
    the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this
    case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal
    pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then
    a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the
    internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call
    BIO_pop() on the BIO. This internal function is in turn called by the public API functions
    PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1,
    SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include
    i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL
    cms and smime command line applications are similarly affected. (CVE-2023-0215)

  - There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName.
    X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME
    incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently
    interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL
    checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may
    allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or
    enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate
    chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these
    inputs, the other input must already contain an X.400 address as a CRL distribution point, which is
    uncommon. As such, this vulnerability is most likely to only affect applications which have implemented
    their own functionality for retrieving CRLs over a network. (CVE-2023-0286)

  - A security vulnerability has been identified in all supported versions of OpenSSL related to the
    verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit
    this vulnerability by creating a malicious certificate chain that triggers exponential use of
    computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy
    processing is disabled by default but can be enabled by passing the `-policy' argument to the command line
    utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. (CVE-2023-0464)

  - Applications that use a non-default option when verifying certificates may be vulnerable to an attack from
    a malicious CA to circumvent certain checks. Invalid certificate policies in leaf certificates are
    silently ignored by OpenSSL and other certificate policy checks are skipped for that certificate. A
    malicious CA could use this to deliberately assert invalid certificate policies in order to circumvent
    policy checking on the certificate altogether. Policy processing is disabled by default but can be enabled
    by passing the `-policy' argument to the command line utilities or by calling the
    `X509_VERIFY_PARAM_set1_policies()' function. (CVE-2023-0465)

  - The function X509_VERIFY_PARAM_add0_policy() is documented to implicitly enable the certificate policy
    check when doing certificate verification. However the implementation of the function does not enable the
    check which allows certificates with invalid or incorrect policies to pass the certificate verification.
    As suddenly enabling the policy check could break existing deployments it was decided to keep the existing
    behavior of the X509_VERIFY_PARAM_add0_policy() function. Instead the applications that require OpenSSL to
    perform certificate policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly enable the
    policy check by calling X509_VERIFY_PARAM_set_flags() with the X509_V_FLAG_POLICY_CHECK flag argument.
    Certificate policy checks are disabled by default in OpenSSL and are not commonly used by applications.
    (CVE-2023-0466)

  - Issue summary: Processing some specially crafted ASN.1 object identifiers or data containing them may be
    very slow. Impact summary: Applications that use OBJ_obj2txt() directly, or use any of the OpenSSL
    subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message size limit may experience notable to
    very long delays when processing those messages, which may lead to a Denial of Service. An OBJECT
    IDENTIFIER is composed of a series of numbers - sub-identifiers - most of which have no size limit.
    OBJ_obj2txt() may be used to translate an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the
    OpenSSL type ASN1_OBJECT) to its canonical numeric text form, which are the sub-identifiers of the OBJECT
    IDENTIFIER in decimal form, separated by periods. When one of the sub-identifiers in the OBJECT IDENTIFIER
    is very large (these are sizes that are seen as absurdly large, taking up tens or hundreds of KiBs), the
    translation to a decimal number in text may take a very long time. The time complexity is O(n^2) with 'n'
    being the size of the sub-identifiers in bytes (*). With OpenSSL 3.0, support to fetch cryptographic
    algorithms using names / identifiers in string form was introduced. This includes using OBJECT IDENTIFIERs
    in canonical numeric text form as identifiers for fetching algorithms. Such OBJECT IDENTIFIERs may be
    received through the ASN.1 structure AlgorithmIdentifier, which is commonly used in multiple protocols to
    specify what cryptographic algorithm should be used to sign or verify, encrypt or decrypt, or digest
    passed data. Applications that call OBJ_obj2txt() directly with untrusted data are affected, with any
    version of OpenSSL. If the use is for the mere purpose of display, the severity is considered low. In
    OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS. It also impacts
    anything that processes X.509 certificates, including simple things like verifying its signature. The
    impact on TLS is relatively low, because all versions of OpenSSL have a 100KiB limit on the peer's
    certificate chain. Additionally, this only impacts clients, or servers that have explicitly enabled client
    authentication. In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects, such as X.509
    certificates. This is assumed to not happen in such a way that it would cause a Denial of Service, so
    these versions are considered not affected by this issue in such a way that it would be cause for concern,
    and the severity is therefore considered low. (CVE-2023-2650)

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version
number.");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/AL2/ALASOPENSSL-SNAPSAFE-2023-002.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2022-4304.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2023-0215.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2023-0286.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2023-0464.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2023-0465.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2023-0466.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/cve/html/CVE-2023-2650.html");
  script_set_attribute(attribute:"see_also", value:"https://alas.aws.amazon.com/faqs.html");
  script_set_attribute(attribute:"solution", value:
"Run 'yum update openssl-snapsafe' to update your system.");
  script_set_cvss_base_vector("CVSS2#AV:N/AC:H/Au:N/C:C/I:N/A:C");
  script_set_cvss_temporal_vector("CVSS2#E:U/RL:OF/RC:C");
  script_set_cvss3_base_vector("CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:H");
  script_set_cvss3_temporal_vector("CVSS:3.0/E:U/RL:O/RC:C");
  script_set_attribute(attribute:"cvss_score_source", value:"CVE-2023-0286");

  script_set_attribute(attribute:"exploitability_ease", value:"No known exploits are available");
  script_set_attribute(attribute:"exploit_available", value:"false");

  script_set_attribute(attribute:"vuln_publication_date", value:"2022/12/15");
  script_set_attribute(attribute:"patch_publication_date", value:"2023/07/17");
  script_set_attribute(attribute:"plugin_publication_date", value:"2023/09/27");

  script_set_attribute(attribute:"plugin_type", value:"local");
  script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:openssl-snapsafe");
  script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:openssl-snapsafe-debuginfo");
  script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:openssl-snapsafe-devel");
  script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:openssl-snapsafe-libs");
  script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:openssl-snapsafe-perl");
  script_set_attribute(attribute:"cpe", value:"p-cpe:/a:amazon:linux:openssl-snapsafe-static");
  script_set_attribute(attribute:"cpe", value:"cpe:/o:amazon:linux:2");
  script_set_attribute(attribute:"generated_plugin", value:"current");
  script_end_attributes();

  script_category(ACT_GATHER_INFO);
  script_family(english:"Amazon Linux Local Security Checks");

  script_copyright(english:"This script is Copyright (C) 2023 and is owned by Tenable, Inc. or an Affiliate thereof.");

  script_dependencies("ssh_get_info.nasl");
  script_require_keys("Host/local_checks_enabled", "Host/AmazonLinux/release", "Host/AmazonLinux/rpm-list");

  exit(0);
}

include("rpm.inc");

if (!get_kb_item("Host/local_checks_enabled")) audit(AUDIT_LOCAL_CHECKS_NOT_ENABLED);

var alas_release = get_kb_item("Host/AmazonLinux/release");
if (isnull(alas_release) || !strlen(alas_release)) audit(AUDIT_OS_NOT, "Amazon Linux");
var os_ver = pregmatch(pattern: "^AL(A|\d+|-\d+)", string:alas_release);
if (isnull(os_ver)) audit(AUDIT_UNKNOWN_APP_VER, "Amazon Linux");
os_ver = os_ver[1];
if (os_ver != "2")
{
  if (os_ver == 'A') os_ver = 'AMI';
  audit(AUDIT_OS_NOT, "Amazon Linux 2", "Amazon Linux " + os_ver);
}

if (!get_kb_item("Host/AmazonLinux/rpm-list")) audit(AUDIT_PACKAGE_LIST_MISSING);

var pkgs = [
    {'reference':'openssl-snapsafe-1.0.2k-24.amzn2.0.7', 'cpu':'aarch64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-1.0.2k-24.amzn2.0.7', 'cpu':'i686', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-1.0.2k-24.amzn2.0.7', 'cpu':'x86_64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-debuginfo-1.0.2k-24.amzn2.0.7', 'cpu':'aarch64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-debuginfo-1.0.2k-24.amzn2.0.7', 'cpu':'i686', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-debuginfo-1.0.2k-24.amzn2.0.7', 'cpu':'x86_64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-devel-1.0.2k-24.amzn2.0.7', 'cpu':'aarch64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-devel-1.0.2k-24.amzn2.0.7', 'cpu':'i686', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-devel-1.0.2k-24.amzn2.0.7', 'cpu':'x86_64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-libs-1.0.2k-24.amzn2.0.7', 'cpu':'aarch64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-libs-1.0.2k-24.amzn2.0.7', 'cpu':'i686', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-libs-1.0.2k-24.amzn2.0.7', 'cpu':'x86_64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-perl-1.0.2k-24.amzn2.0.7', 'cpu':'aarch64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-perl-1.0.2k-24.amzn2.0.7', 'cpu':'i686', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-perl-1.0.2k-24.amzn2.0.7', 'cpu':'x86_64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-static-1.0.2k-24.amzn2.0.7', 'cpu':'aarch64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-static-1.0.2k-24.amzn2.0.7', 'cpu':'i686', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE},
    {'reference':'openssl-snapsafe-static-1.0.2k-24.amzn2.0.7', 'cpu':'x86_64', 'release':'AL2', 'rpm_spec_vers_cmp':TRUE}
];

var flag = 0;
foreach var package_array ( pkgs ) {
  var reference = NULL;
  var _release = NULL;
  var sp = NULL;
  var _cpu = NULL;
  var el_string = NULL;
  var rpm_spec_vers_cmp = NULL;
  var epoch = NULL;
  var allowmaj = NULL;
  var exists_check = NULL;
  if (!empty_or_null(package_array['reference'])) reference = package_array['reference'];
  if (!empty_or_null(package_array['release'])) _release = package_array['release'];
  if (!empty_or_null(package_array['sp'])) sp = package_array['sp'];
  if (!empty_or_null(package_array['cpu'])) _cpu = package_array['cpu'];
  if (!empty_or_null(package_array['el_string'])) el_string = package_array['el_string'];
  if (!empty_or_null(package_array['rpm_spec_vers_cmp'])) rpm_spec_vers_cmp = package_array['rpm_spec_vers_cmp'];
  if (!empty_or_null(package_array['epoch'])) epoch = package_array['epoch'];
  if (!empty_or_null(package_array['allowmaj'])) allowmaj = package_array['allowmaj'];
  if (!empty_or_null(package_array['exists_check'])) exists_check = package_array['exists_check'];
  if (reference && _release && (!exists_check || rpm_exists(release:_release, rpm:exists_check))) {
    if (rpm_check(release:_release, sp:sp, cpu:_cpu, reference:reference, epoch:epoch, el_string:el_string, rpm_spec_vers_cmp:rpm_spec_vers_cmp, allowmaj:allowmaj)) flag++;
  }
}

if (flag)
{
  security_report_v4(
      port       : 0,
      severity   : SECURITY_HOLE,
      extra      : rpm_report_get()
  );
  exit(0);
}
else
{
  var tested = pkg_tests_get();
  if (tested) audit(AUDIT_PACKAGE_NOT_AFFECTED, tested);
  else audit(AUDIT_PACKAGE_NOT_INSTALLED, "openssl-snapsafe / openssl-snapsafe-debuginfo / openssl-snapsafe-devel / etc");
}
VendorProductVersionCPE
amazonlinuxopenssl-snapsafep-cpe:/a:amazon:linux:openssl-snapsafe
amazonlinuxopenssl-snapsafe-debuginfop-cpe:/a:amazon:linux:openssl-snapsafe-debuginfo
amazonlinuxopenssl-snapsafe-develp-cpe:/a:amazon:linux:openssl-snapsafe-devel
amazonlinuxopenssl-snapsafe-libsp-cpe:/a:amazon:linux:openssl-snapsafe-libs
amazonlinuxopenssl-snapsafe-perlp-cpe:/a:amazon:linux:openssl-snapsafe-perl
amazonlinuxopenssl-snapsafe-staticp-cpe:/a:amazon:linux:openssl-snapsafe-static
amazonlinux2cpe:/o:amazon:linux:2